Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // ------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4EmSaturation 33 // 34 // Author: Vladimir Ivanchenko 35 // 36 // Creation date: 18.02.2008 37 // 38 // Modifications: 39 // 40 // ------------------------------------------- 41 42 //....oooOO0OOooo........oooOO0OOooo........oo 43 //....oooOO0OOooo........oooOO0OOooo........oo 44 45 #include "G4EmSaturation.hh" 46 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "G4LossTableManager.hh" 49 #include "G4NistManager.hh" 50 #include "G4Material.hh" 51 #include "G4MaterialCutsCouple.hh" 52 #include "G4ParticleTable.hh" 53 54 //....oooOO0OOooo........oooOO0OOooo........oo 55 56 std::size_t G4EmSaturation::nMaterials = 0; 57 std::vector<G4double> G4EmSaturation::massFact 58 std::vector<G4double> G4EmSaturation::effCharg 59 std::vector<G4double> G4EmSaturation::g4MatDat 60 std::vector<G4String> G4EmSaturation::g4MatNam 61 62 G4EmSaturation::G4EmSaturation(G4int verb) 63 { 64 verbose = verb; 65 nWarnings = nG4Birks = 0; 66 67 electron = nullptr; 68 proton = nullptr; 69 nist = G4NistManager::Instance(); 70 InitialiseG4Saturation(); 71 } 72 73 //....oooOO0OOooo........oooOO0OOooo........oo 74 75 G4EmSaturation::~G4EmSaturation() = default; 76 77 //....oooOO0OOooo........oooOO0OOooo........oo 78 79 G4double G4EmSaturation::VisibleEnergyDepositi 80 const G4 81 const G4 82 G4double 83 G4double 84 G4double 85 { 86 // no energy deposition 87 if(edep <= 0.0) { return 0.0; } 88 89 // zero step length may happens only if step 90 // is applied, in that case saturation shoul 91 if(length <= 0.0) { return edep; } 92 93 G4double evis = edep; 94 G4double bfactor = couple->GetMaterial()->Ge 95 96 if(bfactor > 0.0) { 97 98 // atomic relaxations for gamma incident 99 if(22 == p->GetPDGEncoding()) { 100 //G4cout << "%% gamma edep= " << edep/ke 101 evis /= (1.0 + bfactor*edep/ 102 G4LossTableManager::Instance()->GetRan 103 104 // energy loss 105 } else { 106 107 // protections 108 G4double nloss = std::max(niel, 0.0); 109 G4double eloss = edep - nloss; 110 111 // neutrons and neutral hadrons 112 if(0.0 == p->GetPDGCharge() || eloss < 0 113 nloss = edep; 114 eloss = 0.0; 115 } else { 116 117 // continues energy loss 118 eloss /= (1.0 + bfactor*eloss/length); 119 } 120 // non-ionizing energy loss 121 if(nloss > 0.0) { 122 std::size_t idx = couple->GetMaterial( 123 G4double escaled = nloss*massFactors[i 124 /* 125 G4cout << "%% p edep= " << nloss/keV < 126 << escaled << " MeV in " << co 127 << " " << p->GetParticleName() 128 << G4endl; 129 G4cout << proton->GetParticleName() << G4end 130 */ 131 G4double range = G4LossTableManager::I 132 ->GetRange(proton,escaled,couple)/ef 133 nloss /= (1.0 + bfactor*nloss/range); 134 } 135 evis = eloss + nloss; 136 } 137 } 138 return evis; 139 } 140 141 //....oooOO0OOooo........oooOO0OOooo........oo 142 143 void G4EmSaturation::InitialiseG4Saturation() 144 { 145 if(nMaterials == G4Material::GetNumberOfMate 146 nMaterials = G4Material::GetNumberOfMaterial 147 massFactors.resize(nMaterials, 1.0); 148 effCharges.resize(nMaterials, 1.0); 149 150 if(0 == nG4Birks) { InitialiseG4materials() 151 152 for(std::size_t i=0; i<nMaterials; ++i) { 153 InitialiseBirksCoefficient((*G4Material::G 154 } 155 if(verbose > 0) { DumpBirksCoefficients(); } 156 } 157 158 //....oooOO0OOooo........oooOO0OOooo........oo 159 160 G4double G4EmSaturation::FindG4BirksCoefficien 161 { 162 if(0 == nG4Birks) { InitialiseG4materials() 163 164 G4String name = mat->GetName(); 165 // is this material in the vector? 166 167 for(G4int j=0; j<nG4Birks; ++j) { 168 if(name == g4MatNames[j]) { 169 if(verbose > 0) 170 G4cout << "### G4EmSaturation::FindG4B 171 << name << " is " << g4MatData[ 172 << G4endl; 173 return g4MatData[j]; 174 } 175 } 176 return 0.0; 177 } 178 179 //....oooOO0OOooo........oooOO0OOooo........oo 180 181 void G4EmSaturation::InitialiseBirksCoefficien 182 { 183 // electron and proton should exist in any c 184 if(nullptr == electron) { 185 electron = G4ParticleTable::GetParticleTab 186 proton = G4ParticleTable::GetParticleTable 187 if(nullptr == electron) { 188 G4Exception("G4EmSaturation::InitialiseB 189 FatalException, "electron should exist") 190 } 191 } 192 193 G4double curBirks = mat->GetIonisation()->Ge 194 195 G4String name = mat->GetName(); 196 197 // material has no Birks coeffitient defined 198 // seach in the Geant4 list 199 if(curBirks == 0.0) { 200 for(G4int j=0; j<nG4Birks; ++j) { 201 if(name == g4MatNames[j]) { 202 mat->GetIonisation()->SetBirksConstant 203 curBirks = g4MatData[j]; 204 break; 205 } 206 } 207 } 208 209 if(curBirks == 0.0) { return; } 210 211 // compute mean mass ratio 212 G4double curRatio = 0.0; 213 G4double curChargeSq = 0.0; 214 G4double norm = 0.0; 215 const G4ElementVector* theElementVector = ma 216 const G4double* theAtomNumDensityVector = ma 217 std::size_t nelm = mat->GetNumberOfElements( 218 for (std::size_t i=0; i<nelm; ++i) { 219 const G4Element* elm = (*theElementVector) 220 G4int Z = elm->GetZasInt(); 221 G4double w = theAtomNumDensityVector[i]; 222 curRatio += w/nist->GetAtomicMassAmu(Z); 223 curChargeSq += (Z*Z)*w; 224 norm += w; 225 } 226 if ( norm > 0.0) { norm = 1.0/norm; } 227 curRatio *= (CLHEP::proton_mass_c2*norm); 228 curChargeSq *= norm; 229 230 // store results 231 std::size_t idx = mat->GetIndex(); 232 massFactors[idx] = curRatio; 233 effCharges[idx] = curChargeSq; 234 } 235 236 //....oooOO0OOooo........oooOO0OOooo........oo 237 238 void G4EmSaturation::DumpBirksCoefficients() 239 { 240 G4cout << "### Birks coefficients used in ru 241 const G4MaterialTable* mtable = G4Material:: 242 for(std::size_t i=0; i<nMaterials; ++i) { 243 const G4Material* mat = (*mtable)[i]; 244 G4double br = mat->GetIonisation()->GetBir 245 if(br > 0.0) { 246 G4cout << " " << mat->GetName() << " 247 << br*MeV/mm << " mm/MeV" << " " 248 << br*mat->GetDensity()*MeV*cm2/g 249 << " g/cm^2/MeV massFactor= " << mass 250 << " effCharge= " << effCharges[i] << G 251 } 252 } 253 } 254 255 //....oooOO0OOooo........oooOO0OOooo........oo 256 257 void G4EmSaturation::DumpG4BirksCoefficients() 258 { 259 if(nG4Birks > 0) { 260 G4cout << "### Birks coefficients for Gean 261 for(G4int i=0; i<nG4Birks; ++i) { 262 G4cout << " " << g4MatNames[i] << " 263 << g4MatData[i]*MeV/mm << " mm/Me 264 } 265 } 266 } 267 268 //....oooOO0OOooo........oooOO0OOooo........oo 269 270 void G4EmSaturation::InitialiseG4materials() 271 { 272 nG4Birks = 4; 273 g4MatData.reserve(nG4Birks); 274 275 // M.Hirschberg et al., IEEE Trans. Nuc. Sci 276 // SCSN-38 kB = 0.00842 g/cm^2/MeV; rho = 1. 277 g4MatNames.push_back("G4_POLYSTYRENE"); 278 g4MatData.push_back(0.07943*mm/MeV); 279 280 // C.Fabjan (private communication) 281 // kB = 0.006 g/cm^2/MeV; rho = 7.13 g/cm^3 282 g4MatNames.push_back("G4_BGO"); 283 g4MatData.push_back(0.008415*mm/MeV); 284 285 // A.Ribon analysis of publications 286 // Scallettar et al., Phys. Rev. A25 (1982) 287 // NIM A 523 (2004) 275. 288 // kB = 0.022 g/cm^2/MeV; rho = 1.396 g/cm^3 289 // ATLAS Efield = 10 kV/cm provide the stron 290 // kB = 0.1576*mm/MeV 291 // A. Kiryunin and P.Strizenec "Geant4 hadro 292 // working group meeting " kB = 0.041/9.13 g 293 g4MatNames.push_back("G4_lAr"); 294 g4MatData.push_back(0.032*mm/MeV); 295 296 //G4_BARIUM_FLUORIDE 297 //G4_CESIUM_IODIDE 298 //G4_GEL_PHOTO_EMULSION 299 //G4_PHOTO_EMULSION 300 //G4_PLASTIC_SC_VINYLTOLUENE 301 //G4_SODIUM_IODIDE 302 //G4_STILBENE 303 //G4_lAr 304 305 //G4_PbWO4 - CMS value 306 g4MatNames.push_back("G4_PbWO4"); 307 g4MatData.push_back(0.0333333*mm/MeV); 308 309 //G4_Lucite 310 311 } 312 313 //....oooOO0OOooo........oooOO0OOooo........oo 314