Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4EmSaturation 33 // File name: G4EmSaturation 33 // 34 // 34 // Author: Vladimir Ivanchenko 35 // Author: Vladimir Ivanchenko 35 // 36 // 36 // Creation date: 18.02.2008 37 // Creation date: 18.02.2008 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // ------------------------------------------- 41 // ------------------------------------------------------------- 41 42 42 //....oooOO0OOooo........oooOO0OOooo........oo 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 43 //....oooOO0OOooo........oooOO0OOooo........oo 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 44 45 45 #include "G4EmSaturation.hh" 46 #include "G4EmSaturation.hh" 46 #include "G4PhysicalConstants.hh" 47 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "G4SystemOfUnits.hh" 48 #include "G4LossTableManager.hh" 49 #include "G4LossTableManager.hh" 49 #include "G4NistManager.hh" 50 #include "G4NistManager.hh" 50 #include "G4Material.hh" 51 #include "G4Material.hh" 51 #include "G4MaterialCutsCouple.hh" 52 #include "G4MaterialCutsCouple.hh" 52 #include "G4ParticleTable.hh" 53 #include "G4ParticleTable.hh" 53 54 54 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 55 56 56 std::size_t G4EmSaturation::nMaterials = 0; << 57 G4int G4EmSaturation::nMaterials = 0; 57 std::vector<G4double> G4EmSaturation::massFact 58 std::vector<G4double> G4EmSaturation::massFactors; 58 std::vector<G4double> G4EmSaturation::effCharg 59 std::vector<G4double> G4EmSaturation::effCharges; 59 std::vector<G4double> G4EmSaturation::g4MatDat 60 std::vector<G4double> G4EmSaturation::g4MatData; 60 std::vector<G4String> G4EmSaturation::g4MatNam 61 std::vector<G4String> G4EmSaturation::g4MatNames; 61 62 62 G4EmSaturation::G4EmSaturation(G4int verb) 63 G4EmSaturation::G4EmSaturation(G4int verb) 63 { 64 { 64 verbose = verb; 65 verbose = verb; >> 66 65 nWarnings = nG4Birks = 0; 67 nWarnings = nG4Birks = 0; 66 68 67 electron = nullptr; 69 electron = nullptr; 68 proton = nullptr; 70 proton = nullptr; 69 nist = G4NistManager::Instance(); 71 nist = G4NistManager::Instance(); 70 InitialiseG4Saturation(); << 71 } 72 } 72 73 73 //....oooOO0OOooo........oooOO0OOooo........oo 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 74 75 75 G4EmSaturation::~G4EmSaturation() = default; << 76 G4EmSaturation::~G4EmSaturation() >> 77 {} 76 78 77 //....oooOO0OOooo........oooOO0OOooo........oo 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 80 79 G4double G4EmSaturation::VisibleEnergyDepositi 81 G4double G4EmSaturation::VisibleEnergyDeposition( 80 const G4 82 const G4ParticleDefinition* p, 81 const G4 83 const G4MaterialCutsCouple* couple, 82 G4double 84 G4double length, 83 G4double 85 G4double edep, 84 G4double 86 G4double niel) const 85 { 87 { 86 // no energy deposition << 87 if(edep <= 0.0) { return 0.0; } 88 if(edep <= 0.0) { return 0.0; } 88 89 89 // zero step length may happens only if step << 90 // is applied, in that case saturation shoul << 91 if(length <= 0.0) { return edep; } << 92 << 93 G4double evis = edep; 90 G4double evis = edep; 94 G4double bfactor = couple->GetMaterial()->Ge 91 G4double bfactor = couple->GetMaterial()->GetIonisation()->GetBirksConstant(); 95 92 96 if(bfactor > 0.0) { 93 if(bfactor > 0.0) { 97 94 98 // atomic relaxations for gamma incident 95 // atomic relaxations for gamma incident 99 if(22 == p->GetPDGEncoding()) { 96 if(22 == p->GetPDGEncoding()) { 100 //G4cout << "%% gamma edep= " << edep/ke << 97 //G4cout << "%% gamma edep= " << edep/keV << " keV " <<manager << G4endl; 101 evis /= (1.0 + bfactor*edep/ 98 evis /= (1.0 + bfactor*edep/ 102 G4LossTableManager::Instance()->GetRan 99 G4LossTableManager::Instance()->GetRange(electron,edep,couple)); 103 100 104 // energy loss 101 // energy loss 105 } else { 102 } else { 106 103 107 // protections 104 // protections 108 G4double nloss = std::max(niel, 0.0); 105 G4double nloss = std::max(niel, 0.0); 109 G4double eloss = edep - nloss; 106 G4double eloss = edep - nloss; 110 107 111 // neutrons and neutral hadrons 108 // neutrons and neutral hadrons 112 if(0.0 == p->GetPDGCharge() || eloss < 0 << 109 if(0.0 == p->GetPDGCharge() || eloss < 0.0 || length <= 0.0) { 113 nloss = edep; 110 nloss = edep; 114 eloss = 0.0; 111 eloss = 0.0; 115 } else { 112 } else { 116 113 117 // continues energy loss 114 // continues energy loss 118 eloss /= (1.0 + bfactor*eloss/length); 115 eloss /= (1.0 + bfactor*eloss/length); 119 } 116 } 120 // non-ionizing energy loss 117 // non-ionizing energy loss 121 if(nloss > 0.0) { 118 if(nloss > 0.0) { 122 std::size_t idx = couple->GetMaterial( << 119 G4int idx = couple->GetMaterial()->GetIndex(); 123 G4double escaled = nloss*massFactors[i 120 G4double escaled = nloss*massFactors[idx]; 124 /* << 121 /* 125 G4cout << "%% p edep= " << nloss/keV < 122 G4cout << "%% p edep= " << nloss/keV << " keV Escaled= " 126 << escaled << " MeV in " << co 123 << escaled << " MeV in " << couple->GetMaterial()->GetName() 127 << " " << p->GetParticleName() << 124 << " " << p->GetParticleName() 128 << G4endl; << 125 << G4endl; 129 G4cout << proton->GetParticleName() << G4end << 126 */ 130 */ << 131 G4double range = G4LossTableManager::I 127 G4double range = G4LossTableManager::Instance() 132 ->GetRange(proton,escaled,couple)/ef 128 ->GetRange(proton,escaled,couple)/effCharges[idx]; 133 nloss /= (1.0 + bfactor*nloss/range); 129 nloss /= (1.0 + bfactor*nloss/range); 134 } 130 } 135 evis = eloss + nloss; 131 evis = eloss + nloss; 136 } 132 } 137 } 133 } 138 return evis; 134 return evis; 139 } 135 } 140 136 141 //....oooOO0OOooo........oooOO0OOooo........oo 137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 142 138 143 void G4EmSaturation::InitialiseG4Saturation() 139 void G4EmSaturation::InitialiseG4Saturation() 144 { 140 { 145 if(nMaterials == G4Material::GetNumberOfMate << 146 nMaterials = G4Material::GetNumberOfMaterial 141 nMaterials = G4Material::GetNumberOfMaterials(); 147 massFactors.resize(nMaterials, 1.0); 142 massFactors.resize(nMaterials, 1.0); 148 effCharges.resize(nMaterials, 1.0); 143 effCharges.resize(nMaterials, 1.0); 149 144 150 if(0 == nG4Birks) { InitialiseG4materials() 145 if(0 == nG4Birks) { InitialiseG4materials(); } 151 146 152 for(std::size_t i=0; i<nMaterials; ++i) { << 147 for(G4int i=0; i<nMaterials; ++i) { 153 InitialiseBirksCoefficient((*G4Material::G 148 InitialiseBirksCoefficient((*G4Material::GetMaterialTable())[i]); 154 } 149 } 155 if(verbose > 0) { DumpBirksCoefficients(); } 150 if(verbose > 0) { DumpBirksCoefficients(); } 156 } 151 } 157 152 158 //....oooOO0OOooo........oooOO0OOooo........oo 153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 159 154 160 G4double G4EmSaturation::FindG4BirksCoefficien 155 G4double G4EmSaturation::FindG4BirksCoefficient(const G4Material* mat) 161 { 156 { 162 if(0 == nG4Birks) { InitialiseG4materials() 157 if(0 == nG4Birks) { InitialiseG4materials(); } 163 158 164 G4String name = mat->GetName(); 159 G4String name = mat->GetName(); 165 // is this material in the vector? 160 // is this material in the vector? 166 161 167 for(G4int j=0; j<nG4Birks; ++j) { 162 for(G4int j=0; j<nG4Birks; ++j) { 168 if(name == g4MatNames[j]) { 163 if(name == g4MatNames[j]) { 169 if(verbose > 0) 164 if(verbose > 0) 170 G4cout << "### G4EmSaturation::FindG4B 165 G4cout << "### G4EmSaturation::FindG4BirksCoefficient for " 171 << name << " is " << g4MatData[ 166 << name << " is " << g4MatData[j]*MeV/mm << " mm/MeV " 172 << G4endl; 167 << G4endl; 173 return g4MatData[j]; 168 return g4MatData[j]; 174 } 169 } 175 } 170 } 176 return 0.0; 171 return 0.0; 177 } 172 } 178 173 179 //....oooOO0OOooo........oooOO0OOooo........oo 174 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 180 175 181 void G4EmSaturation::InitialiseBirksCoefficien 176 void G4EmSaturation::InitialiseBirksCoefficient(const G4Material* mat) 182 { 177 { 183 // electron and proton should exist in any c 178 // electron and proton should exist in any case 184 if(nullptr == electron) { << 179 if(!electron) { 185 electron = G4ParticleTable::GetParticleTab 180 electron = G4ParticleTable::GetParticleTable()->FindParticle("e-"); 186 proton = G4ParticleTable::GetParticleTable 181 proton = G4ParticleTable::GetParticleTable()->FindParticle("proton"); 187 if(nullptr == electron) { << 182 if(!electron || !proton) { 188 G4Exception("G4EmSaturation::InitialiseB 183 G4Exception("G4EmSaturation::InitialiseBirksCoefficient", "em0001", 189 FatalException, "electron should exist") << 184 FatalException, "both electron and proton should exist"); 190 } 185 } 191 } 186 } 192 187 193 G4double curBirks = mat->GetIonisation()->Ge 188 G4double curBirks = mat->GetIonisation()->GetBirksConstant(); 194 189 195 G4String name = mat->GetName(); 190 G4String name = mat->GetName(); 196 191 197 // material has no Birks coeffitient defined 192 // material has no Birks coeffitient defined 198 // seach in the Geant4 list 193 // seach in the Geant4 list 199 if(curBirks == 0.0) { 194 if(curBirks == 0.0) { 200 for(G4int j=0; j<nG4Birks; ++j) { 195 for(G4int j=0; j<nG4Birks; ++j) { 201 if(name == g4MatNames[j]) { 196 if(name == g4MatNames[j]) { 202 mat->GetIonisation()->SetBirksConstant 197 mat->GetIonisation()->SetBirksConstant(g4MatData[j]); 203 curBirks = g4MatData[j]; 198 curBirks = g4MatData[j]; 204 break; 199 break; 205 } 200 } 206 } 201 } 207 } 202 } 208 203 209 if(curBirks == 0.0) { return; } 204 if(curBirks == 0.0) { return; } 210 205 211 // compute mean mass ratio 206 // compute mean mass ratio 212 G4double curRatio = 0.0; 207 G4double curRatio = 0.0; 213 G4double curChargeSq = 0.0; 208 G4double curChargeSq = 0.0; 214 G4double norm = 0.0; 209 G4double norm = 0.0; 215 const G4ElementVector* theElementVector = ma 210 const G4ElementVector* theElementVector = mat->GetElementVector(); 216 const G4double* theAtomNumDensityVector = ma 211 const G4double* theAtomNumDensityVector = mat->GetVecNbOfAtomsPerVolume(); 217 std::size_t nelm = mat->GetNumberOfElements( << 212 size_t nelm = mat->GetNumberOfElements(); 218 for (std::size_t i=0; i<nelm; ++i) { << 213 for (size_t i=0; i<nelm; ++i) { 219 const G4Element* elm = (*theElementVector) 214 const G4Element* elm = (*theElementVector)[i]; 220 G4int Z = elm->GetZasInt(); << 215 G4double Z = elm->GetZ(); 221 G4double w = theAtomNumDensityVector[i]; << 216 G4double w = Z*Z*theAtomNumDensityVector[i]; 222 curRatio += w/nist->GetAtomicMassAmu(Z); << 217 curRatio += w/nist->GetAtomicMassAmu(G4int(Z)); 223 curChargeSq += (Z*Z)*w; << 218 curChargeSq = Z*Z*w; 224 norm += w; 219 norm += w; 225 } 220 } 226 if ( norm > 0.0) { norm = 1.0/norm; } << 221 curRatio *= proton_mass_c2/norm; 227 curRatio *= (CLHEP::proton_mass_c2*norm); << 222 curChargeSq /= norm; 228 curChargeSq *= norm; << 229 223 230 // store results 224 // store results 231 std::size_t idx = mat->GetIndex(); << 225 G4int idx = mat->GetIndex(); 232 massFactors[idx] = curRatio; 226 massFactors[idx] = curRatio; 233 effCharges[idx] = curChargeSq; 227 effCharges[idx] = curChargeSq; 234 } 228 } 235 229 236 //....oooOO0OOooo........oooOO0OOooo........oo 230 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 237 231 238 void G4EmSaturation::DumpBirksCoefficients() 232 void G4EmSaturation::DumpBirksCoefficients() 239 { 233 { 240 G4cout << "### Birks coefficients used in ru 234 G4cout << "### Birks coefficients used in run time" << G4endl; 241 const G4MaterialTable* mtable = G4Material:: 235 const G4MaterialTable* mtable = G4Material::GetMaterialTable(); 242 for(std::size_t i=0; i<nMaterials; ++i) { << 236 for(G4int i=0; i<nMaterials; ++i) { 243 const G4Material* mat = (*mtable)[i]; 237 const G4Material* mat = (*mtable)[i]; 244 G4double br = mat->GetIonisation()->GetBir 238 G4double br = mat->GetIonisation()->GetBirksConstant(); 245 if(br > 0.0) { 239 if(br > 0.0) { 246 G4cout << " " << mat->GetName() << " 240 G4cout << " " << mat->GetName() << " " 247 << br*MeV/mm << " mm/MeV" << " " 241 << br*MeV/mm << " mm/MeV" << " " 248 << br*mat->GetDensity()*MeV*cm2/g 242 << br*mat->GetDensity()*MeV*cm2/g 249 << " g/cm^2/MeV massFactor= " << mass 243 << " g/cm^2/MeV massFactor= " << massFactors[i] 250 << " effCharge= " << effCharges[i] << G 244 << " effCharge= " << effCharges[i] << G4endl; 251 } 245 } 252 } 246 } 253 } 247 } 254 248 255 //....oooOO0OOooo........oooOO0OOooo........oo 249 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 256 250 257 void G4EmSaturation::DumpG4BirksCoefficients() 251 void G4EmSaturation::DumpG4BirksCoefficients() 258 { 252 { 259 if(nG4Birks > 0) { 253 if(nG4Birks > 0) { 260 G4cout << "### Birks coefficients for Gean 254 G4cout << "### Birks coefficients for Geant4 materials" << G4endl; 261 for(G4int i=0; i<nG4Birks; ++i) { 255 for(G4int i=0; i<nG4Birks; ++i) { 262 G4cout << " " << g4MatNames[i] << " 256 G4cout << " " << g4MatNames[i] << " " 263 << g4MatData[i]*MeV/mm << " mm/Me 257 << g4MatData[i]*MeV/mm << " mm/MeV" << G4endl; 264 } 258 } 265 } 259 } 266 } 260 } 267 261 268 //....oooOO0OOooo........oooOO0OOooo........oo 262 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 269 263 270 void G4EmSaturation::InitialiseG4materials() 264 void G4EmSaturation::InitialiseG4materials() 271 { 265 { 272 nG4Birks = 4; 266 nG4Birks = 4; 273 g4MatData.reserve(nG4Birks); 267 g4MatData.reserve(nG4Birks); 274 268 275 // M.Hirschberg et al., IEEE Trans. Nuc. Sci 269 // M.Hirschberg et al., IEEE Trans. Nuc. Sci. 39 (1992) 511 276 // SCSN-38 kB = 0.00842 g/cm^2/MeV; rho = 1. 270 // SCSN-38 kB = 0.00842 g/cm^2/MeV; rho = 1.06 g/cm^3 277 g4MatNames.push_back("G4_POLYSTYRENE"); 271 g4MatNames.push_back("G4_POLYSTYRENE"); 278 g4MatData.push_back(0.07943*mm/MeV); 272 g4MatData.push_back(0.07943*mm/MeV); 279 273 280 // C.Fabjan (private communication) 274 // C.Fabjan (private communication) 281 // kB = 0.006 g/cm^2/MeV; rho = 7.13 g/cm^3 275 // kB = 0.006 g/cm^2/MeV; rho = 7.13 g/cm^3 282 g4MatNames.push_back("G4_BGO"); 276 g4MatNames.push_back("G4_BGO"); 283 g4MatData.push_back(0.008415*mm/MeV); 277 g4MatData.push_back(0.008415*mm/MeV); 284 278 285 // A.Ribon analysis of publications 279 // A.Ribon analysis of publications 286 // Scallettar et al., Phys. Rev. A25 (1982) 280 // Scallettar et al., Phys. Rev. A25 (1982) 2419. 287 // NIM A 523 (2004) 275. 281 // NIM A 523 (2004) 275. 288 // kB = 0.022 g/cm^2/MeV; rho = 1.396 g/cm^3 282 // kB = 0.022 g/cm^2/MeV; rho = 1.396 g/cm^3; 289 // ATLAS Efield = 10 kV/cm provide the stron 283 // ATLAS Efield = 10 kV/cm provide the strongest effect 290 // kB = 0.1576*mm/MeV 284 // kB = 0.1576*mm/MeV 291 // A. Kiryunin and P.Strizenec "Geant4 hadro 285 // A. Kiryunin and P.Strizenec "Geant4 hadronic 292 // working group meeting " kB = 0.041/9.13 g 286 // working group meeting " kB = 0.041/9.13 g/cm^2/MeV 293 g4MatNames.push_back("G4_lAr"); 287 g4MatNames.push_back("G4_lAr"); 294 g4MatData.push_back(0.032*mm/MeV); 288 g4MatData.push_back(0.032*mm/MeV); 295 289 296 //G4_BARIUM_FLUORIDE 290 //G4_BARIUM_FLUORIDE 297 //G4_CESIUM_IODIDE 291 //G4_CESIUM_IODIDE 298 //G4_GEL_PHOTO_EMULSION 292 //G4_GEL_PHOTO_EMULSION 299 //G4_PHOTO_EMULSION 293 //G4_PHOTO_EMULSION 300 //G4_PLASTIC_SC_VINYLTOLUENE 294 //G4_PLASTIC_SC_VINYLTOLUENE 301 //G4_SODIUM_IODIDE 295 //G4_SODIUM_IODIDE 302 //G4_STILBENE 296 //G4_STILBENE 303 //G4_lAr 297 //G4_lAr 304 298 305 //G4_PbWO4 - CMS value 299 //G4_PbWO4 - CMS value 306 g4MatNames.push_back("G4_PbWO4"); 300 g4MatNames.push_back("G4_PbWO4"); 307 g4MatData.push_back(0.0333333*mm/MeV); 301 g4MatData.push_back(0.0333333*mm/MeV); 308 302 309 //G4_Lucite 303 //G4_Lucite 310 304 311 } 305 } 312 306 313 //....oooOO0OOooo........oooOO0OOooo........oo 307 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 314 308