Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4EmSaturation 33 // File name: G4EmSaturation 33 // 34 // 34 // Author: Vladimir Ivanchenko 35 // Author: Vladimir Ivanchenko 35 // 36 // 36 // Creation date: 18.02.2008 37 // Creation date: 18.02.2008 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // ------------------------------------------- 41 // ------------------------------------------------------------- 41 42 42 //....oooOO0OOooo........oooOO0OOooo........oo 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 43 //....oooOO0OOooo........oooOO0OOooo........oo 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 44 45 45 #include "G4EmSaturation.hh" 46 #include "G4EmSaturation.hh" 46 #include "G4PhysicalConstants.hh" 47 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "G4SystemOfUnits.hh" 48 #include "G4LossTableManager.hh" 49 #include "G4LossTableManager.hh" 49 #include "G4NistManager.hh" 50 #include "G4NistManager.hh" 50 #include "G4Material.hh" 51 #include "G4Material.hh" 51 #include "G4MaterialCutsCouple.hh" 52 #include "G4MaterialCutsCouple.hh" 52 #include "G4ParticleTable.hh" << 53 #include "G4Electron.hh" >> 54 #include "G4Proton.hh" 53 55 54 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 55 57 56 std::size_t G4EmSaturation::nMaterials = 0; << 58 G4EmSaturation::G4EmSaturation() 57 std::vector<G4double> G4EmSaturation::massFact << 58 std::vector<G4double> G4EmSaturation::effCharg << 59 std::vector<G4double> G4EmSaturation::g4MatDat << 60 std::vector<G4String> G4EmSaturation::g4MatNam << 61 << 62 G4EmSaturation::G4EmSaturation(G4int verb) << 63 { 59 { 64 verbose = verb; << 60 verbose = 1; 65 nWarnings = nG4Birks = 0; << 61 manager = 0; >> 62 >> 63 curMaterial = 0; >> 64 curBirks = 0.0; >> 65 curRatio = 1.0; >> 66 curChargeSq = 1.0; >> 67 nMaterials = 0; 66 68 67 electron = nullptr; << 69 electron = 0; 68 proton = nullptr; << 70 proton = 0; 69 nist = G4NistManager::Instance(); 71 nist = G4NistManager::Instance(); 70 InitialiseG4Saturation(); << 72 >> 73 Initialise(); 71 } 74 } 72 75 73 //....oooOO0OOooo........oooOO0OOooo........oo 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 74 77 75 G4EmSaturation::~G4EmSaturation() = default; << 78 G4EmSaturation::~G4EmSaturation() >> 79 {} 76 80 77 //....oooOO0OOooo........oooOO0OOooo........oo 81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 82 79 G4double G4EmSaturation::VisibleEnergyDepositi 83 G4double G4EmSaturation::VisibleEnergyDeposition( 80 const G4 84 const G4ParticleDefinition* p, 81 const G4 << 85 const G4MaterialCutsCouple* couple, 82 G4double << 86 G4double length, 83 G4double << 87 G4double edep, 84 G4double << 88 G4double niel) 85 { 89 { 86 // no energy deposition << 87 if(edep <= 0.0) { return 0.0; } 90 if(edep <= 0.0) { return 0.0; } 88 91 89 // zero step length may happens only if step << 90 // is applied, in that case saturation shoul << 91 if(length <= 0.0) { return edep; } << 92 << 93 G4double evis = edep; 92 G4double evis = edep; 94 G4double bfactor = couple->GetMaterial()->Ge << 93 G4double bfactor = FindBirksCoefficient(couple->GetMaterial()); 95 94 96 if(bfactor > 0.0) { 95 if(bfactor > 0.0) { 97 96 >> 97 G4int pdgCode = p->GetPDGEncoding(); 98 // atomic relaxations for gamma incident 98 // atomic relaxations for gamma incident 99 if(22 == p->GetPDGEncoding()) { << 99 if(22 == pdgCode) { 100 //G4cout << "%% gamma edep= " << edep/ke << 100 evis /= (1.0 + bfactor*edep/manager->GetRange(electron,edep,couple)); 101 evis /= (1.0 + bfactor*edep/ << 102 G4LossTableManager::Instance()->GetRan << 103 101 104 // energy loss 102 // energy loss 105 } else { 103 } else { 106 104 107 // protections 105 // protections 108 G4double nloss = std::max(niel, 0.0); << 106 G4double nloss = niel; >> 107 if(nloss < 0.0) nloss = 0.0; 109 G4double eloss = edep - nloss; 108 G4double eloss = edep - nloss; 110 109 111 // neutrons and neutral hadrons << 110 // neutrons 112 if(0.0 == p->GetPDGCharge() || eloss < 0 << 111 if(2112 == pdgCode || eloss < 0.0 || length <= 0.0) { 113 nloss = edep; << 112 nloss = edep; 114 eloss = 0.0; 113 eloss = 0.0; 115 } else { << 116 << 117 // continues energy loss << 118 eloss /= (1.0 + bfactor*eloss/length); << 119 } 114 } >> 115 >> 116 // continues energy loss >> 117 if(eloss > 0.0) { eloss /= (1.0 + bfactor*eloss/length); } >> 118 120 // non-ionizing energy loss 119 // non-ionizing energy loss 121 if(nloss > 0.0) { 120 if(nloss > 0.0) { 122 std::size_t idx = couple->GetMaterial( << 121 if(!proton) { proton = G4Proton::Proton(); } 123 G4double escaled = nloss*massFactors[i << 122 G4double escaled = nloss*curRatio; 124 /* << 123 G4double range = manager->GetRange(proton,escaled,couple)/curChargeSq; 125 G4cout << "%% p edep= " << nloss/keV < << 124 nloss /= (1.0 + bfactor*nloss/range); 126 << escaled << " MeV in " << co << 127 << " " << p->GetParticleName() << 128 << G4endl; << 129 G4cout << proton->GetParticleName() << G4end << 130 */ << 131 G4double range = G4LossTableManager::I << 132 ->GetRange(proton,escaled,couple)/ef << 133 nloss /= (1.0 + bfactor*nloss/range); << 134 } 125 } >> 126 135 evis = eloss + nloss; 127 evis = eloss + nloss; 136 } 128 } 137 } 129 } >> 130 138 return evis; 131 return evis; 139 } 132 } 140 133 141 //....oooOO0OOooo........oooOO0OOooo........oo 134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 142 135 143 void G4EmSaturation::InitialiseG4Saturation() << 144 { << 145 if(nMaterials == G4Material::GetNumberOfMate << 146 nMaterials = G4Material::GetNumberOfMaterial << 147 massFactors.resize(nMaterials, 1.0); << 148 effCharges.resize(nMaterials, 1.0); << 149 << 150 if(0 == nG4Birks) { InitialiseG4materials() << 151 << 152 for(std::size_t i=0; i<nMaterials; ++i) { << 153 InitialiseBirksCoefficient((*G4Material::G << 154 } << 155 if(verbose > 0) { DumpBirksCoefficients(); } << 156 } << 157 << 158 //....oooOO0OOooo........oooOO0OOooo........oo << 159 << 160 G4double G4EmSaturation::FindG4BirksCoefficien 136 G4double G4EmSaturation::FindG4BirksCoefficient(const G4Material* mat) 161 { 137 { 162 if(0 == nG4Birks) { InitialiseG4materials() << 163 << 164 G4String name = mat->GetName(); 138 G4String name = mat->GetName(); 165 // is this material in the vector? 139 // is this material in the vector? 166 140 167 for(G4int j=0; j<nG4Birks; ++j) { 141 for(G4int j=0; j<nG4Birks; ++j) { 168 if(name == g4MatNames[j]) { 142 if(name == g4MatNames[j]) { 169 if(verbose > 0) 143 if(verbose > 0) 170 G4cout << "### G4EmSaturation::FindG4B << 144 G4cout << "### G4EmSaturation::FindG4BirksCoefficient for " 171 << name << " is " << g4MatData[ << 145 << name << " is " << g4MatData[j]*MeV/mm << " mm/MeV " 172 << G4endl; << 146 << G4endl; 173 return g4MatData[j]; 147 return g4MatData[j]; 174 } 148 } 175 } 149 } 176 return 0.0; << 150 return FindBirksCoefficient(mat); 177 } 151 } 178 152 179 //....oooOO0OOooo........oooOO0OOooo........oo 153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 180 154 181 void G4EmSaturation::InitialiseBirksCoefficien << 155 G4double G4EmSaturation::FindBirksCoefficient(const G4Material* mat) 182 { 156 { 183 // electron and proton should exist in any c << 157 // electron should exist in any case 184 if(nullptr == electron) { << 158 if(!manager) { 185 electron = G4ParticleTable::GetParticleTab << 159 manager = G4LossTableManager::Instance(); 186 proton = G4ParticleTable::GetParticleTable << 160 electron= G4Electron::Electron(); 187 if(nullptr == electron) { << 188 G4Exception("G4EmSaturation::InitialiseB << 189 FatalException, "electron should exist") << 190 } << 191 } 161 } 192 162 193 G4double curBirks = mat->GetIonisation()->Ge << 163 if(mat == curMaterial) { return curBirks; } >> 164 >> 165 curMaterial = mat; >> 166 curBirks = 0.0; >> 167 curRatio = 1.0; >> 168 curChargeSq = 1.0; >> 169 >> 170 // seach in the run-time list >> 171 for(G4int i=0; i<nMaterials; ++i) { >> 172 if(mat == matPointers[i]) { >> 173 curBirks = mat->GetIonisation()->GetBirksConstant(); >> 174 curRatio = massFactors[i]; >> 175 curChargeSq = effCharges[i]; >> 176 return curBirks; >> 177 } >> 178 } 194 179 195 G4String name = mat->GetName(); 180 G4String name = mat->GetName(); >> 181 curBirks = mat->GetIonisation()->GetBirksConstant(); 196 182 197 // material has no Birks coeffitient defined 183 // material has no Birks coeffitient defined 198 // seach in the Geant4 list 184 // seach in the Geant4 list 199 if(curBirks == 0.0) { 185 if(curBirks == 0.0) { 200 for(G4int j=0; j<nG4Birks; ++j) { 186 for(G4int j=0; j<nG4Birks; ++j) { 201 if(name == g4MatNames[j]) { 187 if(name == g4MatNames[j]) { 202 mat->GetIonisation()->SetBirksConstant << 188 mat->GetIonisation()->SetBirksConstant(g4MatData[j]); 203 curBirks = g4MatData[j]; 189 curBirks = g4MatData[j]; 204 break; 190 break; 205 } 191 } 206 } 192 } 207 } 193 } 208 194 209 if(curBirks == 0.0) { return; } << 195 if(curBirks == 0.0 && verbose > 0) { >> 196 G4cout << "### G4EmSaturation::FindBirksCoefficient fails " >> 197 " for material " << name << G4endl; >> 198 } 210 199 211 // compute mean mass ratio 200 // compute mean mass ratio 212 G4double curRatio = 0.0; << 201 curRatio = 0.0; 213 G4double curChargeSq = 0.0; << 202 curChargeSq = 0.0; 214 G4double norm = 0.0; 203 G4double norm = 0.0; 215 const G4ElementVector* theElementVector = ma 204 const G4ElementVector* theElementVector = mat->GetElementVector(); 216 const G4double* theAtomNumDensityVector = ma 205 const G4double* theAtomNumDensityVector = mat->GetVecNbOfAtomsPerVolume(); 217 std::size_t nelm = mat->GetNumberOfElements( << 206 size_t nelm = mat->GetNumberOfElements(); 218 for (std::size_t i=0; i<nelm; ++i) { << 207 for (size_t i=0; i<nelm; ++i) { 219 const G4Element* elm = (*theElementVector) 208 const G4Element* elm = (*theElementVector)[i]; 220 G4int Z = elm->GetZasInt(); << 209 G4double Z = elm->GetZ(); 221 G4double w = theAtomNumDensityVector[i]; << 210 G4double w = Z*Z*theAtomNumDensityVector[i]; 222 curRatio += w/nist->GetAtomicMassAmu(Z); << 211 curRatio += w/nist->GetAtomicMassAmu(G4int(Z)); 223 curChargeSq += (Z*Z)*w; << 212 curChargeSq = Z*Z*w; 224 norm += w; 213 norm += w; 225 } 214 } 226 if ( norm > 0.0) { norm = 1.0/norm; } << 215 curRatio *= proton_mass_c2/norm; 227 curRatio *= (CLHEP::proton_mass_c2*norm); << 216 curChargeSq /= norm; 228 curChargeSq *= norm; << 229 217 230 // store results 218 // store results 231 std::size_t idx = mat->GetIndex(); << 219 matPointers.push_back(mat); 232 massFactors[idx] = curRatio; << 220 matNames.push_back(name); 233 effCharges[idx] = curChargeSq; << 221 massFactors.push_back(curRatio); >> 222 effCharges.push_back(curChargeSq); >> 223 nMaterials++; >> 224 if(curBirks > 0.0 && verbose > 0) { >> 225 G4cout << "### G4EmSaturation::FindBirksCoefficient Birks coefficient for " >> 226 << name << " " << curBirks*MeV/mm << " mm/MeV" << G4endl; >> 227 } >> 228 return curBirks; 234 } 229 } 235 230 236 //....oooOO0OOooo........oooOO0OOooo........oo 231 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 237 232 238 void G4EmSaturation::DumpBirksCoefficients() 233 void G4EmSaturation::DumpBirksCoefficients() 239 { 234 { 240 G4cout << "### Birks coefficients used in ru << 235 if(nMaterials > 0) { 241 const G4MaterialTable* mtable = G4Material:: << 236 G4cout << "### Birks coeffitients used in run time" << G4endl; 242 for(std::size_t i=0; i<nMaterials; ++i) { << 237 for(G4int i=0; i<nMaterials; ++i) { 243 const G4Material* mat = (*mtable)[i]; << 238 G4double br = matPointers[i]->GetIonisation()->GetBirksConstant(); 244 G4double br = mat->GetIonisation()->GetBir << 239 G4cout << " " << matNames[i] << " " 245 if(br > 0.0) { << 246 G4cout << " " << mat->GetName() << " << 247 << br*MeV/mm << " mm/MeV" << " " 240 << br*MeV/mm << " mm/MeV" << " " 248 << br*mat->GetDensity()*MeV*cm2/g << 241 << br*matPointers[i]->GetDensity()*MeV*cm2/g 249 << " g/cm^2/MeV massFactor= " << mass << 242 << " g/cm^2/MeV" 250 << " effCharge= " << effCharges[i] << G << 243 << G4endl; 251 } 244 } 252 } 245 } 253 } 246 } 254 247 255 //....oooOO0OOooo........oooOO0OOooo........oo 248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 256 249 257 void G4EmSaturation::DumpG4BirksCoefficients() 250 void G4EmSaturation::DumpG4BirksCoefficients() 258 { 251 { 259 if(nG4Birks > 0) { 252 if(nG4Birks > 0) { 260 G4cout << "### Birks coefficients for Gean << 253 G4cout << "### Birks coeffitients for Geant4 materials" << G4endl; 261 for(G4int i=0; i<nG4Birks; ++i) { 254 for(G4int i=0; i<nG4Birks; ++i) { 262 G4cout << " " << g4MatNames[i] << " 255 G4cout << " " << g4MatNames[i] << " " 263 << g4MatData[i]*MeV/mm << " mm/Me << 256 << g4MatData[i]*MeV/mm << " mm/MeV" << G4endl; 264 } 257 } 265 } 258 } 266 } 259 } 267 260 268 //....oooOO0OOooo........oooOO0OOooo........oo 261 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 269 262 270 void G4EmSaturation::InitialiseG4materials() << 263 void G4EmSaturation::Initialise() 271 { 264 { 272 nG4Birks = 4; << 273 g4MatData.reserve(nG4Birks); << 274 << 275 // M.Hirschberg et al., IEEE Trans. Nuc. Sci 265 // M.Hirschberg et al., IEEE Trans. Nuc. Sci. 39 (1992) 511 276 // SCSN-38 kB = 0.00842 g/cm^2/MeV; rho = 1. 266 // SCSN-38 kB = 0.00842 g/cm^2/MeV; rho = 1.06 g/cm^3 277 g4MatNames.push_back("G4_POLYSTYRENE"); 267 g4MatNames.push_back("G4_POLYSTYRENE"); 278 g4MatData.push_back(0.07943*mm/MeV); 268 g4MatData.push_back(0.07943*mm/MeV); 279 269 280 // C.Fabjan (private communication) 270 // C.Fabjan (private communication) 281 // kB = 0.006 g/cm^2/MeV; rho = 7.13 g/cm^3 271 // kB = 0.006 g/cm^2/MeV; rho = 7.13 g/cm^3 282 g4MatNames.push_back("G4_BGO"); 272 g4MatNames.push_back("G4_BGO"); 283 g4MatData.push_back(0.008415*mm/MeV); 273 g4MatData.push_back(0.008415*mm/MeV); 284 274 285 // A.Ribon analysis of publications 275 // A.Ribon analysis of publications 286 // Scallettar et al., Phys. Rev. A25 (1982) 276 // Scallettar et al., Phys. Rev. A25 (1982) 2419. 287 // NIM A 523 (2004) 275. 277 // NIM A 523 (2004) 275. 288 // kB = 0.022 g/cm^2/MeV; rho = 1.396 g/cm^3 278 // kB = 0.022 g/cm^2/MeV; rho = 1.396 g/cm^3; 289 // ATLAS Efield = 10 kV/cm provide the stron << 279 // ATLAS Efield = 10 kV/cm provide the strongest effect 290 // kB = 0.1576*mm/MeV << 291 // A. Kiryunin and P.Strizenec "Geant4 hadro << 292 // working group meeting " kB = 0.041/9.13 g << 293 g4MatNames.push_back("G4_lAr"); 280 g4MatNames.push_back("G4_lAr"); 294 g4MatData.push_back(0.032*mm/MeV); << 281 g4MatData.push_back(0.1576*mm/MeV); 295 282 296 //G4_BARIUM_FLUORIDE 283 //G4_BARIUM_FLUORIDE 297 //G4_CESIUM_IODIDE 284 //G4_CESIUM_IODIDE 298 //G4_GEL_PHOTO_EMULSION 285 //G4_GEL_PHOTO_EMULSION 299 //G4_PHOTO_EMULSION 286 //G4_PHOTO_EMULSION 300 //G4_PLASTIC_SC_VINYLTOLUENE 287 //G4_PLASTIC_SC_VINYLTOLUENE 301 //G4_SODIUM_IODIDE 288 //G4_SODIUM_IODIDE 302 //G4_STILBENE 289 //G4_STILBENE 303 //G4_lAr 290 //G4_lAr 304 << 291 //G4_PbWO4 305 //G4_PbWO4 - CMS value << 306 g4MatNames.push_back("G4_PbWO4"); << 307 g4MatData.push_back(0.0333333*mm/MeV); << 308 << 309 //G4_Lucite 292 //G4_Lucite 310 293 >> 294 nG4Birks = g4MatData.size(); 311 } 295 } 312 296 313 //....oooOO0OOooo........oooOO0OOooo........oo 297 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 314 298