Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4eIonisation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4eIonisation.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4eIonisation.cc (Version 5.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // ------------------------------------------- << 
 27 //                                                 23 //
 28 // GEANT4 Class file                           <<  24 // $Id: G4eIonisation.cc,v 1.31 2003/06/16 17:02:16 gunter Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-05-02 $
 29 //                                                 26 //
                                                   >>  27 //--------------- G4eIonisation physics process --------------------------------
                                                   >>  28 //                by Laszlo Urban, 20 March 1997
                                                   >>  29 //------------------------------------------------------------------------------
 30 //                                                 30 //
 31 // File name:     G4eIonisation                <<  31 // 07-04-98 remove 'tracking cut' of the ionizing particle, mma
 32 //                                             <<  32 // 04-09-98 new methods SetBining() PrintInfo()
 33 // Author:        Laszlo Urban                 <<  33 // 07-09-98 Cleanup
 34 //                                             <<  34 // 02-02-99 correction inDoIt , L.Urban
 35 // Creation date: 20.03.1997                   <<  35 // 10-02-00 modifications , new e.m. structure, L.Urban
 36 //                                             <<  36 // 28-05-01 V.Ivanchenko minor changes to provide ANSI -wall compilation
 37 // Modified by Michel Maire and Vladimir Ivanc <<  37 // 09-08-01 new methods Store/Retrieve PhysicsTable (mma)
 38 //                                             <<  38 // 13-08-01 new function ComputeRestrictedMeandEdx()  (mma)
 39 // ------------------------------------------- <<  39 // 17-09-01 migration of Materials to pure STL (mma)
 40 //                                             <<  40 // 21-09-01 completion of RetrievePhysicsTable() (mma)
 41 //....oooOO0OOooo........oooOO0OOooo........oo <<  41 // 29-10-01 all static functions no more inlined (mma)
 42 //....oooOO0OOooo........oooOO0OOooo........oo <<  42 // 07-11-01 particleMass and Charge become local variables
                                                   >>  43 // 26-03-02 change access to cuts in BuildLossTables (V.Ivanchenko)
                                                   >>  44 // 16-01-03 Migrade to cut per region (V.Ivanchenko)
                                                   >>  45 // 08-04-03 finalRange is region aware (V.Ivanchenko)
                                                   >>  46 // 26-04-03 fix problems of retrieve tables (V.Ivanchenko)
                                                   >>  47 //------------------------------------------------------------------------------
                                                   >>  48 
                                                   >>  49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 43                                                    51 
 44 #include "G4eIonisation.hh"                        52 #include "G4eIonisation.hh"
 45 #include "G4Electron.hh"                       <<  53 #include "G4UnitsTable.hh"
 46 #include "G4MollerBhabhaModel.hh"              <<  54 #include "G4ProductionCutsTable.hh"
 47 #include "G4EmParameters.hh"                   <<  55 
 48 #include "G4EmStandUtil.hh"                    <<  56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  57 
                                                   >>  58 G4double G4eIonisation::LowerBoundLambda = 1.*keV;
                                                   >>  59 G4double G4eIonisation::UpperBoundLambda = 100.*TeV;
                                                   >>  60 G4int    G4eIonisation::NbinLambda = 100;
                                                   >>  61 
                                                   >>  62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  63 
                                                   >>  64 G4eIonisation::G4eIonisation(const G4String& processName)
                                                   >>  65    : G4VeEnergyLoss(processName),
                                                   >>  66      theMeanFreePathTable(NULL)
                                                   >>  67 {
                                                   >>  68   verboseLevel = -1;
                                                   >>  69 }
                                                   >>  70 
                                                   >>  71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  72 
                                                   >>  73 G4eIonisation::~G4eIonisation()
                                                   >>  74 {
                                                   >>  75      if (theMeanFreePathTable)
                                                   >>  76        {theMeanFreePathTable->clearAndDestroy(); delete theMeanFreePathTable;}
                                                   >>  77 }
                                                   >>  78 
                                                   >>  79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  80 
                                                   >>  81 void G4eIonisation::SetLowerBoundLambda(G4double val)
                                                   >>  82      {LowerBoundLambda = val;}
                                                   >>  83 
                                                   >>  84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  85 
                                                   >>  86 void G4eIonisation::SetUpperBoundLambda(G4double val)
                                                   >>  87      {UpperBoundLambda = val;}
 49                                                    88 
 50 //....oooOO0OOooo........oooOO0OOooo........oo <<  89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 51                                                    90 
 52 G4eIonisation::G4eIonisation(const G4String& n <<  91 void G4eIonisation::SetNbinLambda(G4int n)
 53   : G4VEnergyLossProcess(name),                <<  92      {NbinLambda = n;}
 54     theElectron(G4Electron::Electron()),       <<  93 
 55     isElectron(true),                          <<  94 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 56     isInitialised(false)                       <<  95 
                                                   >>  96 G4double G4eIonisation::GetLowerBoundLambda()
                                                   >>  97         {return LowerBoundLambda;}
                                                   >>  98 
                                                   >>  99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 100 
                                                   >> 101 G4double G4eIonisation::GetUpperBoundLambda()
                                                   >> 102         {return UpperBoundLambda;}
                                                   >> 103 
                                                   >> 104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 105 
                                                   >> 106 G4int G4eIonisation::GetNbinLambda()
                                                   >> 107      {return NbinLambda;}
                                                   >> 108 
                                                   >> 109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 110 
                                                   >> 111 void G4eIonisation::BuildPhysicsTable(const G4ParticleDefinition& aParticleType)
                                                   >> 112 {
                                                   >> 113   if( !CutsWhereModified() && theLossTable) return;
                                                   >> 114 
                                                   >> 115   LowestKineticEnergy  = GetLowerBoundEloss();
                                                   >> 116   HighestKineticEnergy = GetUpperBoundEloss();
                                                   >> 117   TotBin               = GetNbinEloss();
                                                   >> 118 
                                                   >> 119   BuildLossTable(aParticleType);
                                                   >> 120 
                                                   >> 121   if (&aParticleType==G4Electron::Electron())
                                                   >> 122     {
                                                   >> 123      RecorderOfElectronProcess[CounterOfElectronProcess] = (*this).theLossTable;
                                                   >> 124      CounterOfElectronProcess++;
                                                   >> 125     }
                                                   >> 126   else
                                                   >> 127     {
                                                   >> 128      RecorderOfPositronProcess[CounterOfPositronProcess] = (*this).theLossTable;
                                                   >> 129      CounterOfPositronProcess++;
                                                   >> 130     }
                                                   >> 131 
                                                   >> 132   BuildLambdaTable(aParticleType);
                                                   >> 133 
                                                   >> 134   BuildDEDXTable(aParticleType);
                                                   >> 135 
                                                   >> 136   if (&aParticleType==G4Electron::Electron()) PrintInfoDefinition();
                                                   >> 137 }
                                                   >> 138 
                                                   >> 139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 140 
                                                   >> 141 void G4eIonisation::BuildLossTable(const G4ParticleDefinition& aParticleType)
 57 {                                                 142 {
 58   SetProcessSubType(fIonisation);              << 143 
 59   SetSecondaryParticle(theElectron);           << 144   const G4ProductionCutsTable* theCoupleTable=
                                                   >> 145         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 146   size_t numOfCouples = theCoupleTable->GetTableSize();
                                                   >> 147 
                                                   >> 148   if (theLossTable) {theLossTable->clearAndDestroy(); delete theLossTable;}
                                                   >> 149   theLossTable = new G4PhysicsTable(numOfCouples);
                                                   >> 150 
                                                   >> 151   secondaryEnergyCuts = theCoupleTable->GetEnergyCutsVector(1);
                                                   >> 152 
                                                   >> 153   //  loop for materials
                                                   >> 154   //
                                                   >> 155   for (size_t J=0; J<numOfCouples; J++)
                                                   >> 156    {
                                                   >> 157 
                                                   >> 158      G4PhysicsLogVector* aVector = new G4PhysicsLogVector(
                                                   >> 159                          LowestKineticEnergy, HighestKineticEnergy, TotBin);
                                                   >> 160 
                                                   >> 161      const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(J);
                                                   >> 162      const G4Material* material= couple->GetMaterial();
                                                   >> 163 
                                                   >> 164      // get  electron cut in kinetic energy for the material
                                                   >> 165      G4double DeltaThreshold = SecondaryEnergyThreshold(J);
                                                   >> 166 
                                                   >> 167 
                                                   >> 168      // now comes the loop for the kinetic energy values
                                                   >> 169      //
                                                   >> 170       for (G4int i = 0; i < TotBin; i++)
                                                   >> 171          {
                                                   >> 172           G4double dEdx = ComputeRestrictedMeandEdx(aParticleType,
                                                   >> 173                                              aVector->GetLowEdgeEnergy(i),
                                                   >> 174                                              material,
                                                   >> 175                                              DeltaThreshold);
                                                   >> 176       if(1 < verboseLevel) {
                                                   >> 177         G4cout << "Material= " << material->GetName()
                                                   >> 178                << "   E(MeV)= " << aVector->GetLowEdgeEnergy(i)/MeV
                                                   >> 179                << "  dEdx(MeV/mm)= " << dEdx*mm/MeV
                                                   >> 180                << G4endl;
                                                   >> 181       }
                                                   >> 182           aVector->PutValue(i,dEdx);
                                                   >> 183          }
                                                   >> 184       theLossTable->insert(aVector);
                                                   >> 185     }
 60 }                                                 186 }
 61                                                   187 
 62 //....oooOO0OOooo........oooOO0OOooo........oo << 188 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 63                                                   189 
 64 G4eIonisation::~G4eIonisation() = default;     << 190 void G4eIonisation::BuildLambdaTable(const G4ParticleDefinition& aParticleType)
                                                   >> 191 {
                                                   >> 192 
                                                   >> 193   if(0 < verboseLevel) {
                                                   >> 194     G4cout << "G4eIonisation::BuildLambdaTable() for process "
                                                   >> 195            << GetProcessName() << " and particle "
                                                   >> 196            << aParticleType.GetParticleName() << G4endl;
                                                   >> 197   }
                                                   >> 198 
                                                   >> 199   //create table
                                                   >> 200   //
                                                   >> 201   const G4ProductionCutsTable* theCoupleTable=
                                                   >> 202         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 203   size_t numOfCouples = theCoupleTable->GetTableSize();
                                                   >> 204 
                                                   >> 205   if (theMeanFreePathTable)
                                                   >> 206     { theMeanFreePathTable->clearAndDestroy(); delete theMeanFreePathTable;}
                                                   >> 207 
                                                   >> 208   theMeanFreePathTable = new G4PhysicsTable(numOfCouples);
                                                   >> 209 
                                                   >> 210   secondaryEnergyCuts = theCoupleTable->GetEnergyCutsVector(1);
                                                   >> 211 
                                                   >> 212   // loop for materials
                                                   >> 213 
                                                   >> 214   for (size_t J=0 ; J < numOfCouples; J++)
                                                   >> 215     {
                                                   >> 216 
                                                   >> 217       G4PhysicsLogVector* aVector = new G4PhysicsLogVector(
                                                   >> 218                LowerBoundLambda, UpperBoundLambda, NbinLambda);
                                                   >> 219 
                                                   >> 220      // compute the (macroscopic) cross section first
                                                   >> 221       const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(J);
                                                   >> 222       const G4Material* material= couple->GetMaterial();
                                                   >> 223 
                                                   >> 224       // get  electron cut in kinetic energy for the material
                                                   >> 225       G4double DeltaThreshold = SecondaryEnergyThreshold(J);
                                                   >> 226 
                                                   >> 227       const G4ElementVector* theElementVector = material->GetElementVector();
                                                   >> 228       const G4double* NbOfAtomsPerVolume = material->GetVecNbOfAtomsPerVolume();
                                                   >> 229       G4int NumberOfElements = material->GetNumberOfElements();
                                                   >> 230 
                                                   >> 231       for (G4int i = 0 ; i < NbinLambda ; i++)
                                                   >> 232         {
                                                   >> 233     G4double LowEdgeEnergy = aVector->GetLowEdgeEnergy(i);
                                                   >> 234     G4double SIGMA = 0.;
                                                   >> 235           for (G4int iel=0; iel<NumberOfElements; iel++ )
                                                   >> 236              {
                                                   >> 237               SIGMA += NbOfAtomsPerVolume[iel]*
                                                   >> 238                        ComputeCrossSectionPerAtom(aParticleType,
                                                   >> 239                                                   LowEdgeEnergy,
                                                   >> 240                                (*theElementVector)[iel]->GetZ(),
                                                   >> 241                                                 DeltaThreshold);
                                                   >> 242              }
                                                   >> 243 
                                                   >> 244           // mean free path = 1./macroscopic cross section
                                                   >> 245           G4double Value = SIGMA > DBL_MIN ? 1./SIGMA : DBL_MAX;
                                                   >> 246           aVector->PutValue(i, Value);
                                                   >> 247         }
                                                   >> 248      theMeanFreePathTable->insert(aVector);
                                                   >> 249     }
                                                   >> 250 }
 65                                                   251 
 66 //....oooOO0OOooo........oooOO0OOooo........oo << 252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 67                                                   253 
 68 G4double G4eIonisation::MinPrimaryEnergy(const << 254 G4double G4eIonisation::ComputeRestrictedMeandEdx (
 69            const G4Material*,                  << 255                                  const G4ParticleDefinition& aParticleType,
 70            G4double cut)                       << 256                                  G4double KineticEnergy,
                                                   >> 257          const G4Material* material,
                                                   >> 258          G4double DeltaThreshold)
 71 {                                                 259 {
 72   G4double x = cut;                            << 260  // calculate the dE/dx due to the ionization process (Geant4 internal units)
 73   if(isElectron) x += cut;                     << 261  // Seltzer-Berger formula
 74   return x;                                    << 262  //
                                                   >> 263  G4double particleMass = aParticleType.GetPDGMass();
                                                   >> 264 
                                                   >> 265  G4double ElectronDensity = material->GetElectronDensity();
                                                   >> 266  G4double Eexc = material->GetIonisation()->GetMeanExcitationEnergy();
                                                   >> 267  Eexc  /= particleMass; G4double Eexcm2 = Eexc*Eexc;
                                                   >> 268 
                                                   >> 269  // for the lowenergy extrapolation
                                                   >> 270  G4double Zeff = material->GetTotNbOfElectPerVolume()/
                                                   >> 271                  material->GetTotNbOfAtomsPerVolume();
                                                   >> 272  G4double Th = 0.25*sqrt(Zeff)*keV;
                                                   >> 273  G4double Tsav = 0.;
                                                   >> 274  if (KineticEnergy < Th) {Tsav = KineticEnergy; KineticEnergy = Th;}
                                                   >> 275  
                                                   >> 276  G4double tau = KineticEnergy/particleMass;
                                                   >> 277  G4double gamma = tau + 1., gamma2 = gamma*gamma, bg2 = tau*(tau+2.);
                                                   >> 278  G4double beta2 = bg2/gamma2;
                                                   >> 279 
                                                   >> 280  G4double Tmax,d,dEdx;
                                                   >> 281 
                                                   >> 282  // electron
                                                   >> 283  if (&aParticleType==G4Electron::Electron())
                                                   >> 284    {
                                                   >> 285      Tmax = KineticEnergy/2.;
                                                   >> 286      d = std::min(DeltaThreshold, Tmax)/particleMass;
                                                   >> 287      dEdx = log(2.*(tau+2.)/Eexcm2)-1.-beta2
                                                   >> 288             + log((tau-d)*d)+tau/(tau-d)
                                                   >> 289             + (0.5*d*d+(2.*tau+1.)*log(1.-d/tau))/gamma2;
                                                   >> 290    }
                                                   >> 291    
                                                   >> 292  else        //positron
                                                   >> 293    {
                                                   >> 294      Tmax = KineticEnergy;  
                                                   >> 295      d = std::min(DeltaThreshold, Tmax)/particleMass;
                                                   >> 296      G4double d2=d*d/2., d3=d*d*d/3., d4=d*d*d*d/4.;
                                                   >> 297      G4double y=1./(1.+gamma);
                                                   >> 298      dEdx = log(2.*(tau+2.)/Eexcm2)+log(tau*d)
                                                   >> 299             - beta2*(tau+2.*d-y*(3.*d2+y*(d-d3+y*(d2-tau*d3+d4))))/tau;
                                                   >> 300    }
                                                   >> 301 
                                                   >> 302  //density correction
                                                   >> 303  G4double Cden   = material->GetIonisation()->GetCdensity();
                                                   >> 304  G4double Mden   = material->GetIonisation()->GetMdensity();
                                                   >> 305  G4double Aden   = material->GetIonisation()->GetAdensity();
                                                   >> 306  G4double X0den  = material->GetIonisation()->GetX0density();
                                                   >> 307  G4double X1den  = material->GetIonisation()->GetX1density();
                                                   >> 308 
                                                   >> 309  const G4double twoln10 = 2.*log(10.); 
                                                   >> 310  G4double  x = log(bg2)/twoln10;
                                                   >> 311  G4double delta;
                                                   >> 312  if (x < X0den) delta = 0.;
                                                   >> 313  else          {delta = twoln10*x - Cden;
                                                   >> 314                 if (x < X1den) delta += Aden*pow((X1den-x),Mden);
                                                   >> 315                } 
                                                   >> 316 
                                                   >> 317  //now you can compute the total ionization loss
                                                   >> 318  dEdx -= delta;
                                                   >> 319  dEdx *= twopi_mc2_rcl2*ElectronDensity/beta2;
                                                   >> 320  if (dEdx <= 0.) dEdx = 0.;
                                                   >> 321 
                                                   >> 322  // low energy ?
                                                   >> 323  const G4double Tl = 0.2*keV; 
                                                   >> 324  if (Tsav > 0.)
                                                   >> 325    {
                                                   >> 326     if (Tsav >= Tl) dEdx *= sqrt(KineticEnergy/Tsav);
                                                   >> 327     else            dEdx *= sqrt(KineticEnergy*Tsav)/Tl;
                                                   >> 328    }
                                                   >> 329  return dEdx;
 75 }                                                 330 }
 76                                                   331 
 77 //....oooOO0OOooo........oooOO0OOooo........oo << 332 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 78                                                   333 
 79 G4bool G4eIonisation::IsApplicable(const G4Par << 334 G4double G4eIonisation::ComputeCrossSectionPerAtom(
                                                   >> 335                                  const G4ParticleDefinition& aParticleType,
                                                   >> 336                                  G4double KineticEnergy,
                                                   >> 337                                  G4double AtomicNumber ,
                                                   >> 338                                  G4double DeltaThreshold)
 80 {                                                 339 {
 81   return (&p == theElectron || &p == G4Positro << 340   // calculates the cross section per atom (Geant4 internal units) 
                                                   >> 341   //(it is called for elements , AtomicNumber = Z )
                                                   >> 342 
                                                   >> 343   G4double particleMass = aParticleType.GetPDGMass();
                                                   >> 344   G4double TotalEnergy = KineticEnergy + particleMass;
                                                   >> 345 
                                                   >> 346   G4double betasquare = KineticEnergy*(TotalEnergy+particleMass)
                                                   >> 347                        /(TotalEnergy*TotalEnergy);
                                                   >> 348   G4double gamma = TotalEnergy/particleMass, gamma2 = gamma*gamma;
                                                   >> 349   G4double x=DeltaThreshold/KineticEnergy, x2 = x*x;
                                                   >> 350 
                                                   >> 351   G4double MaxKineticEnergyTransfer;
                                                   >> 352   if (&aParticleType==G4Electron::Electron())
                                                   >> 353                       MaxKineticEnergyTransfer = 0.5*KineticEnergy;
                                                   >> 354   else                MaxKineticEnergyTransfer =     KineticEnergy;
                                                   >> 355 
                                                   >> 356 
                                                   >> 357   G4double TotalCrossSection = 0.;
                                                   >> 358   if (MaxKineticEnergyTransfer > DeltaThreshold)
                                                   >> 359     {
                                                   >> 360       if (&aParticleType==G4Electron::Electron())   //Moller (e-e-) scattering
                                                   >> 361         {
                                                   >> 362           TotalCrossSection  = (gamma-1.)*(gamma-1.)*(0.5-x)/gamma2 + 1./x
                                                   >> 363                              - 1./(1.-x)-(2.*gamma-1.)*log((1.-x)/x)/gamma2;
                                                   >> 364           TotalCrossSection /= betasquare;
                                                   >> 365         }
                                                   >> 366       else                                         //Bhabha (e+e-) scattering
                                                   >> 367         {
                                                   >> 368           G4double y=1./(1.+gamma), y2 =y*y, y12=1.-2.*y;
                                                   >> 369           G4double b1=2.-y2, b2=y12*(3.+y2), b4=y12*y12*y12, b3=b4+y12*y12;
                                                   >> 370           TotalCrossSection = (1./x-1.)/betasquare+b1*log(x)+b2*(1.-x)
                                                   >> 371                             - b3*(1.-x2)/2.+b4*(1.-x2*x)/3.;
                                                   >> 372         }
                                                   >> 373       TotalCrossSection *= (twopi_mc2_rcl2*AtomicNumber/KineticEnergy);
                                                   >> 374      }
                                                   >> 375  return TotalCrossSection ;
 82 }                                                 376 }
 83                                                   377 
 84 //....oooOO0OOooo........oooOO0OOooo........oo << 378 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 85                                                   379 
 86 void G4eIonisation::InitialiseEnergyLossProces << 380 G4VParticleChange* G4eIonisation::PostStepDoIt( const G4Track& trackData,
 87         const G4ParticleDefinition* part,      << 381                                                 const G4Step&  stepData)
 88         const G4ParticleDefinition*)           << 
 89 {                                                 382 {
 90   if(!isInitialised) {                         << 383   aParticleChange.Initialize(trackData);
 91     if(part != theElectron) { isElectron = fal << 384 
 92     if (nullptr == EmModel(0)) { SetEmModel(ne << 385   const G4MaterialCutsCouple* couple = trackData.GetMaterialCutsCouple();
 93     G4EmParameters* param = G4EmParameters::In << 386   const G4DynamicParticle*  aParticle = trackData.GetDynamicParticle();
 94     EmModel(0)->SetLowEnergyLimit(param->MinKi << 387 
 95     EmModel(0)->SetHighEnergyLimit(param->MaxK << 388   G4double particleMass = aParticle->GetDefinition()->GetPDGMass();
 96     if (nullptr == FluctModel()) {             << 389   G4double Charge       = aParticle->GetDefinition()->GetPDGCharge();
 97       SetFluctModel(G4EmStandUtil::ModelOfFluc << 390   G4double KineticEnergy = aParticle->GetKineticEnergy();
                                                   >> 391   G4double TotalEnergy = KineticEnergy + particleMass;
                                                   >> 392   G4double Psquare = KineticEnergy*(TotalEnergy+particleMass);
                                                   >> 393   G4double TotalMomentum = sqrt(Psquare);
                                                   >> 394   G4ParticleMomentum ParticleDirection = aParticle->GetMomentumDirection();
                                                   >> 395 
                                                   >> 396   // get kinetic energy cut for the electron
                                                   >> 397   G4double DeltaThreshold = SecondaryEnergyThreshold(couple->GetIndex());
                                                   >> 398 
                                                   >> 399   // some kinematics
                                                   >> 400   G4double MaxKineticEnergyTransfer;
                                                   >> 401   if (Charge < 0.) MaxKineticEnergyTransfer = 0.5*KineticEnergy;
                                                   >> 402   else             MaxKineticEnergyTransfer =     KineticEnergy;
                                                   >> 403 
                                                   >> 404   // sampling kinetic energy of the delta ray
                                                   >> 405 
                                                   >> 406   if (MaxKineticEnergyTransfer <= DeltaThreshold)
                                                   >> 407      // pathological case (should not happen, there is no change at all)
                                                   >> 408      return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData);
                                                   >> 409 
                                                   >> 410 
                                                   >> 411   // normal case
                                                   >> 412   G4double cc,y,y2,c2,b0,b1,b2,b3,b4,x,x1,grej,grejc;
                                                   >> 413 
                                                   >> 414   G4double tau = KineticEnergy/particleMass;
                                                   >> 415   G4double gamma = tau+1., gamma2=gamma*gamma;
                                                   >> 416   G4double xc = DeltaThreshold/KineticEnergy, xc1=1.-xc;
                                                   >> 417 
                                                   >> 418   if (Charge < 0.)  // Moller (e-e-) scattering
                                                   >> 419     {
                                                   >> 420       b1=4./(9.*gamma2-10.*gamma+5.);
                                                   >> 421       b2=tau*tau*b1; b3=(2.*gamma2+2.*gamma-1.)*b1;
                                                   >> 422       cc=1.-2.*xc;
                                                   >> 423       do {
                                                   >> 424            x    = xc/(1.-cc*G4UniformRand()); x1 = 1.-x;
                                                   >> 425            grej = b2*x*x-b3*x/x1+b1*gamma2/(x1*x1);
                                                   >> 426          } while (G4UniformRand()>grej);
 98     }                                             427     }
 99     AddEmModel(1, EmModel(), FluctModel());    << 428   else             // Bhabha (e+e-) scattering
100     isInitialised = true;                      << 429     {
                                                   >> 430       y=1./(gamma+1.); y2=y*y; cc=1.-2.*y;
                                                   >> 431       b1=2.-y2; b2=cc*(3.+y2);
                                                   >> 432       c2=cc*cc; b4=c2*cc; b3=c2+b4;
                                                   >> 433       b0=gamma2/(gamma2-1.);
                                                   >> 434       grejc=(((b4*xc-b3)*xc+b2)*xc-b1)*xc+b0;
                                                   >> 435       do {
                                                   >> 436            x    = xc/(1.-xc1*G4UniformRand());
                                                   >> 437            grej = ((((b4*x-b3)*x+b2)*x-b1)*x+b0)/grejc;
                                                   >> 438          } while (G4UniformRand()>grej);
                                                   >> 439     }
                                                   >> 440 
                                                   >> 441     G4double DeltaKineticEnergy = x * KineticEnergy;
                                                   >> 442 
                                                   >> 443   // protection :do not produce a secondary with 0. kinetic energy !
                                                   >> 444   if (DeltaKineticEnergy <= 0.)
                                                   >> 445      return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData);
                                                   >> 446 
                                                   >> 447   G4double DeltaTotalMomentum = sqrt(DeltaKineticEnergy*(DeltaKineticEnergy +
                                                   >> 448                                                       2.*electron_mass_c2 ));
                                                   >> 449 
                                                   >> 450   G4double costheta = DeltaKineticEnergy * (TotalEnergy + electron_mass_c2)
                                                   >> 451                       /(DeltaTotalMomentum * TotalMomentum);
                                                   >> 452 
                                                   >> 453   if (costheta < -1.) costheta = -1.;
                                                   >> 454   if (costheta > +1.) costheta = +1.;
                                                   >> 455 
                                                   >> 456   //  direction of the delta electron
                                                   >> 457 
                                                   >> 458   G4double phi = twopi * G4UniformRand();
                                                   >> 459   G4double sintheta = sqrt((1.+costheta)*(1.-costheta));
                                                   >> 460   G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta;
                                                   >> 461 
                                                   >> 462   G4ThreeVector DeltaDirection(dirx,diry,dirz);
                                                   >> 463   DeltaDirection.rotateUz(ParticleDirection);
                                                   >> 464 
                                                   >> 465   // create G4DynamicParticle object for delta ray
                                                   >> 466 
                                                   >> 467   G4DynamicParticle* theDeltaRay = new G4DynamicParticle;
                                                   >> 468   theDeltaRay->SetKineticEnergy( DeltaKineticEnergy );
                                                   >> 469   theDeltaRay->SetMomentumDirection(
                                                   >> 470                    DeltaDirection.x(),DeltaDirection.y(),DeltaDirection.z());
                                                   >> 471   theDeltaRay->SetDefinition(G4Electron::Electron());
                                                   >> 472 
                                                   >> 473   // fill aParticleChange
                                                   >> 474   // changed energy and momentum of the actual particle
                                                   >> 475   G4double finalKineticEnergy = KineticEnergy - DeltaKineticEnergy;
                                                   >> 476 
                                                   >> 477   G4double Edep = 0.;
                                                   >> 478 
                                                   >> 479   if (finalKineticEnergy > MinKineticEnergy)
                                                   >> 480     {
                                                   >> 481       G4double finalPx = TotalMomentum*ParticleDirection.x()
                                                   >> 482                         - DeltaTotalMomentum*DeltaDirection.x();
                                                   >> 483       G4double finalPy = TotalMomentum*ParticleDirection.y()
                                                   >> 484                         - DeltaTotalMomentum*DeltaDirection.y();
                                                   >> 485       G4double finalPz = TotalMomentum*ParticleDirection.z()
                                                   >> 486                         - DeltaTotalMomentum*DeltaDirection.z();
                                                   >> 487       G4double finalMomentum =
                                                   >> 488                 sqrt(finalPx*finalPx+finalPy*finalPy+finalPz*finalPz);
                                                   >> 489       finalPx /= finalMomentum;
                                                   >> 490       finalPy /= finalMomentum;
                                                   >> 491       finalPz /= finalMomentum;
                                                   >> 492 
                                                   >> 493       aParticleChange.SetMomentumChange(finalPx, finalPy, finalPz);
                                                   >> 494     }
                                                   >> 495   else
                                                   >> 496     {
                                                   >> 497       Edep = finalKineticEnergy;
                                                   >> 498       finalKineticEnergy = 0.;
                                                   >> 499       if (Charge < 0.) aParticleChange.SetStatusChange(fStopAndKill);
                                                   >> 500       else             aParticleChange.SetStatusChange(fStopButAlive);
                                                   >> 501     }
                                                   >> 502 
                                                   >> 503   aParticleChange.SetEnergyChange(finalKineticEnergy);
                                                   >> 504   aParticleChange.SetNumberOfSecondaries(1);
                                                   >> 505   aParticleChange.AddSecondary(theDeltaRay);
                                                   >> 506   aParticleChange.SetLocalEnergyDeposit(Edep);
                                                   >> 507 
                                                   >> 508   return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData);
                                                   >> 509 }
                                                   >> 510 
                                                   >> 511 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 512 
                                                   >> 513 G4bool G4eIonisation::StorePhysicsTable(G4ParticleDefinition* particle,
                                                   >> 514                       const G4String& directory,
                                                   >> 515                       G4bool          ascii)
                                                   >> 516 {
                                                   >> 517   G4String filename;
                                                   >> 518 
                                                   >> 519   // store stopping power table
                                                   >> 520   filename = GetPhysicsTableFileName(particle,directory,"StoppingPower",ascii);
                                                   >> 521   if ( !theLossTable->StorePhysicsTable(filename, ascii) ){
                                                   >> 522     G4cout << " FAIL theLossTable->StorePhysicsTable in " << filename
                                                   >> 523            << G4endl;
                                                   >> 524     return false;
                                                   >> 525   }
                                                   >> 526   // store mean free path table
                                                   >> 527   filename = GetPhysicsTableFileName(particle,directory,"MeanFreePath",ascii);
                                                   >> 528   if ( !theMeanFreePathTable->StorePhysicsTable(filename, ascii) ){
                                                   >> 529     G4cout << " FAIL theMeanFreePathTable->StorePhysicsTable in " << filename
                                                   >> 530            << G4endl;
                                                   >> 531     return false;
                                                   >> 532   }
                                                   >> 533 
                                                   >> 534   G4cout << GetProcessName() << " for " << particle->GetParticleName()
                                                   >> 535          << ": Success to store the PhysicsTables in "
                                                   >> 536          << directory << G4endl;
                                                   >> 537   return true;
                                                   >> 538 }
                                                   >> 539 
                                                   >> 540 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 541 
                                                   >> 542 G4bool G4eIonisation::RetrievePhysicsTable(G4ParticleDefinition* particle,
                                                   >> 543                    const G4String& directory,
                                                   >> 544                          G4bool          ascii)
                                                   >> 545 {
                                                   >> 546   // delete theLossTable and theMeanFreePathTable
                                                   >> 547   if (theLossTable != 0) {
                                                   >> 548     theLossTable->clearAndDestroy();
                                                   >> 549     delete theLossTable;
101   }                                               550   }
                                                   >> 551   if (theMeanFreePathTable != 0) {
                                                   >> 552     theMeanFreePathTable->clearAndDestroy();
                                                   >> 553     delete theMeanFreePathTable;
                                                   >> 554   }
                                                   >> 555 
                                                   >> 556   // get bining from EnergyLoss
                                                   >> 557   LowestKineticEnergy  = GetLowerBoundEloss();
                                                   >> 558   HighestKineticEnergy = GetUpperBoundEloss();
                                                   >> 559   TotBin               = GetNbinEloss();
                                                   >> 560 
                                                   >> 561   G4String filename;
                                                   >> 562   const G4ProductionCutsTable* theCoupleTable=
                                                   >> 563         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 564   size_t numOfCouples = theCoupleTable->GetTableSize();
                                                   >> 565 
                                                   >> 566   secondaryEnergyCuts = theCoupleTable->GetEnergyCutsVector(1);
                                                   >> 567 
                                                   >> 568   // retreive stopping power table
                                                   >> 569   filename = GetPhysicsTableFileName(particle,directory,"StoppingPower",ascii);
                                                   >> 570   theLossTable = new G4PhysicsTable(numOfCouples);
                                                   >> 571   if ( !theLossTable->RetrievePhysicsTable(filename, ascii) ){
                                                   >> 572     G4cout << " FAIL theLossTable->RetrievePhysicsTable in " << filename
                                                   >> 573            << G4endl;
                                                   >> 574     return false;
                                                   >> 575   }
                                                   >> 576 
                                                   >> 577   // retreive mean free path table
                                                   >> 578   filename = GetPhysicsTableFileName(particle,directory,"MeanFreePath",ascii);
                                                   >> 579   theMeanFreePathTable = new G4PhysicsTable(numOfCouples);
                                                   >> 580   if ( !theMeanFreePathTable->RetrievePhysicsTable(filename, ascii) ){
                                                   >> 581     G4cout << " FAIL theMeanFreePathTable->RetrievePhysicsTable in " << filename
                                                   >> 582            << G4endl;
                                                   >> 583     return false;
                                                   >> 584   }
                                                   >> 585 
                                                   >> 586   G4cout << GetProcessName() << " for " << particle->GetParticleName()
                                                   >> 587          << ": Success to retrieve the PhysicsTables from "
                                                   >> 588          << directory << G4endl;
                                                   >> 589 
                                                   >> 590   if (particle==G4Electron::Electron())
                                                   >> 591     {
                                                   >> 592      RecorderOfElectronProcess[CounterOfElectronProcess] = (*this).theLossTable;
                                                   >> 593      CounterOfElectronProcess++;
                                                   >> 594     }
                                                   >> 595   else
                                                   >> 596     {
                                                   >> 597      RecorderOfPositronProcess[CounterOfPositronProcess] = (*this).theLossTable;
                                                   >> 598      CounterOfPositronProcess++;
                                                   >> 599     }
                                                   >> 600 
                                                   >> 601   BuildDEDXTable(*particle);
                                                   >> 602   if (particle==G4Electron::Electron()) PrintInfoDefinition();
                                                   >> 603 
                                                   >> 604   return true;
102 }                                                 605 }
103                                                   606 
104 //....oooOO0OOooo........oooOO0OOooo........oo << 607 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
105                                                   608 
106 void G4eIonisation::ProcessDescription(std::os << 609 void G4eIonisation::PrintInfoDefinition()
107 {                                                 610 {
108   out << "  Ionisation";                       << 611   G4String comments = "delta cross sections from Moller+Bhabha. "
109   G4VEnergyLossProcess::ProcessDescription(out << 612             "Good description from 1 KeV to 100 GeV.\n"
                                                   >> 613             "        delta ray energy sampled from  differential Xsection.";
                                                   >> 614                      
                                                   >> 615   G4cout << G4endl << GetProcessName() << ":  " << comments
                                                   >> 616          << "\n        PhysicsTables from "
                                                   >> 617    << G4BestUnit(LowerBoundLambda,"Energy")
                                                   >> 618          << " to " << G4BestUnit(UpperBoundLambda,"Energy") 
                                                   >> 619          << " in " << NbinLambda << " bins."
                                                   >> 620    << "\n        Step function: finalRange(mm)= " << finalRange
                                                   >> 621    << ",  dRoverRange= " << dRoverRange 
                                                   >> 622    << G4endl;
110 }                                                 623 }
111                                                   624 
112 //....oooOO0OOooo........oooOO0OOooo........oo    625 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
113                                                   626