Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4EmSaturation.cc 92921 2015-09-21 15:06:51Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4EmSaturation 33 // File name: G4EmSaturation 33 // 34 // 34 // Author: Vladimir Ivanchenko 35 // Author: Vladimir Ivanchenko 35 // 36 // 36 // Creation date: 18.02.2008 37 // Creation date: 18.02.2008 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // ------------------------------------------- 41 // ------------------------------------------------------------- 41 42 42 //....oooOO0OOooo........oooOO0OOooo........oo 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 43 //....oooOO0OOooo........oooOO0OOooo........oo 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 44 45 45 #include "G4EmSaturation.hh" 46 #include "G4EmSaturation.hh" 46 #include "G4PhysicalConstants.hh" 47 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "G4SystemOfUnits.hh" 48 #include "G4LossTableManager.hh" 49 #include "G4LossTableManager.hh" 49 #include "G4NistManager.hh" 50 #include "G4NistManager.hh" 50 #include "G4Material.hh" 51 #include "G4Material.hh" 51 #include "G4MaterialCutsCouple.hh" 52 #include "G4MaterialCutsCouple.hh" 52 #include "G4ParticleTable.hh" 53 #include "G4ParticleTable.hh" 53 54 54 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 55 56 56 std::size_t G4EmSaturation::nMaterials = 0; << 57 std::vector<G4double> G4EmSaturation::massFact << 58 std::vector<G4double> G4EmSaturation::effCharg << 59 std::vector<G4double> G4EmSaturation::g4MatDat << 60 std::vector<G4String> G4EmSaturation::g4MatNam << 61 << 62 G4EmSaturation::G4EmSaturation(G4int verb) 57 G4EmSaturation::G4EmSaturation(G4int verb) >> 58 : manager(nullptr) 63 { 59 { 64 verbose = verb; 60 verbose = verb; 65 nWarnings = nG4Birks = 0; << 61 >> 62 curMaterial = nullptr; >> 63 curBirks = 0.0; >> 64 curRatio = 1.0; >> 65 curChargeSq = 1.0; >> 66 nMaterials = nWarnings = 0; 66 67 67 electron = nullptr; 68 electron = nullptr; 68 proton = nullptr; 69 proton = nullptr; 69 nist = G4NistManager::Instance(); 70 nist = G4NistManager::Instance(); 70 InitialiseG4Saturation(); << 71 >> 72 InitialiseG4materials(); 71 } 73 } 72 74 73 //....oooOO0OOooo........oooOO0OOooo........oo 75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 74 76 75 G4EmSaturation::~G4EmSaturation() = default; << 77 G4EmSaturation::~G4EmSaturation() >> 78 {} 76 79 77 //....oooOO0OOooo........oooOO0OOooo........oo 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 81 79 G4double G4EmSaturation::VisibleEnergyDepositi 82 G4double G4EmSaturation::VisibleEnergyDeposition( 80 const G4 83 const G4ParticleDefinition* p, 81 const G4 84 const G4MaterialCutsCouple* couple, 82 G4double 85 G4double length, 83 G4double 86 G4double edep, 84 G4double << 87 G4double niel) 85 { 88 { 86 // no energy deposition << 87 if(edep <= 0.0) { return 0.0; } 89 if(edep <= 0.0) { return 0.0; } 88 90 89 // zero step length may happens only if step << 90 // is applied, in that case saturation shoul << 91 if(length <= 0.0) { return edep; } << 92 << 93 G4double evis = edep; 91 G4double evis = edep; 94 G4double bfactor = couple->GetMaterial()->Ge << 92 G4double bfactor = FindBirksCoefficient(couple->GetMaterial()); 95 93 96 if(bfactor > 0.0) { 94 if(bfactor > 0.0) { 97 95 >> 96 G4int pdgCode = p->GetPDGEncoding(); 98 // atomic relaxations for gamma incident 97 // atomic relaxations for gamma incident 99 if(22 == p->GetPDGEncoding()) { << 98 if(22 == pdgCode && electron) { 100 //G4cout << "%% gamma edep= " << edep/ke << 99 //G4cout << "%% gamma edep= " << edep/keV << " keV " <<manager << G4endl; 101 evis /= (1.0 + bfactor*edep/ << 100 evis /= (1.0 + bfactor*edep/manager->GetRange(electron,edep,couple)); 102 G4LossTableManager::Instance()->GetRan << 103 101 104 // energy loss 102 // energy loss 105 } else { 103 } else { 106 104 107 // protections 105 // protections 108 G4double nloss = std::max(niel, 0.0); << 106 G4double nloss = niel; >> 107 if(nloss < 0.0) { nloss = 0.0; } 109 G4double eloss = edep - nloss; 108 G4double eloss = edep - nloss; 110 109 111 // neutrons and neutral hadrons 110 // neutrons and neutral hadrons 112 if(0.0 == p->GetPDGCharge() || eloss < 0 << 111 if(0.0 == p->GetPDGCharge() || eloss < 0.0 || length <= 0.0) { 113 nloss = edep; 112 nloss = edep; 114 eloss = 0.0; 113 eloss = 0.0; 115 } else { << 116 << 117 // continues energy loss << 118 eloss /= (1.0 + bfactor*eloss/length); << 119 } 114 } >> 115 >> 116 // continues energy loss >> 117 if(eloss > 0.0) { eloss /= (1.0 + bfactor*eloss/length); } >> 118 120 // non-ionizing energy loss 119 // non-ionizing energy loss 121 if(nloss > 0.0) { << 120 if(nloss > 0.0 && proton) { 122 std::size_t idx = couple->GetMaterial( << 121 G4double escaled = nloss*curRatio; 123 G4double escaled = nloss*massFactors[i << 122 /* 124 /* << 125 G4cout << "%% p edep= " << nloss/keV < 123 G4cout << "%% p edep= " << nloss/keV << " keV Escaled= " 126 << escaled << " MeV in " << co 124 << escaled << " MeV in " << couple->GetMaterial()->GetName() 127 << " " << p->GetParticleName() << 125 << " " << p->GetParticleName() 128 << G4endl; << 126 << G4endl; 129 G4cout << proton->GetParticleName() << G4end << 127 */ 130 */ << 128 G4double range = manager->GetRange(proton,escaled,couple)/curChargeSq; 131 G4double range = G4LossTableManager::I << 132 ->GetRange(proton,escaled,couple)/ef << 133 nloss /= (1.0 + bfactor*nloss/range); 129 nloss /= (1.0 + bfactor*nloss/range); 134 } 130 } >> 131 135 evis = eloss + nloss; 132 evis = eloss + nloss; 136 } 133 } 137 } 134 } >> 135 138 return evis; 136 return evis; 139 } 137 } 140 138 141 //....oooOO0OOooo........oooOO0OOooo........oo 139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 142 140 143 void G4EmSaturation::InitialiseG4Saturation() << 144 { << 145 if(nMaterials == G4Material::GetNumberOfMate << 146 nMaterials = G4Material::GetNumberOfMaterial << 147 massFactors.resize(nMaterials, 1.0); << 148 effCharges.resize(nMaterials, 1.0); << 149 << 150 if(0 == nG4Birks) { InitialiseG4materials() << 151 << 152 for(std::size_t i=0; i<nMaterials; ++i) { << 153 InitialiseBirksCoefficient((*G4Material::G << 154 } << 155 if(verbose > 0) { DumpBirksCoefficients(); } << 156 } << 157 << 158 //....oooOO0OOooo........oooOO0OOooo........oo << 159 << 160 G4double G4EmSaturation::FindG4BirksCoefficien 141 G4double G4EmSaturation::FindG4BirksCoefficient(const G4Material* mat) 161 { 142 { 162 if(0 == nG4Birks) { InitialiseG4materials() << 163 << 164 G4String name = mat->GetName(); 143 G4String name = mat->GetName(); 165 // is this material in the vector? 144 // is this material in the vector? 166 145 167 for(G4int j=0; j<nG4Birks; ++j) { 146 for(G4int j=0; j<nG4Birks; ++j) { 168 if(name == g4MatNames[j]) { 147 if(name == g4MatNames[j]) { 169 if(verbose > 0) 148 if(verbose > 0) 170 G4cout << "### G4EmSaturation::FindG4B 149 G4cout << "### G4EmSaturation::FindG4BirksCoefficient for " 171 << name << " is " << g4MatData[ 150 << name << " is " << g4MatData[j]*MeV/mm << " mm/MeV " 172 << G4endl; 151 << G4endl; 173 return g4MatData[j]; 152 return g4MatData[j]; 174 } 153 } 175 } 154 } 176 return 0.0; << 155 return FindBirksCoefficient(mat); 177 } 156 } 178 157 179 //....oooOO0OOooo........oooOO0OOooo........oo 158 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 180 159 181 void G4EmSaturation::InitialiseBirksCoefficien 160 void G4EmSaturation::InitialiseBirksCoefficient(const G4Material* mat) 182 { 161 { 183 // electron and proton should exist in any c 162 // electron and proton should exist in any case 184 if(nullptr == electron) { << 163 if(!manager) { >> 164 manager = G4LossTableManager::Instance(); 185 electron = G4ParticleTable::GetParticleTab 165 electron = G4ParticleTable::GetParticleTable()->FindParticle("e-"); 186 proton = G4ParticleTable::GetParticleTable 166 proton = G4ParticleTable::GetParticleTable()->FindParticle("proton"); 187 if(nullptr == electron) { << 188 G4Exception("G4EmSaturation::InitialiseB << 189 FatalException, "electron should exist") << 190 } << 191 } 167 } 192 168 193 G4double curBirks = mat->GetIonisation()->Ge << 169 curMaterial = mat; >> 170 curBirks = 0.0; >> 171 curRatio = 1.0; >> 172 curChargeSq = 1.0; >> 173 >> 174 // seach in the run-time list >> 175 for(G4int i=0; i<nMaterials; ++i) { >> 176 if(mat == matPointers[i]) { >> 177 curBirks = mat->GetIonisation()->GetBirksConstant(); >> 178 curRatio = massFactors[i]; >> 179 curChargeSq = effCharges[i]; >> 180 return; >> 181 } >> 182 } 194 183 195 G4String name = mat->GetName(); 184 G4String name = mat->GetName(); >> 185 curBirks = mat->GetIonisation()->GetBirksConstant(); 196 186 197 // material has no Birks coeffitient defined 187 // material has no Birks coeffitient defined 198 // seach in the Geant4 list 188 // seach in the Geant4 list 199 if(curBirks == 0.0) { 189 if(curBirks == 0.0) { 200 for(G4int j=0; j<nG4Birks; ++j) { 190 for(G4int j=0; j<nG4Birks; ++j) { 201 if(name == g4MatNames[j]) { 191 if(name == g4MatNames[j]) { 202 mat->GetIonisation()->SetBirksConstant 192 mat->GetIonisation()->SetBirksConstant(g4MatData[j]); 203 curBirks = g4MatData[j]; 193 curBirks = g4MatData[j]; 204 break; 194 break; 205 } 195 } 206 } 196 } 207 } 197 } 208 198 209 if(curBirks == 0.0) { return; } << 199 if(curBirks == 0.0) { >> 200 if(0 < nWarnings) { >> 201 ++nWarnings; >> 202 G4ExceptionDescription ed; >> 203 ed << "Birks constants are not defined for material " << name >> 204 << " ! \n Define Birks constants for the material" >> 205 << " or not apply saturation."; >> 206 G4Exception("G4EmSaturation::InitialiseBirksCoefficient", "em0088", >> 207 JustWarning, ed); >> 208 } >> 209 return; >> 210 } 210 211 211 // compute mean mass ratio 212 // compute mean mass ratio 212 G4double curRatio = 0.0; << 213 curRatio = 0.0; 213 G4double curChargeSq = 0.0; << 214 curChargeSq = 0.0; 214 G4double norm = 0.0; 215 G4double norm = 0.0; 215 const G4ElementVector* theElementVector = ma 216 const G4ElementVector* theElementVector = mat->GetElementVector(); 216 const G4double* theAtomNumDensityVector = ma 217 const G4double* theAtomNumDensityVector = mat->GetVecNbOfAtomsPerVolume(); 217 std::size_t nelm = mat->GetNumberOfElements( << 218 size_t nelm = mat->GetNumberOfElements(); 218 for (std::size_t i=0; i<nelm; ++i) { << 219 for (size_t i=0; i<nelm; ++i) { 219 const G4Element* elm = (*theElementVector) 220 const G4Element* elm = (*theElementVector)[i]; 220 G4int Z = elm->GetZasInt(); << 221 G4double Z = elm->GetZ(); 221 G4double w = theAtomNumDensityVector[i]; << 222 G4double w = Z*Z*theAtomNumDensityVector[i]; 222 curRatio += w/nist->GetAtomicMassAmu(Z); << 223 curRatio += w/nist->GetAtomicMassAmu(G4int(Z)); 223 curChargeSq += (Z*Z)*w; << 224 curChargeSq = Z*Z*w; 224 norm += w; 225 norm += w; 225 } 226 } 226 if ( norm > 0.0) { norm = 1.0/norm; } << 227 curRatio *= proton_mass_c2/norm; 227 curRatio *= (CLHEP::proton_mass_c2*norm); << 228 curChargeSq /= norm; 228 curChargeSq *= norm; << 229 229 230 // store results 230 // store results 231 std::size_t idx = mat->GetIndex(); << 231 matPointers.push_back(mat); 232 massFactors[idx] = curRatio; << 232 matNames.push_back(name); 233 effCharges[idx] = curChargeSq; << 233 massFactors.push_back(curRatio); >> 234 effCharges.push_back(curChargeSq); >> 235 nMaterials++; >> 236 if(verbose > 0) { >> 237 G4cout << "### G4EmSaturation::FindBirksCoefficient Birks coefficient for " >> 238 << name << " " << curBirks*MeV/mm << " mm/MeV" << G4endl; >> 239 } >> 240 return; 234 } 241 } 235 242 236 //....oooOO0OOooo........oooOO0OOooo........oo 243 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 237 244 238 void G4EmSaturation::DumpBirksCoefficients() 245 void G4EmSaturation::DumpBirksCoefficients() 239 { 246 { 240 G4cout << "### Birks coefficients used in ru << 247 if(nMaterials > 0) { 241 const G4MaterialTable* mtable = G4Material:: << 248 G4cout << "### Birks coeffitients used in run time" << G4endl; 242 for(std::size_t i=0; i<nMaterials; ++i) { << 249 for(G4int i=0; i<nMaterials; ++i) { 243 const G4Material* mat = (*mtable)[i]; << 250 G4double br = matPointers[i]->GetIonisation()->GetBirksConstant(); 244 G4double br = mat->GetIonisation()->GetBir << 251 G4cout << " " << matNames[i] << " " 245 if(br > 0.0) { << 252 << br*MeV/mm << " mm/MeV" << " " 246 G4cout << " " << mat->GetName() << " << 253 << br*matPointers[i]->GetDensity()*MeV*cm2/g 247 << br*MeV/mm << " mm/MeV" << " " << 254 << " g/cm^2/MeV" 248 << br*mat->GetDensity()*MeV*cm2/g << 255 << G4endl; 249 << " g/cm^2/MeV massFactor= " << mass << 250 << " effCharge= " << effCharges[i] << G << 251 } 256 } 252 } 257 } 253 } 258 } 254 259 255 //....oooOO0OOooo........oooOO0OOooo........oo 260 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 256 261 257 void G4EmSaturation::DumpG4BirksCoefficients() 262 void G4EmSaturation::DumpG4BirksCoefficients() 258 { 263 { 259 if(nG4Birks > 0) { 264 if(nG4Birks > 0) { 260 G4cout << "### Birks coefficients for Gean << 265 G4cout << "### Birks coeffitients for Geant4 materials" << G4endl; 261 for(G4int i=0; i<nG4Birks; ++i) { 266 for(G4int i=0; i<nG4Birks; ++i) { 262 G4cout << " " << g4MatNames[i] << " 267 G4cout << " " << g4MatNames[i] << " " 263 << g4MatData[i]*MeV/mm << " mm/Me 268 << g4MatData[i]*MeV/mm << " mm/MeV" << G4endl; 264 } 269 } 265 } 270 } 266 } 271 } 267 272 268 //....oooOO0OOooo........oooOO0OOooo........oo 273 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 269 274 270 void G4EmSaturation::InitialiseG4materials() 275 void G4EmSaturation::InitialiseG4materials() 271 { 276 { 272 nG4Birks = 4; << 273 g4MatData.reserve(nG4Birks); << 274 << 275 // M.Hirschberg et al., IEEE Trans. Nuc. Sci 277 // M.Hirschberg et al., IEEE Trans. Nuc. Sci. 39 (1992) 511 276 // SCSN-38 kB = 0.00842 g/cm^2/MeV; rho = 1. 278 // SCSN-38 kB = 0.00842 g/cm^2/MeV; rho = 1.06 g/cm^3 277 g4MatNames.push_back("G4_POLYSTYRENE"); 279 g4MatNames.push_back("G4_POLYSTYRENE"); 278 g4MatData.push_back(0.07943*mm/MeV); 280 g4MatData.push_back(0.07943*mm/MeV); 279 281 280 // C.Fabjan (private communication) 282 // C.Fabjan (private communication) 281 // kB = 0.006 g/cm^2/MeV; rho = 7.13 g/cm^3 283 // kB = 0.006 g/cm^2/MeV; rho = 7.13 g/cm^3 282 g4MatNames.push_back("G4_BGO"); 284 g4MatNames.push_back("G4_BGO"); 283 g4MatData.push_back(0.008415*mm/MeV); 285 g4MatData.push_back(0.008415*mm/MeV); 284 286 285 // A.Ribon analysis of publications 287 // A.Ribon analysis of publications 286 // Scallettar et al., Phys. Rev. A25 (1982) 288 // Scallettar et al., Phys. Rev. A25 (1982) 2419. 287 // NIM A 523 (2004) 275. 289 // NIM A 523 (2004) 275. 288 // kB = 0.022 g/cm^2/MeV; rho = 1.396 g/cm^3 290 // kB = 0.022 g/cm^2/MeV; rho = 1.396 g/cm^3; 289 // ATLAS Efield = 10 kV/cm provide the stron << 291 // ATLAS Efield = 10 kV/cm provide the strongest effect 290 // kB = 0.1576*mm/MeV << 291 // A. Kiryunin and P.Strizenec "Geant4 hadro << 292 // working group meeting " kB = 0.041/9.13 g << 293 g4MatNames.push_back("G4_lAr"); 292 g4MatNames.push_back("G4_lAr"); 294 g4MatData.push_back(0.032*mm/MeV); << 293 g4MatData.push_back(0.1576*mm/MeV); 295 294 296 //G4_BARIUM_FLUORIDE 295 //G4_BARIUM_FLUORIDE 297 //G4_CESIUM_IODIDE 296 //G4_CESIUM_IODIDE 298 //G4_GEL_PHOTO_EMULSION 297 //G4_GEL_PHOTO_EMULSION 299 //G4_PHOTO_EMULSION 298 //G4_PHOTO_EMULSION 300 //G4_PLASTIC_SC_VINYLTOLUENE 299 //G4_PLASTIC_SC_VINYLTOLUENE 301 //G4_SODIUM_IODIDE 300 //G4_SODIUM_IODIDE 302 //G4_STILBENE 301 //G4_STILBENE 303 //G4_lAr 302 //G4_lAr 304 << 303 //G4_PbWO4 305 //G4_PbWO4 - CMS value << 306 g4MatNames.push_back("G4_PbWO4"); << 307 g4MatData.push_back(0.0333333*mm/MeV); << 308 << 309 //G4_Lucite 304 //G4_Lucite 310 305 >> 306 nG4Birks = g4MatData.size(); 311 } 307 } 312 308 313 //....oooOO0OOooo........oooOO0OOooo........oo 309 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 314 310