Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VAtomDeexcitation.hh,v 1.9 2011-01-03 19:34:03 vnivanch Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4VAtomDeexcitation 34 // File name: G4VAtomDeexcitation 33 // 35 // 34 // Author: Alfonso Mantero & Vladimir I 36 // Author: Alfonso Mantero & Vladimir Ivanchenko 35 // 37 // 36 // Creation date: 30.06.2009 38 // Creation date: 30.06.2009 37 // 39 // 38 // Modifications: 40 // Modifications: 39 // 15 Mar 2011 ALF stripped G4AtomicShellEn 41 // 15 Mar 2011 ALF stripped G4AtomicShellEnumerator to its own file 40 // 42 // 41 // Class Description: 43 // Class Description: 42 // 44 // 43 // Abstract interface to energy loss models 45 // Abstract interface to energy loss models 44 46 45 // ------------------------------------------- 47 // ------------------------------------------------------------------- 46 // 48 // 47 49 48 #ifndef G4VAtomDeexcitation_h 50 #ifndef G4VAtomDeexcitation_h 49 #define G4VAtomDeexcitation_h 1 51 #define G4VAtomDeexcitation_h 1 50 52 51 #include "globals.hh" 53 #include "globals.hh" 52 #include "G4EmParameters.hh" << 53 #include "G4AtomicShell.hh" 54 #include "G4AtomicShell.hh" 54 #include "G4AtomicShellEnumerator.hh" 55 #include "G4AtomicShellEnumerator.hh" 55 #include "G4ProductionCutsTable.hh" 56 #include "G4ProductionCutsTable.hh" 56 #include "G4Track.hh" 57 #include "G4Track.hh" 57 #include "G4Threading.hh" << 58 #include <vector> 58 #include <vector> 59 59 60 class G4ParticleDefinition; 60 class G4ParticleDefinition; 61 class G4DynamicParticle; 61 class G4DynamicParticle; 62 class G4MaterialCutsCouple; 62 class G4MaterialCutsCouple; 63 63 64 class G4VAtomDeexcitation { 64 class G4VAtomDeexcitation { 65 public: 65 public: 66 66 67 explicit G4VAtomDeexcitation(const G4String& << 67 G4VAtomDeexcitation(const G4String& modname = "Deexcitation", >> 68 const G4String& pixename = ""); 68 69 69 virtual ~G4VAtomDeexcitation(); 70 virtual ~G4VAtomDeexcitation(); 70 71 71 //========== initialization ========== 72 //========== initialization ========== 72 73 73 // Overall initialisation before new run 74 // Overall initialisation before new run 74 void InitialiseAtomicDeexcitation(); 75 void InitialiseAtomicDeexcitation(); 75 76 76 // Initialisation of deexcitation at the beg 77 // Initialisation of deexcitation at the beginning of run 77 virtual void InitialiseForNewRun() = 0; 78 virtual void InitialiseForNewRun() = 0; 78 79 79 // Initialisation for a concrete atom 80 // Initialisation for a concrete atom 80 // May be called at run time 81 // May be called at run time 81 virtual void InitialiseForExtraAtom(G4int Z) 82 virtual void InitialiseForExtraAtom(G4int Z) = 0; 82 83 83 void SetDeexcitationActiveRegion(const G4Str << 84 // Activation of deexcitation per detector region 84 G4bool valD << 85 void SetDeexcitationActiveRegion(const G4String& rname = "", 85 G4bool valA << 86 G4bool valDeexcitation = true, 86 G4bool valP << 87 G4bool valAuger = false, >> 88 G4bool valPIXE = true); 87 89 88 // Activation of deexcitation 90 // Activation of deexcitation 89 inline void SetFluo(G4bool); 91 inline void SetFluo(G4bool); 90 inline G4bool IsFluoActive() const; 92 inline G4bool IsFluoActive() const; 91 93 92 // Activation of Auger electron production 94 // Activation of Auger electron production 93 inline void SetAuger(G4bool); 95 inline void SetAuger(G4bool); 94 inline G4bool IsAugerActive() const; 96 inline G4bool IsAugerActive() const; 95 97 96 // Activation of Auger cascade << 97 inline void SetAugerCascade(G4bool); << 98 inline G4bool IsAugerCascadeActive() const; << 99 << 100 // Activation of PIXE simulation 98 // Activation of PIXE simulation 101 inline void SetPIXE(G4bool); 99 inline void SetPIXE(G4bool); >> 100 // inline void SetPIXEActive(G4bool); 102 inline G4bool IsPIXEActive() const; 101 inline G4bool IsPIXEActive() const; 103 102 104 // Deexcitation model name 103 // Deexcitation model name 105 inline const G4String& GetName() const; 104 inline const G4String& GetName() const; 106 105 >> 106 // PIXE model name >> 107 inline void SetPIXECrossSectionModel(const G4String&); >> 108 inline const G4String& PIXECrossSectionModel() const; >> 109 >> 110 // PIXE model name for e+e- >> 111 inline void SetPIXEElectronCrossSectionModel(const G4String&); >> 112 inline const G4String& PIXEElectronCrossSectionModel() const; >> 113 107 // Access to the list of atoms active for de 114 // Access to the list of atoms active for deexcitation 108 inline const std::vector<G4bool>& GetListOfA 115 inline const std::vector<G4bool>& GetListOfActiveAtoms() const; 109 116 110 // Verbosity level 117 // Verbosity level 111 inline void SetVerboseLevel(G4int); 118 inline void SetVerboseLevel(G4int); 112 inline G4int GetVerboseLevel() const; 119 inline G4int GetVerboseLevel() const; 113 120 114 //========== Run time methods ========== 121 //========== Run time methods ========== 115 122 116 // Check if deexcitation is active for a giv 123 // Check if deexcitation is active for a given geometry volume 117 inline G4bool CheckDeexcitationActiveRegion( 124 inline G4bool CheckDeexcitationActiveRegion(G4int coupleIndex); 118 inline G4bool CheckAugerActiveRegion(G4int c 125 inline G4bool CheckAugerActiveRegion(G4int coupleIndex); 119 126 120 // Get atomic shell by shell index, used by 127 // Get atomic shell by shell index, used by discrete processes 121 // (for example, photoelectric), when shell 128 // (for example, photoelectric), when shell vacancy sampled by the model 122 virtual 129 virtual 123 const G4AtomicShell* GetAtomicShell(G4int Z, 130 const G4AtomicShell* GetAtomicShell(G4int Z, 124 G4Atomic << 131 G4AtomicShellEnumerator shell) = 0; 125 132 126 // generation of deexcitation for given atom 133 // generation of deexcitation for given atom and shell vacancy 127 // and material cut couple, which defines cu << 134 inline void GenerateParticles(std::vector<G4DynamicParticle*>* secVect, 128 void GenerateParticles(std::vector<G4Dynamic << 135 const G4AtomicShell*, 129 const G4AtomicShell*, << 136 G4int Z, 130 G4int Z, G4int couple << 137 G4int coupleIndex); 131 138 132 // generation of deexcitation for given atom 139 // generation of deexcitation for given atom and shell vacancy 133 virtual void GenerateParticles(std::vector<G 140 virtual void GenerateParticles(std::vector<G4DynamicParticle*>* secVect, 134 const G4Atomi << 141 const G4AtomicShell*, 135 G4int Z, G4do << 142 G4int Z, >> 143 G4double gammaCut, >> 144 G4double eCut) = 0; 136 145 137 // access or compute PIXE cross section 146 // access or compute PIXE cross section 138 virtual G4double 147 virtual G4double 139 GetShellIonisationCrossSectionPerAtom(const 148 GetShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, 140 G4int << 149 G4int Z, 141 G4Atom << 150 G4AtomicShellEnumerator shell, 142 G4doub << 151 G4double kinE, 143 const << 152 const G4Material* mat = 0) = 0; 144 153 145 // access or compute PIXE cross section 154 // access or compute PIXE cross section 146 virtual G4double 155 virtual G4double 147 ComputeShellIonisationCrossSectionPerAtom( << 156 ComputeShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, 148 const << 157 G4int Z, 149 G4int << 158 G4AtomicShellEnumerator shell, 150 G4Atom << 159 G4double kinE, 151 G4doub << 160 const G4Material* mat = 0) = 0; 152 const << 153 161 154 // Sampling of PIXE for ionisation processes 162 // Sampling of PIXE for ionisation processes 155 void AlongStepDeexcitation(std::vector<G4Tra 163 void AlongStepDeexcitation(std::vector<G4Track*>& tracks, 156 const G4Step& ste << 164 const G4Step& step, 157 G4double& eLoss, << 165 G4double& eLoss, 158 G4int coupleIndex 166 G4int coupleIndex); 159 167 160 // copy constructor and hide assignment oper << 161 G4VAtomDeexcitation(G4VAtomDeexcitation &) = << 162 G4VAtomDeexcitation & operator=(const G4VAto << 163 << 164 private: 168 private: 165 169 166 const G4ParticleDefinition* gamma; << 170 // copy constructor and hide assignment operator 167 const G4ProductionCutsTable* theCoupleTable << 171 G4VAtomDeexcitation(G4VAtomDeexcitation &); 168 << 172 G4VAtomDeexcitation & operator=(const G4VAtomDeexcitation &right); 169 G4int nCouples = 0; << 170 G4int verbose = 1; << 171 << 172 G4bool isActive = false; << 173 G4bool flagAuger = false; << 174 G4bool flagPIXE = false; << 175 G4bool ignoreCuts = false; << 176 << 177 G4bool isActiveLocked = false; << 178 G4bool isAugerLocked = false; << 179 G4bool isPIXELocked = false; << 180 173 >> 174 G4ProductionCutsTable* theCoupleTable; >> 175 G4double lowestKinEnergy; >> 176 G4int verbose; >> 177 G4String name; >> 178 G4String namePIXE; >> 179 G4String nameElectronPIXE; >> 180 G4bool isActive; >> 181 G4bool flagAuger; >> 182 G4bool flagPIXE; 181 std::vector<G4bool> activeZ; 183 std::vector<G4bool> activeZ; 182 std::vector<G4bool> activeDeexcitationMedi 184 std::vector<G4bool> activeDeexcitationMedia; 183 std::vector<G4bool> activeAugerMedia; 185 std::vector<G4bool> activeAugerMedia; 184 std::vector<G4bool> activePIXEMedia; 186 std::vector<G4bool> activePIXEMedia; >> 187 std::vector<G4String> activeRegions; 185 std::vector<G4bool> deRegions; 188 std::vector<G4bool> deRegions; 186 std::vector<G4bool> AugerRegions; 189 std::vector<G4bool> AugerRegions; 187 std::vector<G4bool> PIXERegions; 190 std::vector<G4bool> PIXERegions; 188 std::vector<G4DynamicParticle*> vdyn; 191 std::vector<G4DynamicParticle*> vdyn; 189 std::vector<G4String> activeRegions; << 190 << 191 G4String name; << 192 << 193 #ifdef G4MULTITHREADED << 194 static G4Mutex atomDeexcitationMutex; << 195 #endif << 196 }; 192 }; 197 193 198 inline void G4VAtomDeexcitation::SetFluo(G4boo 194 inline void G4VAtomDeexcitation::SetFluo(G4bool val) 199 { 195 { 200 if(!isActiveLocked) { isActive = val; isActi << 196 isActive = val; 201 } 197 } 202 198 203 inline G4bool G4VAtomDeexcitation::IsFluoActiv 199 inline G4bool G4VAtomDeexcitation::IsFluoActive() const 204 { 200 { 205 return isActive; 201 return isActive; 206 } 202 } 207 203 208 inline void G4VAtomDeexcitation::SetAuger(G4bo 204 inline void G4VAtomDeexcitation::SetAuger(G4bool val) 209 { 205 { 210 if(!isAugerLocked) { flagAuger = val; isAuge << 206 flagAuger = val; >> 207 if(val) { isActive = true; } 211 } 208 } 212 209 213 inline G4bool G4VAtomDeexcitation::IsAugerActi 210 inline G4bool G4VAtomDeexcitation::IsAugerActive() const 214 { 211 { 215 return flagAuger; 212 return flagAuger; 216 } 213 } 217 214 218 inline void G4VAtomDeexcitation::SetAugerCasca << 215 inline void G4VAtomDeexcitation::SetPIXE(G4bool val) 219 { 216 { 220 SetAuger(val); << 217 flagPIXE = val; >> 218 if(val) { isActive = true; } 221 } 219 } 222 220 223 inline G4bool G4VAtomDeexcitation::IsAugerCasc << 221 inline G4bool G4VAtomDeexcitation::IsPIXEActive() const 224 { 222 { 225 return flagAuger; << 223 return (flagPIXE && isActive); 226 } 224 } 227 225 228 inline void G4VAtomDeexcitation::SetPIXE(G4boo << 226 inline const G4String& G4VAtomDeexcitation::GetName() const 229 { 227 { 230 if(!isPIXELocked) { flagPIXE = val; isPIXEL << 228 return name; 231 } 229 } 232 230 233 inline G4bool G4VAtomDeexcitation::IsPIXEActiv << 231 inline >> 232 void G4VAtomDeexcitation::SetPIXECrossSectionModel(const G4String& n) 234 { 233 { 235 return flagPIXE; << 234 namePIXE = n; 236 } 235 } 237 236 238 inline const G4String& G4VAtomDeexcitation::Ge << 237 inline void >> 238 G4VAtomDeexcitation::SetPIXEElectronCrossSectionModel(const G4String& n) 239 { 239 { 240 return name; << 240 nameElectronPIXE = n; >> 241 } >> 242 >> 243 inline >> 244 const G4String& G4VAtomDeexcitation::PIXECrossSectionModel() const >> 245 { >> 246 return namePIXE; >> 247 } >> 248 >> 249 inline >> 250 const G4String& G4VAtomDeexcitation::PIXEElectronCrossSectionModel() const >> 251 { >> 252 return nameElectronPIXE; 241 } 253 } 242 254 243 inline const std::vector<G4bool>& 255 inline const std::vector<G4bool>& 244 G4VAtomDeexcitation::GetListOfActiveAtoms() co 256 G4VAtomDeexcitation::GetListOfActiveAtoms() const 245 { 257 { 246 return activeZ; 258 return activeZ; 247 } 259 } 248 260 249 inline void G4VAtomDeexcitation::SetVerboseLev 261 inline void G4VAtomDeexcitation::SetVerboseLevel(G4int val) 250 { 262 { 251 verbose = val; 263 verbose = val; 252 } 264 } 253 265 254 inline G4int G4VAtomDeexcitation::GetVerboseLe 266 inline G4int G4VAtomDeexcitation::GetVerboseLevel() const 255 { 267 { 256 return verbose; 268 return verbose; 257 } 269 } 258 270 259 inline G4bool 271 inline G4bool 260 G4VAtomDeexcitation::CheckDeexcitationActiveRe << 272 G4VAtomDeexcitation::CheckDeexcitationActiveRegion(G4int coupleIndex) 261 { 273 { 262 return (idx < nCouples) ? activeDeexcitation << 274 return (isActive && activeDeexcitationMedia[coupleIndex]); 263 } 275 } 264 276 265 inline G4bool 277 inline G4bool 266 G4VAtomDeexcitation::CheckAugerActiveRegion(G4 << 278 G4VAtomDeexcitation::CheckAugerActiveRegion(G4int coupleIndex) 267 { 279 { 268 return (idx < nCouples) ? activeAugerMedia[i << 280 >> 281 return (flagAuger && activeAugerMedia[coupleIndex]); >> 282 } >> 283 >> 284 inline void >> 285 G4VAtomDeexcitation::GenerateParticles(std::vector<G4DynamicParticle*>* v, >> 286 const G4AtomicShell* as, >> 287 G4int Z, >> 288 G4int idx) >> 289 { >> 290 G4double gCut = DBL_MAX; >> 291 if (theCoupleTable) { >> 292 gCut = (*(theCoupleTable->GetEnergyCutsVector(0)))[idx]; >> 293 } >> 294 if(gCut < as->BindingEnergy()) { >> 295 G4double eCut = DBL_MAX; >> 296 if(CheckAugerActiveRegion(idx)) { >> 297 if (theCoupleTable) { >> 298 eCut = (*(theCoupleTable->GetEnergyCutsVector(1)))[idx]; >> 299 } >> 300 } >> 301 GenerateParticles(v, as, Z, gCut, eCut); >> 302 } 269 } 303 } 270 304 271 #endif 305 #endif 272 306 273 307