Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // 26 // ------------------------------------------- 27 // ------------------------------------------------------------------- 27 // 28 // 28 // GEANT4 Class file 29 // GEANT4 Class file 29 // 30 // 30 // 31 // 31 // File name: G4VEmModel 32 // File name: G4VEmModel 32 // 33 // 33 // Author: Vladimir Ivanchenko 34 // Author: Vladimir Ivanchenko 34 // 35 // 35 // Creation date: 25.07.2005 36 // Creation date: 25.07.2005 36 // 37 // 37 // Modifications: 38 // Modifications: 38 // 25.10.2005 Set default highLimit=100.TeV (V 39 // 25.10.2005 Set default highLimit=100.TeV (V.Ivanchenko) 39 // 06.02.2006 add method ComputeMeanFreePath() 40 // 06.02.2006 add method ComputeMeanFreePath() (mma) 40 // 16.02.2009 Move implementations of virtual 41 // 16.02.2009 Move implementations of virtual methods to source (VI) 41 // 42 // 42 // 43 // 43 // Class Description: 44 // Class Description: 44 // 45 // 45 // Abstract interface to energy loss models 46 // Abstract interface to energy loss models 46 47 47 // ------------------------------------------- 48 // ------------------------------------------------------------------- 48 // 49 // 49 50 50 #include "G4VEmModel.hh" 51 #include "G4VEmModel.hh" 51 #include "G4ElementData.hh" 52 #include "G4ElementData.hh" 52 #include "G4LossTableManager.hh" 53 #include "G4LossTableManager.hh" 53 #include "G4LossTableBuilder.hh" << 54 #include "G4ProductionCutsTable.hh" 54 #include "G4ProductionCutsTable.hh" 55 #include "G4ParticleChangeForLoss.hh" 55 #include "G4ParticleChangeForLoss.hh" 56 #include "G4ParticleChangeForGamma.hh" 56 #include "G4ParticleChangeForGamma.hh" 57 #include "G4EmParameters.hh" << 58 #include "G4SystemOfUnits.hh" 57 #include "G4SystemOfUnits.hh" 59 #include "G4EmUtility.hh" << 60 #include "G4Log.hh" 58 #include "G4Log.hh" 61 #include "Randomize.hh" 59 #include "Randomize.hh" 62 #include <iostream> 60 #include <iostream> 63 61 64 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 65 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 66 64 67 G4VEmModel::G4VEmModel(const G4String& nam): 65 G4VEmModel::G4VEmModel(const G4String& nam): 68 inveplus(1.0/CLHEP::eplus), << 66 flucModel(nullptr),anglModel(nullptr), name(nam), lowLimit(0.1*CLHEP::keV), 69 lowLimit(0.1*CLHEP::keV), << 67 highLimit(100.0*CLHEP::TeV),eMinActive(0.0),eMaxActive(DBL_MAX), 70 highLimit(100.0*CLHEP::TeV), << 68 polarAngleLimit(CLHEP::pi),secondaryThreshold(DBL_MAX), 71 polarAngleLimit(CLHEP::pi), << 69 theLPMflag(false),flagDeexcitation(false),flagForceBuildTable(false), 72 name(nam) << 70 isMaster(true),fElementData(nullptr),pParticleChange(nullptr), >> 71 xSectionTable(nullptr),theDensityFactor(nullptr),theDensityIdx(nullptr), >> 72 lossFlucFlag(true),inveplus(1.0/CLHEP::eplus),fCurrentCouple(nullptr), >> 73 fCurrentElement(nullptr),fCurrentIsotope(nullptr), >> 74 fTripletModel(nullptr),nsec(5) 73 { 75 { 74 xsec.resize(nsec); 76 xsec.resize(nsec); >> 77 nSelectors = 0; >> 78 elmSelectors = nullptr; >> 79 localElmSelectors = true; >> 80 localTable = true; >> 81 useAngularGenerator = false; >> 82 isLocked = false; >> 83 idxTable = 0; >> 84 75 fEmManager = G4LossTableManager::Instance(); 85 fEmManager = G4LossTableManager::Instance(); 76 fEmManager->Register(this); 86 fEmManager->Register(this); 77 isMaster = fEmManager->IsMaster(); << 78 << 79 G4LossTableBuilder* bld = fEmManager->GetTab << 80 theDensityFactor = bld->GetDensityFactors(); << 81 theDensityIdx = bld->GetCoupleIndexes(); << 82 } 87 } 83 88 84 //....oooOO0OOooo........oooOO0OOooo........oo 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 85 90 86 G4VEmModel::~G4VEmModel() 91 G4VEmModel::~G4VEmModel() 87 { 92 { 88 if(localElmSelectors) { 93 if(localElmSelectors) { 89 for(G4int i=0; i<nSelectors; ++i) { 94 for(G4int i=0; i<nSelectors; ++i) { 90 delete (*elmSelectors)[i]; 95 delete (*elmSelectors)[i]; 91 } 96 } 92 delete elmSelectors; 97 delete elmSelectors; 93 } 98 } 94 delete anglModel; 99 delete anglModel; 95 100 96 if(localTable && xSectionTable != nullptr) { << 101 if(localTable && xSectionTable) { 97 xSectionTable->clearAndDestroy(); 102 xSectionTable->clearAndDestroy(); 98 delete xSectionTable; 103 delete xSectionTable; 99 xSectionTable = nullptr; 104 xSectionTable = nullptr; 100 } 105 } >> 106 if(isMaster && fElementData) { >> 107 delete fElementData; >> 108 fElementData = nullptr; >> 109 } 101 fEmManager->DeRegister(this); 110 fEmManager->DeRegister(this); 102 } 111 } 103 112 104 //....oooOO0OOooo........oooOO0OOooo........oo 113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 105 114 106 G4ParticleChangeForLoss* G4VEmModel::GetPartic 115 G4ParticleChangeForLoss* G4VEmModel::GetParticleChangeForLoss() 107 { 116 { 108 G4ParticleChangeForLoss* p = nullptr; 117 G4ParticleChangeForLoss* p = nullptr; 109 if (pParticleChange != nullptr) { << 118 if (pParticleChange) { 110 p = static_cast<G4ParticleChangeForLoss*>( 119 p = static_cast<G4ParticleChangeForLoss*>(pParticleChange); 111 } else { 120 } else { 112 p = new G4ParticleChangeForLoss(); 121 p = new G4ParticleChangeForLoss(); 113 pParticleChange = p; 122 pParticleChange = p; 114 } 123 } 115 if(fTripletModel != nullptr) { fTripletModel << 124 if(fTripletModel) { fTripletModel->SetParticleChange(p); } 116 return p; 125 return p; 117 } 126 } 118 127 119 //....oooOO0OOooo........oooOO0OOooo........oo 128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 120 129 121 G4ParticleChangeForGamma* G4VEmModel::GetParti 130 G4ParticleChangeForGamma* G4VEmModel::GetParticleChangeForGamma() 122 { 131 { 123 G4ParticleChangeForGamma* p = nullptr; 132 G4ParticleChangeForGamma* p = nullptr; 124 if (pParticleChange != nullptr) { << 133 if (pParticleChange) { 125 p = static_cast<G4ParticleChangeForGamma*> 134 p = static_cast<G4ParticleChangeForGamma*>(pParticleChange); 126 } else { 135 } else { 127 p = new G4ParticleChangeForGamma(); 136 p = new G4ParticleChangeForGamma(); 128 pParticleChange = p; 137 pParticleChange = p; 129 } 138 } 130 if(fTripletModel != nullptr) { fTripletModel << 139 if(fTripletModel) { fTripletModel->SetParticleChange(p); } 131 return p; 140 return p; 132 } 141 } 133 142 134 //....oooOO0OOooo........oooOO0OOooo........oo 143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 135 144 136 void G4VEmModel::InitialiseElementSelectors(co 145 void G4VEmModel::InitialiseElementSelectors(const G4ParticleDefinition* part, 137 co 146 const G4DataVector& cuts) 138 { 147 { >> 148 // using spline for element selectors should be investigated in details >> 149 // because small number of points may provide biased results >> 150 // large number of points requires significant increase of memory >> 151 G4bool spline = false; >> 152 >> 153 //G4cout << "IES: for " << GetName() << " Emin(MeV)= " << lowLimit/MeV >> 154 // << " Emax(MeV)= " << highLimit/MeV << G4endl; >> 155 >> 156 // two times less bins because probability functon is normalized >> 157 // so correspondingly is more smooth 139 if(highLimit <= lowLimit) { return; } 158 if(highLimit <= lowLimit) { return; } 140 G4EmUtility::InitialiseElementSelectors(this << 159 141 localElmSelectors = true; << 160 G4int nbinsPerDec = G4EmParameters::Instance()->NumberOfBinsPerDecade(); >> 161 >> 162 G4ProductionCutsTable* theCoupleTable= >> 163 G4ProductionCutsTable::GetProductionCutsTable(); >> 164 G4int numOfCouples = theCoupleTable->GetTableSize(); >> 165 >> 166 // prepare vector >> 167 if(!elmSelectors) { >> 168 elmSelectors = new std::vector<G4EmElementSelector*>; >> 169 } >> 170 if(numOfCouples > nSelectors) { >> 171 for(G4int i=nSelectors; i<numOfCouples; ++i) { >> 172 elmSelectors->push_back(nullptr); >> 173 } >> 174 nSelectors = numOfCouples; >> 175 } >> 176 >> 177 // initialise vector >> 178 for(G4int i=0; i<numOfCouples; ++i) { >> 179 >> 180 // no need in element selectors for infionite cuts >> 181 if(cuts[i] == DBL_MAX) { continue; } >> 182 >> 183 fCurrentCouple = theCoupleTable->GetMaterialCutsCouple(i); >> 184 const G4Material* material = fCurrentCouple->GetMaterial(); >> 185 >> 186 // selector already exist check if should be deleted >> 187 G4bool create = true; >> 188 if((*elmSelectors)[i]) { >> 189 if(material == ((*elmSelectors)[i])->GetMaterial()) { create = false; } >> 190 else { delete (*elmSelectors)[i]; } >> 191 } >> 192 if(create) { >> 193 G4double emin = std::max(lowLimit, >> 194 MinPrimaryEnergy(material, part, cuts[i])); >> 195 G4double emax = std::max(highLimit, 10*emin); >> 196 static const G4double invlog106 = 1.0/(6*G4Log(10.)); >> 197 G4int nbins = (G4int)(nbinsPerDec*G4Log(emax/emin)*invlog106); >> 198 nbins = std::max(nbins, 3); >> 199 >> 200 (*elmSelectors)[i] = new G4EmElementSelector(this,material,nbins, >> 201 emin,emax,spline); >> 202 } >> 203 ((*elmSelectors)[i])->Initialise(part, cuts[i]); >> 204 /* >> 205 G4cout << "G4VEmModel::InitialiseElmSelectors i= " << i >> 206 << " idx= " << fCurrentCouple->GetIndex() >> 207 << " " << part->GetParticleName() >> 208 << " for " << GetName() << " cut= " << cuts[i] >> 209 << " " << (*elmSelectors)[i] << G4endl; >> 210 ((*elmSelectors)[i])->Dump(part); >> 211 */ >> 212 } 142 } 213 } 143 214 144 //....oooOO0OOooo........oooOO0OOooo........oo 215 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 145 216 146 void G4VEmModel::InitialiseLocal(const G4Parti << 217 void G4VEmModel::InitialiseLocal(const G4ParticleDefinition*, >> 218 G4VEmModel*) 147 {} 219 {} 148 220 149 //....oooOO0OOooo........oooOO0OOooo........oo 221 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 150 222 151 void G4VEmModel::InitialiseForMaterial(const G 223 void G4VEmModel::InitialiseForMaterial(const G4ParticleDefinition* part, 152 const G 224 const G4Material* material) 153 { 225 { 154 if(material != nullptr) { << 226 if(material) { 155 G4int n = (G4int)material->GetNumberOfElem << 227 size_t n = material->GetNumberOfElements(); 156 for(G4int i=0; i<n; ++i) { << 228 for(size_t i=0; i<n; ++i) { 157 G4int Z = material->GetElement(i)->GetZa 229 G4int Z = material->GetElement(i)->GetZasInt(); 158 InitialiseForElement(part, Z); 230 InitialiseForElement(part, Z); 159 } 231 } 160 } 232 } 161 } 233 } 162 234 163 //....oooOO0OOooo........oooOO0OOooo........oo 235 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 164 236 165 void G4VEmModel::InitialiseForElement(const G4 237 void G4VEmModel::InitialiseForElement(const G4ParticleDefinition*, G4int) 166 {} 238 {} 167 239 168 //....oooOO0OOooo........oooOO0OOooo........oo 240 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 169 241 170 G4double G4VEmModel::ComputeDEDXPerVolume(cons 242 G4double G4VEmModel::ComputeDEDXPerVolume(const G4Material*, 171 cons 243 const G4ParticleDefinition*, 172 G4do 244 G4double,G4double) 173 { 245 { 174 return 0.0; 246 return 0.0; 175 } 247 } 176 248 177 //....oooOO0OOooo........oooOO0OOooo........oo 249 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 178 250 179 G4double G4VEmModel::CrossSectionPerVolume(con << 251 G4double G4VEmModel::CrossSectionPerVolume(const G4Material* material, 180 con 252 const G4ParticleDefinition* p, 181 G4d 253 G4double ekin, 182 G4d 254 G4double emin, 183 G4d 255 G4double emax) 184 { 256 { 185 SetupForMaterial(p, mat, ekin); << 257 SetupForMaterial(p, material, ekin); 186 const G4double* theAtomNumDensityVector = ma << 258 G4double cross = 0.0; 187 G4int nelm = (G4int)mat->GetNumberOfElements << 259 const G4double* theAtomNumDensityVector = >> 260 material->GetVecNbOfAtomsPerVolume(); >> 261 G4int nelm = material->GetNumberOfElements(); 188 if(nelm > nsec) { 262 if(nelm > nsec) { 189 xsec.resize(nelm); 263 xsec.resize(nelm); 190 nsec = nelm; 264 nsec = nelm; 191 } 265 } 192 G4double cross = 0.0; << 193 for (G4int i=0; i<nelm; ++i) { 266 for (G4int i=0; i<nelm; ++i) { 194 cross += theAtomNumDensityVector[i]* 267 cross += theAtomNumDensityVector[i]* 195 ComputeCrossSectionPerAtom(p,mat->GetEle << 268 ComputeCrossSectionPerAtom(p,material->GetElement(i),ekin,emin,emax); 196 xsec[i] = cross; 269 xsec[i] = cross; 197 } 270 } 198 return cross; 271 return cross; 199 } 272 } 200 273 201 //....oooOO0OOooo........oooOO0OOooo........oo 274 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 202 275 203 G4double G4VEmModel::GetPartialCrossSection(co 276 G4double G4VEmModel::GetPartialCrossSection(const G4Material*, G4int, 204 co 277 const G4ParticleDefinition*, 205 G4 278 G4double) 206 { 279 { 207 return 0.0; 280 return 0.0; 208 } 281 } 209 282 210 //....oooOO0OOooo........oooOO0OOooo........oo 283 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 211 284 212 void G4VEmModel::StartTracking(G4Track*) 285 void G4VEmModel::StartTracking(G4Track*) 213 {} 286 {} 214 287 215 //....oooOO0OOooo........oooOO0OOooo........oo 288 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 216 289 217 const G4Element* G4VEmModel::SelectRandomAtom( << 290 const G4Element* G4VEmModel::SelectRandomAtom(const G4Material* material, 218 291 const G4ParticleDefinition* pd, 219 292 G4double kinEnergy, 220 293 G4double tcut, 221 294 G4double tmax) 222 { 295 { 223 G4int n = (G4int)mat->GetNumberOfElements(); << 296 size_t n = material->GetNumberOfElements(); 224 fCurrentElement = mat->GetElement(0); << 297 fCurrentElement = material->GetElement(0); 225 if (n > 1) { 298 if (n > 1) { 226 const G4double x = G4UniformRand()* << 299 G4double x = G4UniformRand()* 227 G4VEmModel::CrossSectionPerVolume(mat,pd << 300 G4VEmModel::CrossSectionPerVolume(material,pd,kinEnergy,tcut,tmax); 228 for(G4int i=0; i<n; ++i) { << 301 for(size_t i=0; i<n; ++i) { 229 if (x <= xsec[i]) { 302 if (x <= xsec[i]) { 230 fCurrentElement = mat->GetElement(i); << 303 fCurrentElement = material->GetElement(i); 231 break; 304 break; 232 } 305 } 233 } 306 } 234 } 307 } 235 return fCurrentElement; 308 return fCurrentElement; 236 } 309 } 237 << 238 //....oooOO0OOooo........oooOO0OOooo........oo 310 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 239 311 240 const G4Element* G4VEmModel::GetCurrentElement << 312 G4int G4VEmModel::SelectRandomAtomNumber(const G4Material* mat) 241 { 313 { 242 const G4Element* elm = fCurrentElement; << 314 // this algorith assumes that cross section is proportional to 243 if(nullptr == elm && nullptr != mat) { << 315 // number electrons multiplied by number of atoms 244 elm = G4EmUtility::SampleRandomElement(mat << 316 size_t nn = mat->GetNumberOfElements(); >> 317 fCurrentElement = mat->GetElement(0); >> 318 if(1 < nn) { >> 319 const G4double* at = mat->GetVecNbOfAtomsPerVolume(); >> 320 G4double tot = mat->GetTotNbOfAtomsPerVolume()*G4UniformRand(); >> 321 for(size_t i=0; i<nn; ++i) { >> 322 tot -= at[i]; >> 323 if(tot <= 0.0) { >> 324 fCurrentElement = mat->GetElement(i); >> 325 break; >> 326 } >> 327 } 245 } 328 } 246 return elm; << 329 return fCurrentElement->GetZasInt(); 247 } << 248 << 249 //....oooOO0OOooo........oooOO0OOooo........oo << 250 << 251 G4int G4VEmModel::SelectRandomAtomNumber(const << 252 { << 253 const G4Element* elm = GetCurrentElement(mat << 254 return (nullptr == elm) ? 0 : elm->GetZasInt << 255 } 330 } 256 331 257 //....oooOO0OOooo........oooOO0OOooo........oo 332 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 258 333 259 const G4Isotope* G4VEmModel::GetCurrentIsotope << 334 G4int G4VEmModel::SelectIsotopeNumber(const G4Element* elm) 260 { 335 { 261 const G4Isotope* iso = nullptr; << 336 SetCurrentElement(elm); 262 const G4Element* el = elm; << 337 size_t ni = elm->GetNumberOfIsotopes(); 263 if(nullptr == el && nullptr != fCurrentCoupl << 338 fCurrentIsotope = elm->GetIsotope(0); 264 el = GetCurrentElement(fCurrentCouple->Get << 339 size_t idx = 0; 265 } << 340 if(ni > 1) { 266 if(nullptr != el) { << 341 const G4double* ab = elm->GetRelativeAbundanceVector(); 267 iso = G4EmUtility::SampleRandomIsotope(el) << 342 G4double x = G4UniformRand(); >> 343 for(; idx<ni; ++idx) { >> 344 x -= ab[idx]; >> 345 if (x <= 0.0) { >> 346 fCurrentIsotope = elm->GetIsotope(idx); >> 347 break; >> 348 } >> 349 } 268 } 350 } 269 return iso; << 351 return fCurrentIsotope->GetN(); 270 } << 271 << 272 //....oooOO0OOooo........oooOO0OOooo........oo << 273 << 274 G4int G4VEmModel::SelectIsotopeNumber(const G4 << 275 { << 276 auto iso = GetCurrentIsotope(elm); << 277 return (nullptr != iso) ? iso->GetN() : 0; << 278 } 352 } 279 353 280 //....oooOO0OOooo........oooOO0OOooo........oo 354 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 281 355 282 G4double G4VEmModel::ComputeCrossSectionPerAto 356 G4double G4VEmModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 283 357 G4double, G4double, G4double, 284 358 G4double, G4double) 285 { 359 { 286 return 0.0; 360 return 0.0; 287 } 361 } 288 362 289 //....oooOO0OOooo........oooOO0OOooo........oo 363 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 290 364 291 G4double 365 G4double 292 G4VEmModel::ComputeCrossSectionPerShell(const 366 G4VEmModel::ComputeCrossSectionPerShell(const G4ParticleDefinition*, 293 G4int, 367 G4int, G4int, 294 G4doub 368 G4double, G4double, G4double) 295 { 369 { 296 return 0.0; 370 return 0.0; 297 } 371 } 298 372 299 //....oooOO0OOooo........oooOO0OOooo........oo 373 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 300 374 301 void G4VEmModel::DefineForRegion(const G4Regio 375 void G4VEmModel::DefineForRegion(const G4Region*) 302 {} 376 {} 303 377 304 //....oooOO0OOooo........oooOO0OOooo........oo 378 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 305 379 306 void G4VEmModel::FillNumberOfSecondaries(G4int << 307 G4int << 308 { << 309 numberOfTriplets = 0; << 310 numberOfRecoil = 0; << 311 } << 312 << 313 //....oooOO0OOooo........oooOO0OOooo........oo << 314 << 315 G4double G4VEmModel::ChargeSquareRatio(const G 380 G4double G4VEmModel::ChargeSquareRatio(const G4Track& track) 316 { 381 { 317 return GetChargeSquareRatio(track.GetParticl 382 return GetChargeSquareRatio(track.GetParticleDefinition(), 318 track.GetMateria 383 track.GetMaterial(), track.GetKineticEnergy()); 319 } 384 } 320 385 321 //....oooOO0OOooo........oooOO0OOooo........oo 386 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 322 387 323 G4double G4VEmModel::GetChargeSquareRatio(cons 388 G4double G4VEmModel::GetChargeSquareRatio(const G4ParticleDefinition* p, 324 cons 389 const G4Material*, G4double) 325 { 390 { 326 const G4double q = p->GetPDGCharge()*inveplu << 391 G4double q = p->GetPDGCharge()*inveplus; 327 return q*q; 392 return q*q; 328 } 393 } 329 394 330 //....oooOO0OOooo........oooOO0OOooo........oo 395 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 331 396 332 G4double G4VEmModel::GetParticleCharge(const G 397 G4double G4VEmModel::GetParticleCharge(const G4ParticleDefinition* p, 333 const G 398 const G4Material*, G4double) 334 { 399 { 335 return p->GetPDGCharge(); 400 return p->GetPDGCharge(); 336 } 401 } 337 402 338 //....oooOO0OOooo........oooOO0OOooo........oo 403 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 339 404 340 void G4VEmModel::CorrectionsAlongStep(const G4 405 void G4VEmModel::CorrectionsAlongStep(const G4MaterialCutsCouple*, 341 const G4 406 const G4DynamicParticle*, 342 const G4 << 407 G4double&,G4double&,G4double) 343 {} 408 {} 344 409 345 //....oooOO0OOooo........oooOO0OOooo........oo 410 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 346 411 347 G4double G4VEmModel::Value(const G4MaterialCut 412 G4double G4VEmModel::Value(const G4MaterialCutsCouple* couple, 348 const G4ParticleDef 413 const G4ParticleDefinition* p, G4double e) 349 { 414 { 350 SetCurrentCouple(couple); 415 SetCurrentCouple(couple); 351 return pFactor*e*e*CrossSectionPerVolume(pBa << 416 return e*e*CrossSectionPerVolume(couple->GetMaterial(),p,e,0.0,DBL_MAX); 352 } 417 } 353 418 354 //....oooOO0OOooo........oooOO0OOooo........oo 419 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 355 420 356 G4double G4VEmModel::MinPrimaryEnergy(const G4 421 G4double G4VEmModel::MinPrimaryEnergy(const G4Material*, 357 const G4 422 const G4ParticleDefinition*, 358 G4double 423 G4double) 359 { 424 { 360 return 0.0; 425 return 0.0; 361 } 426 } 362 427 363 //....oooOO0OOooo........oooOO0OOooo........oo 428 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 364 429 365 G4double G4VEmModel::MinEnergyCut(const G4Part 430 G4double G4VEmModel::MinEnergyCut(const G4ParticleDefinition*, 366 const G4Mate 431 const G4MaterialCutsCouple*) 367 { 432 { 368 return 0.0; 433 return 0.0; 369 } 434 } 370 435 371 //....oooOO0OOooo........oooOO0OOooo........oo 436 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 372 437 373 G4double G4VEmModel::MaxSecondaryEnergy(const 438 G4double G4VEmModel::MaxSecondaryEnergy(const G4ParticleDefinition*, 374 G4doub 439 G4double kineticEnergy) 375 { 440 { 376 return kineticEnergy; 441 return kineticEnergy; 377 } 442 } 378 443 379 //....oooOO0OOooo........oooOO0OOooo........oo 444 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 380 445 381 void G4VEmModel::SetupForMaterial(const G4Part << 446 void G4VEmModel::SetupForMaterial(const G4ParticleDefinition*, 382 const G4Mate << 447 const G4Material*, G4double) 383 { << 448 {} 384 GetChargeSquareRatio(p, mat, ekin); << 385 } << 386 449 387 //....oooOO0OOooo........oooOO0OOooo........oo 450 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 388 451 389 void 452 void 390 G4VEmModel::SetParticleChange(G4VParticleChang 453 G4VEmModel::SetParticleChange(G4VParticleChange* p, G4VEmFluctuationModel* f) 391 { 454 { 392 if(p != nullptr && pParticleChange != p) { p << 455 if(p && pParticleChange != p) { pParticleChange = p; } 393 if(flucModel != f) { flucModel = f; } 456 if(flucModel != f) { flucModel = f; } 394 } 457 } 395 458 396 //....oooOO0OOooo........oooOO0OOooo........oo 459 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 397 460 398 void G4VEmModel::SetCrossSectionTable(G4Physic 461 void G4VEmModel::SetCrossSectionTable(G4PhysicsTable* p, G4bool isLocal) 399 { 462 { 400 xSectionTable = p; << 463 if(p != xSectionTable) { 401 localTable = isLocal; << 464 if(xSectionTable && localTable) { 402 } << 465 xSectionTable->clearAndDestroy(); 403 << 466 delete xSectionTable; 404 //....oooOO0OOooo........oooOO0OOooo........oo << 467 } 405 << 468 xSectionTable = p; 406 void G4VEmModel::SetLPMFlag(G4bool) << 407 { << 408 if (G4EmParameters::Instance()->Verbose() > << 409 G4ExceptionDescription ed; << 410 ed << "The obsolete method SetLPMFlag(..) << 411 << " is called. Please, use G4EmParamet << 412 << " instead"; << 413 G4Exception("G4VEmModel::SetLPMFlag", "em0 << 414 } 469 } >> 470 localTable = isLocal; 415 } 471 } 416 << 417 //....oooOO0OOooo........oooOO0OOooo........oo << 418 << 419 void G4VEmModel::SetMasterThread(G4bool) << 420 {} << 421 472 422 //....oooOO0OOooo........oooOO0OOooo........oo 473 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 423 474 424 void G4VEmModel::ModelDescription(std::ostrea 475 void G4VEmModel::ModelDescription(std::ostream& outFile) const 425 { 476 { 426 outFile << "The description for this model h 477 outFile << "The description for this model has not been written yet.\n"; 427 } 478 } 428 479 429 //....oooOO0OOooo........oooOO0OOooo........oo 480 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 430 481