Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VAtomDeexcitation.hh,v 1.8 2010/11/22 18:18:08 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-04 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4VAtomDeexcitation 34 // File name: G4VAtomDeexcitation 33 // 35 // 34 // Author: Alfonso Mantero & Vladimir I 36 // Author: Alfonso Mantero & Vladimir Ivanchenko 35 // 37 // 36 // Creation date: 30.06.2009 38 // Creation date: 30.06.2009 37 // 39 // 38 // Modifications: 40 // Modifications: 39 // 15 Mar 2011 ALF stripped G4AtomicShellEn << 40 // 41 // 41 // Class Description: 42 // Class Description: 42 // 43 // 43 // Abstract interface to energy loss models 44 // Abstract interface to energy loss models 44 45 45 // ------------------------------------------- 46 // ------------------------------------------------------------------- 46 // 47 // 47 48 48 #ifndef G4VAtomDeexcitation_h 49 #ifndef G4VAtomDeexcitation_h 49 #define G4VAtomDeexcitation_h 1 50 #define G4VAtomDeexcitation_h 1 50 51 51 #include "globals.hh" 52 #include "globals.hh" 52 #include "G4EmParameters.hh" << 53 #include "G4AtomicShell.hh" 53 #include "G4AtomicShell.hh" 54 #include "G4AtomicShellEnumerator.hh" << 55 #include "G4ProductionCutsTable.hh" 54 #include "G4ProductionCutsTable.hh" 56 #include "G4Track.hh" 55 #include "G4Track.hh" 57 #include "G4Threading.hh" << 58 #include <vector> 56 #include <vector> 59 57 60 class G4ParticleDefinition; 58 class G4ParticleDefinition; 61 class G4DynamicParticle; 59 class G4DynamicParticle; 62 class G4MaterialCutsCouple; 60 class G4MaterialCutsCouple; >> 61 class G4VParticleChange; >> 62 >> 63 enum G4AtomicShellEnumerator >> 64 { >> 65 fKShell = 0, >> 66 fL1Shell, >> 67 fL2Shell, >> 68 fL3Shell, >> 69 fM1Shell, >> 70 fM2Shell, >> 71 fM3Shell, >> 72 fM4Shell, >> 73 fM5Shell >> 74 }; 63 75 64 class G4VAtomDeexcitation { 76 class G4VAtomDeexcitation { 65 public: 77 public: 66 78 67 explicit G4VAtomDeexcitation(const G4String& << 79 G4VAtomDeexcitation(const G4String& modname = "Deexcitation", >> 80 const G4String& pixename = ""); 68 81 69 virtual ~G4VAtomDeexcitation(); 82 virtual ~G4VAtomDeexcitation(); 70 83 71 //========== initialization ========== 84 //========== initialization ========== 72 85 73 // Overall initialisation before new run 86 // Overall initialisation before new run 74 void InitialiseAtomicDeexcitation(); 87 void InitialiseAtomicDeexcitation(); 75 88 76 // Initialisation of deexcitation at the beg 89 // Initialisation of deexcitation at the beginning of run 77 virtual void InitialiseForNewRun() = 0; 90 virtual void InitialiseForNewRun() = 0; 78 91 79 // Initialisation for a concrete atom 92 // Initialisation for a concrete atom 80 // May be called at run time 93 // May be called at run time 81 virtual void InitialiseForExtraAtom(G4int Z) 94 virtual void InitialiseForExtraAtom(G4int Z) = 0; 82 95 83 void SetDeexcitationActiveRegion(const G4Str << 84 G4bool valD << 85 G4bool valA << 86 G4bool valP << 87 << 88 // Activation of deexcitation 96 // Activation of deexcitation 89 inline void SetFluo(G4bool); << 97 inline void SetActive(G4bool); 90 inline G4bool IsFluoActive() const; << 98 >> 99 // Activation of deexcitation per detector region >> 100 void SetDeexcitationActiveRegion(const G4String& rname = "", >> 101 G4bool valDeexcitation = true, >> 102 G4bool valAuger = false, >> 103 G4bool valPIXE = true); 91 104 92 // Activation of Auger electron production 105 // Activation of Auger electron production 93 inline void SetAuger(G4bool); << 106 inline void SetAugerActive(G4bool); 94 inline G4bool IsAugerActive() const; 107 inline G4bool IsAugerActive() const; 95 108 96 // Activation of Auger cascade << 97 inline void SetAugerCascade(G4bool); << 98 inline G4bool IsAugerCascadeActive() const; << 99 << 100 // Activation of PIXE simulation 109 // Activation of PIXE simulation 101 inline void SetPIXE(G4bool); << 110 inline void SetPIXEActive(G4bool); 102 inline G4bool IsPIXEActive() const; 111 inline G4bool IsPIXEActive() const; 103 112 104 // Deexcitation model name 113 // Deexcitation model name 105 inline const G4String& GetName() const; 114 inline const G4String& GetName() const; 106 115 >> 116 // PIXE model name >> 117 inline void SetPIXECrossSectionModel(const G4String&); >> 118 inline const G4String& PIXECrossSectionModel() const; >> 119 107 // Access to the list of atoms active for de 120 // Access to the list of atoms active for deexcitation 108 inline const std::vector<G4bool>& GetListOfA 121 inline const std::vector<G4bool>& GetListOfActiveAtoms() const; 109 122 110 // Verbosity level 123 // Verbosity level 111 inline void SetVerboseLevel(G4int); 124 inline void SetVerboseLevel(G4int); 112 inline G4int GetVerboseLevel() const; 125 inline G4int GetVerboseLevel() const; 113 126 114 //========== Run time methods ========== 127 //========== Run time methods ========== 115 128 116 // Check if deexcitation is active for a giv 129 // Check if deexcitation is active for a given geometry volume 117 inline G4bool CheckDeexcitationActiveRegion( 130 inline G4bool CheckDeexcitationActiveRegion(G4int coupleIndex); 118 inline G4bool CheckAugerActiveRegion(G4int c 131 inline G4bool CheckAugerActiveRegion(G4int coupleIndex); 119 132 120 // Get atomic shell by shell index, used by 133 // Get atomic shell by shell index, used by discrete processes 121 // (for example, photoelectric), when shell 134 // (for example, photoelectric), when shell vacancy sampled by the model 122 virtual 135 virtual 123 const G4AtomicShell* GetAtomicShell(G4int Z, 136 const G4AtomicShell* GetAtomicShell(G4int Z, 124 G4Atomic << 137 G4AtomicShellEnumerator shell) = 0; 125 138 126 // generation of deexcitation for given atom 139 // generation of deexcitation for given atom and shell vacancy 127 // and material cut couple, which defines cu << 140 inline void GenerateParticles(std::vector<G4DynamicParticle*>* secVect, 128 void GenerateParticles(std::vector<G4Dynamic << 141 const G4AtomicShell*, 129 const G4AtomicShell*, << 142 G4int Z, 130 G4int Z, G4int couple << 143 G4int coupleIndex); 131 144 132 // generation of deexcitation for given atom 145 // generation of deexcitation for given atom and shell vacancy 133 virtual void GenerateParticles(std::vector<G 146 virtual void GenerateParticles(std::vector<G4DynamicParticle*>* secVect, 134 const G4Atomi << 147 const G4AtomicShell*, 135 G4int Z, G4do << 148 G4int Z, >> 149 G4double gammaCut, >> 150 G4double eCut) = 0; 136 151 137 // access or compute PIXE cross section 152 // access or compute PIXE cross section 138 virtual G4double 153 virtual G4double 139 GetShellIonisationCrossSectionPerAtom(const 154 GetShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, 140 G4int << 155 G4int Z, 141 G4Atom << 156 G4AtomicShellEnumerator shell, 142 G4doub << 157 G4double kinE) = 0; 143 const << 144 158 145 // access or compute PIXE cross section 159 // access or compute PIXE cross section 146 virtual G4double 160 virtual G4double 147 ComputeShellIonisationCrossSectionPerAtom( << 161 ComputeShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, 148 const << 162 G4int Z, 149 G4int << 163 G4AtomicShellEnumerator shell, 150 G4Atom << 164 G4double kinE) = 0; 151 G4doub << 152 const << 153 165 154 // Sampling of PIXE for ionisation processes 166 // Sampling of PIXE for ionisation processes 155 void AlongStepDeexcitation(std::vector<G4Tra << 167 void AlongStepDeexcitation(G4VParticleChange* pParticleChange, 156 const G4Step& ste << 168 const G4Step& step, 157 G4double& eLoss, << 169 G4double& eLoss, 158 G4int coupleIndex 170 G4int coupleIndex); 159 171 160 // copy constructor and hide assignment oper << 161 G4VAtomDeexcitation(G4VAtomDeexcitation &) = << 162 G4VAtomDeexcitation & operator=(const G4VAto << 163 << 164 private: 172 private: 165 173 166 const G4ParticleDefinition* gamma; << 174 // copy constructor and hide assignment operator 167 const G4ProductionCutsTable* theCoupleTable << 175 G4VAtomDeexcitation(G4VAtomDeexcitation &); 168 << 176 G4VAtomDeexcitation & operator=(const G4VAtomDeexcitation &right); 169 G4int nCouples = 0; << 170 G4int verbose = 1; << 171 << 172 G4bool isActive = false; << 173 G4bool flagAuger = false; << 174 G4bool flagPIXE = false; << 175 G4bool ignoreCuts = false; << 176 << 177 G4bool isActiveLocked = false; << 178 G4bool isAugerLocked = false; << 179 G4bool isPIXELocked = false; << 180 177 >> 178 G4ProductionCutsTable* theCoupleTable; >> 179 G4double lowestKinEnergy; >> 180 G4int verbose; >> 181 G4String name; >> 182 G4String namePIXE; >> 183 G4bool isActive; >> 184 G4bool flagAuger; >> 185 G4bool flagPIXE; 181 std::vector<G4bool> activeZ; 186 std::vector<G4bool> activeZ; 182 std::vector<G4bool> activeDeexcitationMedi 187 std::vector<G4bool> activeDeexcitationMedia; 183 std::vector<G4bool> activeAugerMedia; 188 std::vector<G4bool> activeAugerMedia; 184 std::vector<G4bool> activePIXEMedia; 189 std::vector<G4bool> activePIXEMedia; >> 190 std::vector<G4String> activeRegions; 185 std::vector<G4bool> deRegions; 191 std::vector<G4bool> deRegions; 186 std::vector<G4bool> AugerRegions; 192 std::vector<G4bool> AugerRegions; 187 std::vector<G4bool> PIXERegions; 193 std::vector<G4bool> PIXERegions; 188 std::vector<G4DynamicParticle*> vdyn; 194 std::vector<G4DynamicParticle*> vdyn; 189 std::vector<G4String> activeRegions; << 195 std::vector<G4Track*> secVect; 190 << 191 G4String name; << 192 << 193 #ifdef G4MULTITHREADED << 194 static G4Mutex atomDeexcitationMutex; << 195 #endif << 196 }; 196 }; 197 197 198 inline void G4VAtomDeexcitation::SetFluo(G4boo << 198 inline void G4VAtomDeexcitation::SetActive(G4bool val) 199 { 199 { 200 if(!isActiveLocked) { isActive = val; isActi << 200 isActive = val; 201 } 201 } 202 202 203 inline G4bool G4VAtomDeexcitation::IsFluoActiv << 203 inline void G4VAtomDeexcitation::SetAugerActive(G4bool val) 204 { 204 { 205 return isActive; << 205 flagAuger = val; 206 } << 207 << 208 inline void G4VAtomDeexcitation::SetAuger(G4bo << 209 { << 210 if(!isAugerLocked) { flagAuger = val; isAuge << 211 } 206 } 212 207 213 inline G4bool G4VAtomDeexcitation::IsAugerActi 208 inline G4bool G4VAtomDeexcitation::IsAugerActive() const 214 { 209 { 215 return flagAuger; << 210 return (flagAuger && isActive); 216 } 211 } 217 212 218 inline void G4VAtomDeexcitation::SetAugerCasca << 213 inline void G4VAtomDeexcitation::SetPIXEActive(G4bool val) 219 { 214 { 220 SetAuger(val); << 215 flagPIXE = val; 221 } 216 } 222 217 223 inline G4bool G4VAtomDeexcitation::IsAugerCasc << 218 inline G4bool G4VAtomDeexcitation::IsPIXEActive() const 224 { 219 { 225 return flagAuger; << 220 return (flagPIXE && isActive); 226 } 221 } 227 222 228 inline void G4VAtomDeexcitation::SetPIXE(G4boo << 223 inline const G4String& G4VAtomDeexcitation::GetName() const 229 { 224 { 230 if(!isPIXELocked) { flagPIXE = val; isPIXEL << 225 return name; 231 } 226 } 232 227 233 inline G4bool G4VAtomDeexcitation::IsPIXEActiv << 228 inline >> 229 void G4VAtomDeexcitation::SetPIXECrossSectionModel(const G4String& n) 234 { 230 { 235 return flagPIXE; << 231 namePIXE = n; 236 } 232 } 237 233 238 inline const G4String& G4VAtomDeexcitation::Ge << 234 inline >> 235 const G4String& G4VAtomDeexcitation::PIXECrossSectionModel() const 239 { 236 { 240 return name; << 237 return namePIXE; 241 } 238 } 242 239 243 inline const std::vector<G4bool>& 240 inline const std::vector<G4bool>& 244 G4VAtomDeexcitation::GetListOfActiveAtoms() co 241 G4VAtomDeexcitation::GetListOfActiveAtoms() const 245 { 242 { 246 return activeZ; 243 return activeZ; 247 } 244 } 248 245 249 inline void G4VAtomDeexcitation::SetVerboseLev 246 inline void G4VAtomDeexcitation::SetVerboseLevel(G4int val) 250 { 247 { 251 verbose = val; 248 verbose = val; 252 } 249 } 253 250 254 inline G4int G4VAtomDeexcitation::GetVerboseLe 251 inline G4int G4VAtomDeexcitation::GetVerboseLevel() const 255 { 252 { 256 return verbose; 253 return verbose; 257 } 254 } 258 255 259 inline G4bool 256 inline G4bool 260 G4VAtomDeexcitation::CheckDeexcitationActiveRe << 257 G4VAtomDeexcitation::CheckDeexcitationActiveRegion(G4int coupleIndex) 261 { 258 { 262 return (idx < nCouples) ? activeDeexcitation << 259 return (isActive && activeDeexcitationMedia[coupleIndex]); 263 } 260 } 264 261 265 inline G4bool 262 inline G4bool 266 G4VAtomDeexcitation::CheckAugerActiveRegion(G4 << 263 G4VAtomDeexcitation::CheckAugerActiveRegion(G4int coupleIndex) 267 { 264 { 268 return (idx < nCouples) ? activeAugerMedia[i << 265 return (flagAuger && activeAugerMedia[coupleIndex]); >> 266 } >> 267 >> 268 inline void >> 269 G4VAtomDeexcitation::GenerateParticles(std::vector<G4DynamicParticle*>* v, >> 270 const G4AtomicShell* as, >> 271 G4int Z, >> 272 G4int idx) >> 273 { >> 274 if(CheckDeexcitationActiveRegion(idx)) { >> 275 G4double gCut = (*(theCoupleTable->GetEnergyCutsVector(0)))[idx]; >> 276 if(gCut < as->BindingEnergy()) { >> 277 G4double eCut = DBL_MAX; >> 278 if(flagAuger && CheckAugerActiveRegion(idx)) { >> 279 eCut = (*(theCoupleTable->GetEnergyCutsVector(1)))[idx]; >> 280 } >> 281 GenerateParticles(v, as, Z, gCut, eCut); >> 282 } >> 283 } 269 } 284 } 270 285 271 #endif 286 #endif 272 287 273 288