Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4GammaXTRadiator.cc 68037 2013-03-13 14:15:08Z gcosmo $ >> 28 // >> 29 >> 30 #include <complex> 26 31 27 #include "G4GammaXTRadiator.hh" 32 #include "G4GammaXTRadiator.hh" >> 33 #include "Randomize.hh" 28 34 29 #include "G4Gamma.hh" 35 #include "G4Gamma.hh" 30 36 31 ////////////////////////////////////////////// 37 //////////////////////////////////////////////////////////////////////////// >> 38 // 32 // Constructor, destructor 39 // Constructor, destructor 33 G4GammaXTRadiator::G4GammaXTRadiator(G4Logical << 40 34 G4double << 41 G4GammaXTRadiator::G4GammaXTRadiator(G4LogicalVolume* anEnvelope, 35 G4Materia << 42 G4double alphaPlate, >> 43 G4double alphaGas, >> 44 G4Material* foilMat,G4Material* gasMat, 36 G4double 45 G4double a, G4double b, G4int n, 37 const G4S << 46 const G4String& processName) : 38 : G4VXTRenergyLoss(anEnvelope, foilMat, gasM << 47 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName) 39 { 48 { 40 G4cout << "Gamma distributed X-ray TR radiat << 49 G4cout<<"Gammma distributed X-ray TR radiator model is called"<<G4endl ; 41 50 42 // Build energy and angular integral spectra 51 // Build energy and angular integral spectra of X-ray TR photons from 43 // a radiator 52 // a radiator 44 53 45 fAlphaPlate = alphaPlate; << 54 fAlphaPlate = alphaPlate ; 46 fAlphaGas = alphaGas; << 55 fAlphaGas = alphaGas ; 47 G4cout << "fAlphaPlate = " << fAlphaPlate << << 56 G4cout<<"fAlphaPlate = "<<fAlphaPlate<<" ; fAlphaGas = "<<fAlphaGas<<G4endl ; 48 << G4endl; << 57 >> 58 // BuildTable() ; 49 } 59 } 50 60 51 ////////////////////////////////////////////// 61 /////////////////////////////////////////////////////////////////////////// 52 G4GammaXTRadiator::~G4GammaXTRadiator() = defa << 53 62 54 void G4GammaXTRadiator::ProcessDescription(std << 63 G4GammaXTRadiator::~G4GammaXTRadiator() 55 { 64 { 56 out << 65 ; 57 << "Rough approximation describing a radia << 58 "radiation.\n" << 59 "Thicknesses of plates and gas gaps are << 60 "description.\n"; << 61 } 66 } 62 67 >> 68 >> 69 63 ////////////////////////////////////////////// 70 /////////////////////////////////////////////////////////////////////////// >> 71 // 64 // Rough approximation for radiator interferen 72 // Rough approximation for radiator interference factor for the case of 65 // fully GamDistr radiator. The plate and gas << 73 // fully GamDistr radiator. The plate and gas gap thicknesses are distributed 66 // according to exponent. The mean values of t << 74 // according to exponent. The mean values of the plate and gas gap thicknesses 67 // are supposed to be about XTR formation zone << 75 // are supposed to be about XTR formation zones but much less than 68 // mean absorption length of XTR photons in co << 76 // mean absorption length of XTR photons in coresponding material. 69 G4double G4GammaXTRadiator::GetStackFactor(G4d << 77 70 G4d << 78 G4double >> 79 G4GammaXTRadiator::GetStackFactor( G4double energy, >> 80 G4double gamma, G4double varAngle ) 71 { 81 { 72 G4double result, Za, Zb, Ma, Mb; << 82 G4double result, Za, Zb, Ma, Mb ; >> 83 >> 84 Za = GetPlateFormationZone(energy,gamma,varAngle) ; >> 85 Zb = GetGasFormationZone(energy,gamma,varAngle) ; 73 86 74 Za = GetPlateFormationZone(energy, gamma, va << 87 Ma = GetPlateLinearPhotoAbs(energy) ; 75 Zb = GetGasFormationZone(energy, gamma, varA << 88 Mb = GetGasLinearPhotoAbs(energy) ; 76 89 77 Ma = GetPlateLinearPhotoAbs(energy); << 78 Mb = GetGasLinearPhotoAbs(energy); << 79 90 80 G4complex Ca(1.0 + 0.5 * fPlateThick * Ma / << 91 G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate) ; 81 fPlateThick / Za / fAlphaPlate) << 92 G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas) ; 82 G4complex Cb(1.0 + 0.5 * fGasThick * Mb / fA << 83 fGasThick / Zb / fAlphaGas); << 84 93 85 G4complex Ha = std::pow(Ca, -fAlphaPlate); << 94 G4complex Ha = std::pow(Ca,-fAlphaPlate) ; 86 G4complex Hb = std::pow(Cb, -fAlphaGas); << 95 G4complex Hb = std::pow(Cb,-fAlphaGas) ; 87 G4complex H = Ha * Hb; << 96 G4complex H = Ha*Hb ; 88 97 89 G4complex F1 = (1.0 - Ha) * (1.0 - Hb) / (1. << 98 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H) >> 99 * G4double(fPlateNumber) ; 90 100 91 G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb << 101 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H) 92 (1.0 - std::pow(H, fPlateNumb << 102 * (1.0 - std::pow(H,fPlateNumber)) ; 93 103 94 G4complex R = (F1 + F2) * OneInterfaceXTRdEd << 104 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle) ; 95 105 96 result = 2.0 * std::real(R); << 106 result = 2.0*std::real(R) ; 97 << 107 98 return result; << 108 return result ; 99 } 109 } >> 110 >> 111 >> 112 // >> 113 // >> 114 //////////////////////////////////////////////////////////////////////////// >> 115 >> 116 >> 117 >> 118 >> 119 >> 120 >> 121 >> 122 100 123