Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/include/G4VXTRenergyLoss.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/include/G4VXTRenergyLoss.hh (Version 11.3.0) and /processes/electromagnetic/xrays/include/G4VXTRenergyLoss.hh (Version 9.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 ////////////////////////////////////////////// << 
 27 //                                                 26 //
                                                   >>  27 // $Id: G4VXTRenergyLoss.hh,v 1.24 2007/09/29 17:49:34 vnivanch Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-02 $
                                                   >>  29 //
                                                   >>  30 // 
                                                   >>  31 ///////////////////////////////////////////////////////////////////////////
                                                   >>  32 // 
 28 // base class for 'fast' parametrisation model     33 // base class for 'fast' parametrisation model describing X-ray transition
 29 // created in some G4Envelope. Angular distrib <<  34 // created in some G4Envelope. Anglur distribuiton is very rough !!! (see DoIt
 30 // method                                          35 // method
 31 //                                             <<  36 // 
 32 // History:                                        37 // History:
 33 // 06.10.05  V. Grichine first step to discret <<  38 // 06.10.05 V. Grichine first step to discrete process
 34 // 15.01.02  V. Grichine first version         <<  39 // 15.01.02 V. Grichine first version
 35 // 28.07.05, P.Gumplinger add G4ProcessType to     40 // 28.07.05, P.Gumplinger add G4ProcessType to constructor
 36 // 28.09.07, V.Ivanchenko general cleanup with     41 // 28.09.07, V.Ivanchenko general cleanup without change of algorithms
 37 // 19.09.21, V. Grichine, set/get functions fo <<  42 //
 38                                                    43 
 39 #ifndef G4VXTRenergyLoss_h                         44 #ifndef G4VXTRenergyLoss_h
 40 #define G4VXTRenergyLoss_h 1                       45 #define G4VXTRenergyLoss_h 1
 41                                                    46 
                                                   >>  47 #include <complex>
 42 #include "globals.hh"                              48 #include "globals.hh"
 43 #include "G4Gamma.hh"                          <<  49 #include "Randomize.hh"
                                                   >>  50 
 44 #include "G4LogicalVolume.hh"                      51 #include "G4LogicalVolume.hh"
 45 #include "G4Material.hh"                       <<  52 
 46 #include "G4ParticleChange.hh"                 << 
 47 #include "G4PhysicsTable.hh"                       53 #include "G4PhysicsTable.hh"
                                                   >>  54 #include "G4PhysicsLogVector.hh"
                                                   >>  55 #include "G4Gamma.hh"
                                                   >>  56 #include "G4ThreeVector.hh"
                                                   >>  57 #include "G4ParticleMomentum.hh"
 48 #include "G4Step.hh"                               58 #include "G4Step.hh"
 49 #include "G4Track.hh"                              59 #include "G4Track.hh"
                                                   >>  60 #include "G4VContinuousProcess.hh"
 50 #include "G4VDiscreteProcess.hh"                   61 #include "G4VDiscreteProcess.hh"
                                                   >>  62 #include "G4DynamicParticle.hh"
                                                   >>  63 #include "G4Material.hh" 
                                                   >>  64 #include "G4PhysicsTable.hh"
                                                   >>  65 #include "G4MaterialPropertiesTable.hh"
                                                   >>  66 #include "G4PhysicsOrderedFreeVector.hh"
                                                   >>  67 #include "G4Integrator.hh"
                                                   >>  68 #include "G4ParticleChange.hh"
 51                                                    69 
 52 class G4SandiaTable;                               70 class G4SandiaTable;
 53 class G4VParticleChange;                           71 class G4VParticleChange;
 54 class G4PhysicsFreeVector;                         72 class G4PhysicsFreeVector;
 55 class G4PhysicsLinearVector;                   << 
 56 class G4PhysicsLogVector;                      << 
 57                                                    73 
 58 class G4VXTRenergyLoss : public G4VDiscretePro <<  74 class G4VXTRenergyLoss : public G4VDiscreteProcess  // G4VContinuousProcess
 59 {                                                  75 {
 60  public:                                       <<  76 public:
 61   explicit G4VXTRenergyLoss(G4LogicalVolume* a <<  77 
 62                             G4Material*, G4dou <<  78   G4VXTRenergyLoss (G4LogicalVolume *anEnvelope,G4Material*,G4Material*,
 63                             const G4String& pr <<  79                     G4double,G4double,G4int,
 64                             G4ProcessType type <<  80                     const G4String & processName = "XTRenergyLoss",
 65   virtual ~G4VXTRenergyLoss();                 <<  81                     G4ProcessType type = fElectromagnetic);
                                                   >>  82   virtual  ~G4VXTRenergyLoss ();
 66                                                    83 
 67   virtual void ProcessDescription(std::ostream <<  84   // These virtual has to be implemented in inherited particular TR radiators
 68   virtual void DumpInfo() const override { Pro <<  85  
                                                   >>  86   virtual  G4double GetStackFactor( G4double energy, G4double gamma,
                                                   >>  87                                                      G4double varAngle );
 69                                                    88 
 70   G4VXTRenergyLoss(G4VXTRenergyLoss&) = delete <<  89   G4bool IsApplicable(const G4ParticleDefinition&);
 71   G4VXTRenergyLoss& operator=(const G4VXTRener << 
 72                                                    90 
 73   // Virtual methods to be implemented in inhe <<  91   G4VParticleChange* PostStepDoIt(const G4Track& aTrack, 
 74   virtual G4double GetStackFactor(G4double ene <<  92            const G4Step&  aStep);
 75                                   G4double var << 
 76                                                    93 
 77   virtual G4bool IsApplicable(const G4Particle <<  94   G4double GetMeanFreePath(const G4Track& aTrack,
                                                   >>  95                            G4double previousStepSize,
                                                   >>  96                            G4ForceCondition* condition);
 78                                                    97 
 79   virtual G4VParticleChange* PostStepDoIt(cons <<  98   void BuildPhysicsTable(const G4ParticleDefinition&);
 80                                           cons <<  99   void BuildTable() ;
                                                   >> 100   void BuildEnergyTable() ;
                                                   >> 101   void BuildAngleTable() ;
                                                   >> 102   void BuildGlobalAngleTable() ;
 81                                                   103 
 82   virtual G4double GetMeanFreePath(const G4Tra << 104   G4complex OneInterfaceXTRdEdx( G4double energy, 
 83                                    G4double pr << 105                                 G4double gamma,
 84                                    G4ForceCond << 106                                 G4double varAngle ) ;
 85                                                   107 
 86   virtual void BuildPhysicsTable(const G4Parti << 108   G4double SpectralAngleXTRdEdx(G4double varAngle) ;
 87   void BuildEnergyTable();                     << 
 88   void BuildAngleForEnergyBank();              << 
 89                                                   109 
 90   void BuildTable(){};                         << 110   virtual  G4double SpectralXTRdEdx(G4double energy) ;
 91   void BuildAngleTable();                      << 
 92   void BuildGlobalAngleTable();                << 
 93                                                   111 
 94   G4complex OneInterfaceXTRdEdx(G4double energ << 112   G4double AngleSpectralXTRdEdx(G4double energy) ;
 95                                 G4double varAn << 
 96                                                   113 
 97   G4double SpectralAngleXTRdEdx(G4double varAn << 114   G4double AngleXTRdEdx(G4double varAngle) ;
 98                                                   115 
 99   virtual G4double SpectralXTRdEdx(G4double en << 
100                                                   116 
101   G4double AngleSpectralXTRdEdx(G4double energ << 117   /////////////////////////////////////////////////////////////
102                                                   118 
103   G4double AngleXTRdEdx(G4double varAngle);    << 119   G4double OneBoundaryXTRNdensity( G4double energy,
                                                   >> 120                                    G4double gamma,
                                                   >> 121            G4double varAngle ) const ;
104                                                   122 
105   G4double OneBoundaryXTRNdensity(G4double ene << 
106                                   G4double var << 
107                                                   123 
108   // for photon energy distribution tables        124   // for photon energy distribution tables
109   G4double XTRNSpectralAngleDensity(G4double v << 
110   G4double XTRNSpectralDensity(G4double energy << 
111                                                   125 
                                                   >> 126   G4double XTRNSpectralAngleDensity(G4double varAngle) ;
                                                   >> 127   G4double XTRNSpectralDensity(G4double energy) ;
                                                   >> 128   
112   // for photon angle distribution tables         129   // for photon angle distribution tables
113   G4double XTRNAngleSpectralDensity(G4double e << 
114   G4double XTRNAngleDensity(G4double varAngle) << 
115                                                   130 
116   void GetNumberOfPhotons();                   << 131   G4double XTRNAngleSpectralDensity(G4double energy) ;
                                                   >> 132   G4double XTRNAngleDensity(G4double varAngle) ;
117                                                   133 
118   // Auxiliary functions for plate/gas materia << 134   void GetNumberOfPhotons() ;  
119   G4double GetPlateFormationZone(G4double, G4d << 
120   G4complex GetPlateComplexFZ(G4double, G4doub << 
121   void ComputePlatePhotoAbsCof();              << 
122   G4double GetPlateLinearPhotoAbs(G4double);   << 
123   void GetPlateZmuProduct();                   << 
124   G4double GetPlateZmuProduct(G4double, G4doub << 
125                                                << 
126   G4double GetGasFormationZone(G4double, G4dou << 
127   G4complex GetGasComplexFZ(G4double, G4double << 
128   void ComputeGasPhotoAbsCof();                << 
129   G4double GetGasLinearPhotoAbs(G4double);     << 
130   void GetGasZmuProduct();                     << 
131   G4double GetGasZmuProduct(G4double, G4double << 
132                                                << 
133   G4double GetPlateCompton(G4double);          << 
134   G4double GetGasCompton(G4double);            << 
135   G4double GetComptonPerAtom(G4double, G4doubl << 
136                                                << 
137   G4double GetXTRrandomEnergy(G4double scaledT << 
138   G4double GetXTRenergy(G4int iPlace, G4double << 
139                                                << 
140   G4double GetRandomAngle(G4double energyXTR,  << 
141   G4double GetAngleXTR(G4int iTR, G4double pos << 
142                                                << 
143   // set/get methods for class fields          << 
144                                                << 
145   void     SetGamma(G4double gamma) { fGamma = << 
146   G4double GetGamma() { return fGamma; };      << 
147   void     SetEnergy(G4double energy) { fEnerg << 
148   G4double GetEnergy() { return fEnergy; };    << 
149   void     SetVarAngle(G4double varAngle) { fV << 
150   G4double GetVarAngle() { return fVarAngle; } << 
151   void   SetCompton(G4bool pC) { fCompton = pC << 
152   G4bool GetCompton() { return fCompton; };    << 
153                                                << 
154   G4int GetKrange(){ return fKrange;};         << 
155   void SetKrange( G4int kk ){ fKrange = kk;};  << 
156                                                << 
157                                                << 
158   void     SetAlphaGas(G4double ag){ fAlphaGas << 
159   G4double GetAlphaGas() { return fAlphaGas; } << 
160   void     SetAlphaPlate(G4double ap){ fAlphaP << 
161   G4double GetAlphaPlate() { return fAlphaPlat << 
162                                                << 
163   void     SetTheMinEnergyTR(G4double minetr){ << 
164   G4double GetTheMinEnergyTR() { return fTheMi << 
165   void     SetTheMaxEnergyTR(G4double maxetr){ << 
166   G4double GetTheMaxEnergyTR() { return fTheMa << 
167                                                << 
168   void     SetMinEnergyTR(G4double minetr){ fM << 
169   G4double GetMinEnergyTR() { return fMinEnerg << 
170   void     SetMaxEnergyTR(G4double maxetr){ fM << 
171   G4double GetMaxEnergyTR() { return fMaxEnerg << 
172                                                << 
173   void     SetTheMinAngle(G4double minang){ fT << 
174   G4double GetTheMinAngle() { return fTheMinAn << 
175   void     SetTheMaxAngle(G4double maxang){ fT << 
176   G4double GetTheMaxAngle() { return fTheMaxAn << 
177                                                << 
178   void     SetMinThetaTR(G4double minatr){ fMi << 
179   G4double GetMinThetaTR() { return fMinThetaT << 
180   void     SetMaxThetaTR(G4double maxatr){ fMa << 
181   G4double GetMaxThetaTR() { return fMaxThetaT << 
182                                                   135 
183   // modes of XTR angle distribution           << 136   // Auxiliary functions for plate/gas material parameters
184                                                << 
185   void   SetFastAngle(G4bool fatr){ fFastAngle << 
186   G4bool GetFastAngle() { return fFastAngle; } << 
187   void   SetAngleRadDistr(G4bool fatr){ fAngle << 
188   G4bool GetAngleRadDistr() { return fAngleRad << 
189                                                << 
190                                                   137 
191                                                << 138   G4double  GetPlateFormationZone(G4double,G4double,G4double);
                                                   >> 139   G4complex GetPlateComplexFZ(G4double,G4double,G4double);
                                                   >> 140   void      ComputePlatePhotoAbsCof();
                                                   >> 141   G4double  GetPlateLinearPhotoAbs(G4double);
                                                   >> 142   void      GetPlateZmuProduct() ;
                                                   >> 143   G4double  GetPlateZmuProduct(G4double,G4double,G4double);
                                                   >> 144 
                                                   >> 145   G4double  GetGasFormationZone(G4double,G4double,G4double);
                                                   >> 146   G4complex GetGasComplexFZ(G4double,G4double,G4double);
                                                   >> 147   void      ComputeGasPhotoAbsCof();
                                                   >> 148   G4double  GetGasLinearPhotoAbs(G4double);
                                                   >> 149   void      GetGasZmuProduct();
                                                   >> 150   G4double  GetGasZmuProduct(G4double,G4double,G4double);
                                                   >> 151 
                                                   >> 152   G4double  GetPlateCompton(G4double);
                                                   >> 153   G4double  GetGasCompton(G4double);
                                                   >> 154   G4double  GetComptonPerAtom(G4double,G4double);
                                                   >> 155 
                                                   >> 156   G4double  GetXTRrandomEnergy( G4double scaledTkin, G4int iTkin );
                                                   >> 157   G4double  GetXTRenergy( G4int iPlace, G4double position, G4int iTransfer  );
                                                   >> 158 
                                                   >> 159   G4double  GetRandomAngle( G4double energyXTR, G4int iTkin );
                                                   >> 160   G4double  GetAngleXTR(G4int iTR,G4double position,G4int iAngle);
                                                   >> 161 
                                                   >> 162   G4double  GetGamma()   {return fGamma;}; 
                                                   >> 163   G4double  GetEnergy()  {return fEnergy;};                
                                                   >> 164   G4double  GetVarAngle(){return fVarAngle;};
                                                   >> 165                
                                                   >> 166   void SetGamma(G4double gamma)      {fGamma    = gamma;}; 
                                                   >> 167   void SetEnergy(G4double energy)    {fEnergy   = energy;};                
                                                   >> 168   void SetVarAngle(G4double varAngle){fVarAngle = varAngle;};               
                                                   >> 169   void SetAngleRadDistr(G4bool pAngleRadDistr){fAngleRadDistr=pAngleRadDistr;};               
                                                   >> 170   void SetCompton(G4bool pC){fCompton=pC;};               
192                                                   171 
193   G4PhysicsLogVector* GetProtonVector() { retu << 172   G4PhysicsLogVector* GetProtonVector(){ return fProtonEnergyVector;};
194   G4int GetTotBin() { return fTotBin; };       << 173   G4int GetTotBin(){return fTotBin;};           
195   G4PhysicsFreeVector* GetAngleVector(G4double    174   G4PhysicsFreeVector* GetAngleVector(G4double energy, G4int n);
196                                                   175 
197  protected:                                    << 176 protected:
198   //   min TR energy                           << 
199   G4double fTheMinEnergyTR;                    << 
200   //   max TR energy                           << 
201   G4double fTheMaxEnergyTR;                    << 
202   G4double fTheMinAngle;  //  min theta of TR  << 
203   G4double fTheMaxAngle;  //  1.e-4;  //  max  << 
204                                                   177 
205   // static const members                      << 178   G4ParticleDefinition* fPtrGamma ;    // pointer to TR photon
206                                                << 
207   // min Tkin of proton in tables              << 
208   static constexpr G4double fMinProtonTkin = 1 << 
209   // max Tkin of proton in tables              << 
210   static constexpr G4double fMaxProtonTkin = 1 << 
211   // physical constants for plasma energy      << 
212   static constexpr G4double fPlasmaCof =       << 
213     4. * CLHEP::pi * CLHEP::fine_structure_con << 
214     CLHEP::hbarc / CLHEP::electron_mass_c2;    << 
215   static constexpr G4double fCofTR = CLHEP::fi << 
216                                                << 
217   G4int fTotBin;  //  number of bins in log-ga << 
218   G4int fBinTR;   //  number of bins in TR ene << 
219   G4int fKrange;                               << 
220   G4ParticleDefinition* fPtrGamma;  // pointer << 
221                                                << 
222   G4double* fGammaCutInKineticEnergy;  // TR p << 
223   G4LogicalVolume* fEnvelope;                  << 
224   G4PhysicsTable* fAngleDistrTable;            << 
225   G4PhysicsTable* fEnergyDistrTable;           << 
226   G4PhysicsTable* fAngleForEnergyTable;        << 
227   G4PhysicsLogVector* fProtonEnergyVector;     << 
228   G4PhysicsLogVector* fXTREnergyVector;        << 
229   G4SandiaTable* fPlatePhotoAbsCof;            << 
230   G4SandiaTable* fGasPhotoAbsCof;              << 
231                                                   179 
232   G4ParticleChange fParticleChange;            << 180   G4double* fGammaCutInKineticEnergy ; // TR photon cut in energy array
233   std::vector<G4PhysicsTable*> fAngleBank;     << 181 
                                                   >> 182   G4double         fGammaTkinCut ;     // Tkin cut of TR photon in current mat.
                                                   >> 183   G4LogicalVolume* fEnvelope ;
                                                   >> 184   G4PhysicsTable*  fAngleDistrTable ;
                                                   >> 185   G4PhysicsTable*  fEnergyDistrTable ;
                                                   >> 186 
                                                   >> 187   G4PhysicsLogVector* fProtonEnergyVector ;
                                                   >> 188   G4PhysicsLogVector* fXTREnergyVector ;
                                                   >> 189 
                                                   >> 190   G4double fTheMinEnergyTR;            //   min TR energy
                                                   >> 191   G4double fTheMaxEnergyTR;            //   max TR energy
                                                   >> 192   G4double fMinEnergyTR;               //  min TR energy in material
                                                   >> 193   G4double fMaxEnergyTR;               //  max TR energy in material
                                                   >> 194   G4double fTheMaxAngle;               //  max theta of TR quanta
                                                   >> 195   G4double fTheMinAngle;               //  max theta of TR quanta
                                                   >> 196   G4double fMaxThetaTR;                //  max theta of TR quanta
                                                   >> 197   G4int    fBinTR;                     //  number of bins in TR vectors
                                                   >> 198 
                                                   >> 199   G4double fMinProtonTkin;             // min Tkin of proton in tables
                                                   >> 200   G4double fMaxProtonTkin;             // max Tkin of proton in tables
                                                   >> 201   G4int    fTotBin;                    // number of bins in log scale
                                                   >> 202   G4double fGamma;                     // current Lorentz factor
                                                   >> 203   G4double fEnergy;                    // energy and
                                                   >> 204   G4double fVarAngle;                  // angle squared
                                                   >> 205   G4double fLambda;
                                                   >> 206 
                                                   >> 207   G4double fPlasmaCof ;                // physical consts for plasma energy
                                                   >> 208   G4double fCofTR ;  
                                                   >> 209 
                                                   >> 210   G4bool   fExitFlux;
                                                   >> 211   G4bool   fAngleRadDistr;
                                                   >> 212   G4bool   fCompton;
                                                   >> 213   G4double fSigma1; 
                                                   >> 214   G4double fSigma2;                    // plasma energy Sq of matter1/2
                                                   >> 215 
                                                   >> 216   G4int    fMatIndex1;
                                                   >> 217   G4int    fMatIndex2;
                                                   >> 218   G4int    fPlateNumber;
234                                                   219 
235   G4double fGammaTkinCut;  // Tkin cut of TR p << 
236   G4double fMinEnergyTR;   //  min TR energy i << 
237   G4double fMaxEnergyTR;   //  max TR energy i << 
238   G4double fMinThetaTR, fMaxThetaTR;    //  mi << 
239   G4double fTotalDist;                            220   G4double fTotalDist;
240   G4double fPlateThick;                           221   G4double fPlateThick;
241   G4double fGasThick;                          << 222   G4double fGasThick;     
242   G4double fAlphaPlate;                           223   G4double fAlphaPlate;
243   G4double fAlphaGas;                          << 224   G4double fAlphaGas ;
244   G4double fGamma;     // current Lorentz fact << 225 
245   G4double fEnergy;    // energy and           << 226   G4SandiaTable* fPlatePhotoAbsCof;
246   G4double fVarAngle;  // angle squared!       << 227  
247   G4double fLambda;                            << 228   G4SandiaTable* fGasPhotoAbsCof;
248   G4double fSigma1;                            << 229 
249   G4double fSigma2;  // plasma energy Sq of ma << 230   G4ParticleChange fParticleChange;
250                                                   231 
251   G4int fMatIndex1;                            << 232   G4PhysicsTable*                    fAngleForEnergyTable;
252   G4int fMatIndex2;                            << 233   std::vector<G4PhysicsTable*>       fAngleBank;
253   G4int fPlateNumber;                          << 
254                                                << 
255   G4bool fExitFlux;                            << 
256   G4bool fFastAngle, fAngleRadDistr;           << 
257   G4bool fCompton;                             << 
258                                                   234 
259   G4int secID = -1;  // creator modelID        << 
260 };                                                235 };
261                                                   236 
262 #endif                                            237 #endif
263                                                   238