Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // ------------------------------------------- << 27 // 23 // 28 // GEANT4 Class file << 24 // $Id: G4eIonisation.cc,v 1.29 2003/04/26 11:38:12 vnivanch Exp $ >> 25 // GEANT4 tag $Name: geant4-05-01 $ 29 // 26 // >> 27 //--------------- G4eIonisation physics process -------------------------------- >> 28 // by Laszlo Urban, 20 March 1997 >> 29 //------------------------------------------------------------------------------ 30 // 30 // 31 // File name: G4eIonisation << 31 // 07-04-98 remove 'tracking cut' of the ionizing particle, mma 32 // << 32 // 04-09-98 new methods SetBining() PrintInfo() 33 // Author: Laszlo Urban << 33 // 07-09-98 Cleanup 34 // << 34 // 02-02-99 correction inDoIt , L.Urban 35 // Creation date: 20.03.1997 << 35 // 10-02-00 modifications , new e.m. structure, L.Urban 36 // << 36 // 28-05-01 V.Ivanchenko minor changes to provide ANSI -wall compilation 37 // Modified by Michel Maire and Vladimir Ivanc << 37 // 09-08-01 new methods Store/Retrieve PhysicsTable (mma) 38 // << 38 // 13-08-01 new function ComputeRestrictedMeandEdx() (mma) 39 // ------------------------------------------- << 39 // 17-09-01 migration of Materials to pure STL (mma) 40 // << 40 // 21-09-01 completion of RetrievePhysicsTable() (mma) 41 //....oooOO0OOooo........oooOO0OOooo........oo << 41 // 29-10-01 all static functions no more inlined (mma) 42 //....oooOO0OOooo........oooOO0OOooo........oo << 42 // 07-11-01 particleMass and Charge become local variables >> 43 // 26-03-02 change access to cuts in BuildLossTables (V.Ivanchenko) >> 44 // 16-01-03 Migrade to cut per region (V.Ivanchenko) >> 45 // 08-04-03 finalRange is region aware (V.Ivanchenko) >> 46 // 26-04-03 fix problems of retrieve tables (V.Ivanchenko) >> 47 //------------------------------------------------------------------------------ >> 48 >> 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 43 51 44 #include "G4eIonisation.hh" 52 #include "G4eIonisation.hh" 45 #include "G4Electron.hh" << 53 #include "G4UnitsTable.hh" 46 #include "G4MollerBhabhaModel.hh" << 54 #include "G4ProductionCutsTable.hh" 47 #include "G4EmParameters.hh" << 55 48 #include "G4EmStandUtil.hh" << 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 57 >> 58 G4double G4eIonisation::LowerBoundLambda = 1.*keV; >> 59 G4double G4eIonisation::UpperBoundLambda = 100.*TeV; >> 60 G4int G4eIonisation::NbinLambda = 100; >> 61 >> 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 63 >> 64 G4eIonisation::G4eIonisation(const G4String& processName) >> 65 : G4VeEnergyLoss(processName), >> 66 theMeanFreePathTable(NULL) >> 67 {} 49 68 50 //....oooOO0OOooo........oooOO0OOooo........oo << 69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 70 52 G4eIonisation::G4eIonisation(const G4String& n << 71 G4eIonisation::~G4eIonisation() 53 : G4VEnergyLossProcess(name), << 54 theElectron(G4Electron::Electron()), << 55 isElectron(true), << 56 isInitialised(false) << 57 { 72 { 58 SetProcessSubType(fIonisation); << 73 if (theMeanFreePathTable) 59 SetSecondaryParticle(theElectron); << 74 {theMeanFreePathTable->clearAndDestroy(); delete theMeanFreePathTable;} 60 } 75 } 61 76 62 //....oooOO0OOooo........oooOO0OOooo........oo << 77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 78 >> 79 void G4eIonisation::SetLowerBoundLambda(G4double val) >> 80 {LowerBoundLambda = val;} >> 81 >> 82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 83 >> 84 void G4eIonisation::SetUpperBoundLambda(G4double val) >> 85 {UpperBoundLambda = val;} >> 86 >> 87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 88 >> 89 void G4eIonisation::SetNbinLambda(G4int n) >> 90 {NbinLambda = n;} >> 91 >> 92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 93 >> 94 G4double G4eIonisation::GetLowerBoundLambda() >> 95 {return LowerBoundLambda;} >> 96 >> 97 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 98 >> 99 G4double G4eIonisation::GetUpperBoundLambda() >> 100 {return UpperBoundLambda;} >> 101 >> 102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 103 >> 104 G4int G4eIonisation::GetNbinLambda() >> 105 {return NbinLambda;} >> 106 >> 107 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 108 >> 109 void G4eIonisation::BuildPhysicsTable(const G4ParticleDefinition& aParticleType) >> 110 { >> 111 if( !CutsWhereModified() && theLossTable) return; >> 112 >> 113 LowestKineticEnergy = GetLowerBoundEloss(); >> 114 HighestKineticEnergy = GetUpperBoundEloss(); >> 115 TotBin = GetNbinEloss(); >> 116 >> 117 BuildLossTable(aParticleType); >> 118 >> 119 if (&aParticleType==G4Electron::Electron()) >> 120 { >> 121 RecorderOfElectronProcess[CounterOfElectronProcess] = (*this).theLossTable; >> 122 CounterOfElectronProcess++; >> 123 } >> 124 else >> 125 { >> 126 RecorderOfPositronProcess[CounterOfPositronProcess] = (*this).theLossTable; >> 127 CounterOfPositronProcess++; >> 128 } >> 129 >> 130 BuildLambdaTable(aParticleType); >> 131 >> 132 BuildDEDXTable(aParticleType); >> 133 >> 134 if (&aParticleType==G4Electron::Electron()) PrintInfoDefinition(); >> 135 } >> 136 >> 137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 138 >> 139 void G4eIonisation::BuildLossTable(const G4ParticleDefinition& aParticleType) >> 140 { >> 141 >> 142 const G4ProductionCutsTable* theCoupleTable= >> 143 G4ProductionCutsTable::GetProductionCutsTable(); >> 144 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 145 >> 146 if (theLossTable) {theLossTable->clearAndDestroy(); delete theLossTable;} >> 147 theLossTable = new G4PhysicsTable(numOfCouples); >> 148 >> 149 secondaryEnergyCuts = theCoupleTable->GetEnergyCutsVector(1); >> 150 >> 151 // loop for materials >> 152 // >> 153 for (size_t J=0; J<numOfCouples; J++) >> 154 { >> 155 >> 156 G4PhysicsLogVector* aVector = new G4PhysicsLogVector( >> 157 LowestKineticEnergy, HighestKineticEnergy, TotBin); >> 158 >> 159 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(J); >> 160 const G4Material* material= couple->GetMaterial(); >> 161 >> 162 // get electron cut in kinetic energy for the material >> 163 G4double DeltaThreshold = SecondaryEnergyThreshold(J); >> 164 >> 165 >> 166 // now comes the loop for the kinetic energy values >> 167 // >> 168 for (G4int i = 0; i < TotBin; i++) >> 169 { >> 170 G4double dEdx = ComputeRestrictedMeandEdx(aParticleType, >> 171 aVector->GetLowEdgeEnergy(i), >> 172 material, >> 173 DeltaThreshold); >> 174 if(1 < verboseLevel) { >> 175 G4cout << "Material= " << material->GetName() >> 176 << " E(MeV)= " << aVector->GetLowEdgeEnergy(i)/MeV >> 177 << " dEdx(MeV/mm)= " << dEdx*mm/MeV >> 178 << G4endl; >> 179 } >> 180 aVector->PutValue(i,dEdx); >> 181 } >> 182 theLossTable->insert(aVector); >> 183 } >> 184 } >> 185 >> 186 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 187 >> 188 void G4eIonisation::BuildLambdaTable(const G4ParticleDefinition& aParticleType) >> 189 { >> 190 >> 191 if(0 < verboseLevel) { >> 192 G4cout << "G4eIonisation::BuildLambdaTable() for process " >> 193 << GetProcessName() << " and particle " >> 194 << aParticleType.GetParticleName() << G4endl; >> 195 } 63 196 64 G4eIonisation::~G4eIonisation() = default; << 197 //create table >> 198 // >> 199 const G4ProductionCutsTable* theCoupleTable= >> 200 G4ProductionCutsTable::GetProductionCutsTable(); >> 201 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 202 >> 203 if (theMeanFreePathTable) >> 204 { theMeanFreePathTable->clearAndDestroy(); delete theMeanFreePathTable;} >> 205 >> 206 theMeanFreePathTable = new G4PhysicsTable(numOfCouples); >> 207 >> 208 secondaryEnergyCuts = theCoupleTable->GetEnergyCutsVector(1); >> 209 >> 210 // loop for materials >> 211 >> 212 for (size_t J=0 ; J < numOfCouples; J++) >> 213 { >> 214 >> 215 G4PhysicsLogVector* aVector = new G4PhysicsLogVector( >> 216 LowerBoundLambda, UpperBoundLambda, NbinLambda); >> 217 >> 218 // compute the (macroscopic) cross section first >> 219 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(J); >> 220 const G4Material* material= couple->GetMaterial(); >> 221 >> 222 // get electron cut in kinetic energy for the material >> 223 G4double DeltaThreshold = SecondaryEnergyThreshold(J); >> 224 >> 225 const G4ElementVector* theElementVector = material->GetElementVector(); >> 226 const G4double* NbOfAtomsPerVolume = material->GetVecNbOfAtomsPerVolume(); >> 227 G4int NumberOfElements = material->GetNumberOfElements(); >> 228 >> 229 for (G4int i = 0 ; i < NbinLambda ; i++) >> 230 { >> 231 G4double LowEdgeEnergy = aVector->GetLowEdgeEnergy(i); >> 232 G4double SIGMA = 0.; >> 233 for (G4int iel=0; iel<NumberOfElements; iel++ ) >> 234 { >> 235 SIGMA += NbOfAtomsPerVolume[iel]* >> 236 ComputeCrossSectionPerAtom(aParticleType, >> 237 LowEdgeEnergy, >> 238 (*theElementVector)[iel]->GetZ(), >> 239 DeltaThreshold); >> 240 } >> 241 >> 242 // mean free path = 1./macroscopic cross section >> 243 G4double Value = SIGMA > DBL_MIN ? 1./SIGMA : DBL_MAX; >> 244 aVector->PutValue(i, Value); >> 245 } >> 246 theMeanFreePathTable->insert(aVector); >> 247 } >> 248 } 65 249 66 //....oooOO0OOooo........oooOO0OOooo........oo << 250 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 67 251 68 G4double G4eIonisation::MinPrimaryEnergy(const << 252 G4double G4eIonisation::ComputeRestrictedMeandEdx ( 69 const G4Material*, << 253 const G4ParticleDefinition& aParticleType, 70 G4double cut) << 254 G4double KineticEnergy, >> 255 const G4Material* material, >> 256 G4double DeltaThreshold) 71 { 257 { 72 G4double x = cut; << 258 // calculate the dE/dx due to the ionization process (Geant4 internal units) 73 if(isElectron) x += cut; << 259 // Seltzer-Berger formula 74 return x; << 260 // >> 261 G4double particleMass = aParticleType.GetPDGMass(); >> 262 >> 263 G4double ElectronDensity = material->GetElectronDensity(); >> 264 G4double Eexc = material->GetIonisation()->GetMeanExcitationEnergy(); >> 265 Eexc /= particleMass; G4double Eexcm2 = Eexc*Eexc; >> 266 >> 267 // for the lowenergy extrapolation >> 268 G4double Zeff = material->GetTotNbOfElectPerVolume()/ >> 269 material->GetTotNbOfAtomsPerVolume(); >> 270 G4double Th = 0.25*sqrt(Zeff)*keV; >> 271 G4double Tsav = 0.; >> 272 if (KineticEnergy < Th) {Tsav = KineticEnergy; KineticEnergy = Th;} >> 273 >> 274 G4double tau = KineticEnergy/particleMass; >> 275 G4double gamma = tau + 1., gamma2 = gamma*gamma, bg2 = tau*(tau+2.); >> 276 G4double beta2 = bg2/gamma2; >> 277 >> 278 G4double Tmax,d,dEdx; >> 279 >> 280 // electron >> 281 if (&aParticleType==G4Electron::Electron()) >> 282 { >> 283 Tmax = KineticEnergy/2.; >> 284 d = G4std::min(DeltaThreshold, Tmax)/particleMass; >> 285 dEdx = log(2.*(tau+2.)/Eexcm2)-1.-beta2 >> 286 + log((tau-d)*d)+tau/(tau-d) >> 287 + (0.5*d*d+(2.*tau+1.)*log(1.-d/tau))/gamma2; >> 288 } >> 289 >> 290 else //positron >> 291 { >> 292 Tmax = KineticEnergy; >> 293 d = G4std::min(DeltaThreshold, Tmax)/particleMass; >> 294 G4double d2=d*d/2., d3=d*d*d/3., d4=d*d*d*d/4.; >> 295 G4double y=1./(1.+gamma); >> 296 dEdx = log(2.*(tau+2.)/Eexcm2)+log(tau*d) >> 297 - beta2*(tau+2.*d-y*(3.*d2+y*(d-d3+y*(d2-tau*d3+d4))))/tau; >> 298 } >> 299 >> 300 //density correction >> 301 G4double Cden = material->GetIonisation()->GetCdensity(); >> 302 G4double Mden = material->GetIonisation()->GetMdensity(); >> 303 G4double Aden = material->GetIonisation()->GetAdensity(); >> 304 G4double X0den = material->GetIonisation()->GetX0density(); >> 305 G4double X1den = material->GetIonisation()->GetX1density(); >> 306 >> 307 const G4double twoln10 = 2.*log(10.); >> 308 G4double x = log(bg2)/twoln10; >> 309 G4double delta; >> 310 if (x < X0den) delta = 0.; >> 311 else {delta = twoln10*x - Cden; >> 312 if (x < X1den) delta += Aden*pow((X1den-x),Mden); >> 313 } >> 314 >> 315 //now you can compute the total ionization loss >> 316 dEdx -= delta; >> 317 dEdx *= twopi_mc2_rcl2*ElectronDensity/beta2; >> 318 if (dEdx <= 0.) dEdx = 0.; >> 319 >> 320 // low energy ? >> 321 const G4double Tl = 0.2*keV; >> 322 if (Tsav > 0.) >> 323 { >> 324 if (Tsav >= Tl) dEdx *= sqrt(KineticEnergy/Tsav); >> 325 else dEdx *= sqrt(KineticEnergy*Tsav)/Tl; >> 326 } >> 327 return dEdx; 75 } 328 } 76 329 77 //....oooOO0OOooo........oooOO0OOooo........oo << 330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 78 331 79 G4bool G4eIonisation::IsApplicable(const G4Par << 332 G4double G4eIonisation::ComputeCrossSectionPerAtom( >> 333 const G4ParticleDefinition& aParticleType, >> 334 G4double KineticEnergy, >> 335 G4double AtomicNumber , >> 336 G4double DeltaThreshold) 80 { 337 { 81 return (&p == theElectron || &p == G4Positro << 338 // calculates the cross section per atom (Geant4 internal units) >> 339 //(it is called for elements , AtomicNumber = Z ) >> 340 >> 341 G4double particleMass = aParticleType.GetPDGMass(); >> 342 G4double TotalEnergy = KineticEnergy + particleMass; >> 343 >> 344 G4double betasquare = KineticEnergy*(TotalEnergy+particleMass) >> 345 /(TotalEnergy*TotalEnergy); >> 346 G4double gamma = TotalEnergy/particleMass, gamma2 = gamma*gamma; >> 347 G4double x=DeltaThreshold/KineticEnergy, x2 = x*x; >> 348 >> 349 G4double MaxKineticEnergyTransfer; >> 350 if (&aParticleType==G4Electron::Electron()) >> 351 MaxKineticEnergyTransfer = 0.5*KineticEnergy; >> 352 else MaxKineticEnergyTransfer = KineticEnergy; >> 353 >> 354 >> 355 G4double TotalCrossSection = 0.; >> 356 if (MaxKineticEnergyTransfer > DeltaThreshold) >> 357 { >> 358 if (&aParticleType==G4Electron::Electron()) //Moller (e-e-) scattering >> 359 { >> 360 TotalCrossSection = (gamma-1.)*(gamma-1.)*(0.5-x)/gamma2 + 1./x >> 361 - 1./(1.-x)-(2.*gamma-1.)*log((1.-x)/x)/gamma2; >> 362 TotalCrossSection /= betasquare; >> 363 } >> 364 else //Bhabha (e+e-) scattering >> 365 { >> 366 G4double y=1./(1.+gamma), y2 =y*y, y12=1.-2.*y; >> 367 G4double b1=2.-y2, b2=y12*(3.+y2), b4=y12*y12*y12, b3=b4+y12*y12; >> 368 TotalCrossSection = (1./x-1.)/betasquare+b1*log(x)+b2*(1.-x) >> 369 - b3*(1.-x2)/2.+b4*(1.-x2*x)/3.; >> 370 } >> 371 TotalCrossSection *= (twopi_mc2_rcl2*AtomicNumber/KineticEnergy); >> 372 } >> 373 return TotalCrossSection ; 82 } 374 } 83 375 84 //....oooOO0OOooo........oooOO0OOooo........oo << 376 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 85 377 86 void G4eIonisation::InitialiseEnergyLossProces << 378 G4VParticleChange* G4eIonisation::PostStepDoIt( const G4Track& trackData, 87 const G4ParticleDefinition* part, << 379 const G4Step& stepData) 88 const G4ParticleDefinition*) << 89 { 380 { 90 if(!isInitialised) { << 381 aParticleChange.Initialize(trackData); 91 if(part != theElectron) { isElectron = fal << 382 92 if (nullptr == EmModel(0)) { SetEmModel(ne << 383 const G4MaterialCutsCouple* couple = trackData.GetMaterialCutsCouple(); 93 G4EmParameters* param = G4EmParameters::In << 384 const G4DynamicParticle* aParticle = trackData.GetDynamicParticle(); 94 EmModel(0)->SetLowEnergyLimit(param->MinKi << 385 95 EmModel(0)->SetHighEnergyLimit(param->MaxK << 386 G4double particleMass = aParticle->GetDefinition()->GetPDGMass(); 96 if (nullptr == FluctModel()) { << 387 G4double Charge = aParticle->GetDefinition()->GetPDGCharge(); 97 SetFluctModel(G4EmStandUtil::ModelOfFluc << 388 G4double KineticEnergy = aParticle->GetKineticEnergy(); >> 389 G4double TotalEnergy = KineticEnergy + particleMass; >> 390 G4double Psquare = KineticEnergy*(TotalEnergy+particleMass); >> 391 G4double TotalMomentum = sqrt(Psquare); >> 392 G4ParticleMomentum ParticleDirection = aParticle->GetMomentumDirection(); >> 393 >> 394 // get kinetic energy cut for the electron >> 395 G4double DeltaThreshold = SecondaryEnergyThreshold(couple->GetIndex()); >> 396 >> 397 // some kinematics >> 398 G4double MaxKineticEnergyTransfer; >> 399 if (Charge < 0.) MaxKineticEnergyTransfer = 0.5*KineticEnergy; >> 400 else MaxKineticEnergyTransfer = KineticEnergy; >> 401 >> 402 // sampling kinetic energy of the delta ray >> 403 >> 404 if (MaxKineticEnergyTransfer <= DeltaThreshold) >> 405 // pathological case (should not happen, there is no change at all) >> 406 return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData); >> 407 >> 408 >> 409 // normal case >> 410 G4double cc,y,y2,c2,b0,b1,b2,b3,b4,x,x1,grej,grejc; >> 411 >> 412 G4double tau = KineticEnergy/particleMass; >> 413 G4double gamma = tau+1., gamma2=gamma*gamma; >> 414 G4double xc = DeltaThreshold/KineticEnergy, xc1=1.-xc; >> 415 >> 416 if (Charge < 0.) // Moller (e-e-) scattering >> 417 { >> 418 b1=4./(9.*gamma2-10.*gamma+5.); >> 419 b2=tau*tau*b1; b3=(2.*gamma2+2.*gamma-1.)*b1; >> 420 cc=1.-2.*xc; >> 421 do { >> 422 x = xc/(1.-cc*G4UniformRand()); x1 = 1.-x; >> 423 grej = b2*x*x-b3*x/x1+b1*gamma2/(x1*x1); >> 424 } while (G4UniformRand()>grej); >> 425 } >> 426 else // Bhabha (e+e-) scattering >> 427 { >> 428 y=1./(gamma+1.); y2=y*y; cc=1.-2.*y; >> 429 b1=2.-y2; b2=cc*(3.+y2); >> 430 c2=cc*cc; b4=c2*cc; b3=c2+b4; >> 431 b0=gamma2/(gamma2-1.); >> 432 grejc=(((b4*xc-b3)*xc+b2)*xc-b1)*xc+b0; >> 433 do { >> 434 x = xc/(1.-xc1*G4UniformRand()); >> 435 grej = ((((b4*x-b3)*x+b2)*x-b1)*x+b0)/grejc; >> 436 } while (G4UniformRand()>grej); 98 } 437 } 99 AddEmModel(1, EmModel(), FluctModel()); << 438 100 isInitialised = true; << 439 G4double DeltaKineticEnergy = x * KineticEnergy; >> 440 >> 441 // protection :do not produce a secondary with 0. kinetic energy ! >> 442 if (DeltaKineticEnergy <= 0.) >> 443 return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData); >> 444 >> 445 G4double DeltaTotalMomentum = sqrt(DeltaKineticEnergy*(DeltaKineticEnergy + >> 446 2.*electron_mass_c2 )); >> 447 >> 448 G4double costheta = DeltaKineticEnergy * (TotalEnergy + electron_mass_c2) >> 449 /(DeltaTotalMomentum * TotalMomentum); >> 450 >> 451 if (costheta < -1.) costheta = -1.; >> 452 if (costheta > +1.) costheta = +1.; >> 453 >> 454 // direction of the delta electron >> 455 >> 456 G4double phi = twopi * G4UniformRand(); >> 457 G4double sintheta = sqrt((1.+costheta)*(1.-costheta)); >> 458 G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta; >> 459 >> 460 G4ThreeVector DeltaDirection(dirx,diry,dirz); >> 461 DeltaDirection.rotateUz(ParticleDirection); >> 462 >> 463 // create G4DynamicParticle object for delta ray >> 464 >> 465 G4DynamicParticle* theDeltaRay = new G4DynamicParticle; >> 466 theDeltaRay->SetKineticEnergy( DeltaKineticEnergy ); >> 467 theDeltaRay->SetMomentumDirection( >> 468 DeltaDirection.x(),DeltaDirection.y(),DeltaDirection.z()); >> 469 theDeltaRay->SetDefinition(G4Electron::Electron()); >> 470 >> 471 // fill aParticleChange >> 472 // changed energy and momentum of the actual particle >> 473 G4double finalKineticEnergy = KineticEnergy - DeltaKineticEnergy; >> 474 >> 475 G4double Edep = 0.; >> 476 >> 477 if (finalKineticEnergy > MinKineticEnergy) >> 478 { >> 479 G4double finalPx = TotalMomentum*ParticleDirection.x() >> 480 - DeltaTotalMomentum*DeltaDirection.x(); >> 481 G4double finalPy = TotalMomentum*ParticleDirection.y() >> 482 - DeltaTotalMomentum*DeltaDirection.y(); >> 483 G4double finalPz = TotalMomentum*ParticleDirection.z() >> 484 - DeltaTotalMomentum*DeltaDirection.z(); >> 485 G4double finalMomentum = >> 486 sqrt(finalPx*finalPx+finalPy*finalPy+finalPz*finalPz); >> 487 finalPx /= finalMomentum; >> 488 finalPy /= finalMomentum; >> 489 finalPz /= finalMomentum; >> 490 >> 491 aParticleChange.SetMomentumChange(finalPx, finalPy, finalPz); >> 492 } >> 493 else >> 494 { >> 495 Edep = finalKineticEnergy; >> 496 finalKineticEnergy = 0.; >> 497 if (Charge < 0.) aParticleChange.SetStatusChange(fStopAndKill); >> 498 else aParticleChange.SetStatusChange(fStopButAlive); >> 499 } >> 500 >> 501 aParticleChange.SetEnergyChange(finalKineticEnergy); >> 502 aParticleChange.SetNumberOfSecondaries(1); >> 503 aParticleChange.AddSecondary(theDeltaRay); >> 504 aParticleChange.SetLocalEnergyDeposit(Edep); >> 505 >> 506 return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData); >> 507 } >> 508 >> 509 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 510 >> 511 G4bool G4eIonisation::StorePhysicsTable(G4ParticleDefinition* particle, >> 512 const G4String& directory, >> 513 G4bool ascii) >> 514 { >> 515 G4String filename; >> 516 >> 517 // store stopping power table >> 518 filename = GetPhysicsTableFileName(particle,directory,"StoppingPower",ascii); >> 519 if ( !theLossTable->StorePhysicsTable(filename, ascii) ){ >> 520 G4cout << " FAIL theLossTable->StorePhysicsTable in " << filename >> 521 << G4endl; >> 522 return false; >> 523 } >> 524 // store mean free path table >> 525 filename = GetPhysicsTableFileName(particle,directory,"MeanFreePath",ascii); >> 526 if ( !theMeanFreePathTable->StorePhysicsTable(filename, ascii) ){ >> 527 G4cout << " FAIL theMeanFreePathTable->StorePhysicsTable in " << filename >> 528 << G4endl; >> 529 return false; >> 530 } >> 531 >> 532 G4cout << GetProcessName() << " for " << particle->GetParticleName() >> 533 << ": Success to store the PhysicsTables in " >> 534 << directory << G4endl; >> 535 return true; >> 536 } >> 537 >> 538 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 539 >> 540 G4bool G4eIonisation::RetrievePhysicsTable(G4ParticleDefinition* particle, >> 541 const G4String& directory, >> 542 G4bool ascii) >> 543 { >> 544 // delete theLossTable and theMeanFreePathTable >> 545 if (theLossTable != 0) { >> 546 theLossTable->clearAndDestroy(); >> 547 delete theLossTable; >> 548 } >> 549 if (theMeanFreePathTable != 0) { >> 550 theMeanFreePathTable->clearAndDestroy(); >> 551 delete theMeanFreePathTable; 101 } 552 } >> 553 >> 554 // get bining from EnergyLoss >> 555 LowestKineticEnergy = GetLowerBoundEloss(); >> 556 HighestKineticEnergy = GetUpperBoundEloss(); >> 557 TotBin = GetNbinEloss(); >> 558 >> 559 G4String filename; >> 560 const G4ProductionCutsTable* theCoupleTable= >> 561 G4ProductionCutsTable::GetProductionCutsTable(); >> 562 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 563 >> 564 secondaryEnergyCuts = theCoupleTable->GetEnergyCutsVector(1); >> 565 >> 566 // retreive stopping power table >> 567 filename = GetPhysicsTableFileName(particle,directory,"StoppingPower",ascii); >> 568 theLossTable = new G4PhysicsTable(numOfCouples); >> 569 if ( !theLossTable->RetrievePhysicsTable(filename, ascii) ){ >> 570 G4cout << " FAIL theLossTable->RetrievePhysicsTable in " << filename >> 571 << G4endl; >> 572 return false; >> 573 } >> 574 >> 575 // retreive mean free path table >> 576 filename = GetPhysicsTableFileName(particle,directory,"MeanFreePath",ascii); >> 577 theMeanFreePathTable = new G4PhysicsTable(numOfCouples); >> 578 if ( !theMeanFreePathTable->RetrievePhysicsTable(filename, ascii) ){ >> 579 G4cout << " FAIL theMeanFreePathTable->RetrievePhysicsTable in " << filename >> 580 << G4endl; >> 581 return false; >> 582 } >> 583 >> 584 G4cout << GetProcessName() << " for " << particle->GetParticleName() >> 585 << ": Success to retrieve the PhysicsTables from " >> 586 << directory << G4endl; >> 587 >> 588 if (particle==G4Electron::Electron()) >> 589 { >> 590 RecorderOfElectronProcess[CounterOfElectronProcess] = (*this).theLossTable; >> 591 CounterOfElectronProcess++; >> 592 } >> 593 else >> 594 { >> 595 RecorderOfPositronProcess[CounterOfPositronProcess] = (*this).theLossTable; >> 596 CounterOfPositronProcess++; >> 597 } >> 598 >> 599 BuildDEDXTable(*particle); >> 600 if (particle==G4Electron::Electron()) PrintInfoDefinition(); >> 601 >> 602 return true; 102 } 603 } 103 604 104 //....oooOO0OOooo........oooOO0OOooo........oo << 605 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 105 606 106 void G4eIonisation::ProcessDescription(std::os << 607 void G4eIonisation::PrintInfoDefinition() 107 { 608 { 108 out << " Ionisation"; << 609 G4String comments = "delta cross sections from Moller+Bhabha. " 109 G4VEnergyLossProcess::ProcessDescription(out << 610 "Good description from 1 KeV to 100 GeV.\n" >> 611 " delta ray energy sampled from differential Xsection."; >> 612 >> 613 G4cout << G4endl << GetProcessName() << ": " << comments >> 614 << "\n PhysicsTables from " >> 615 << G4BestUnit(LowerBoundLambda,"Energy") >> 616 << " to " << G4BestUnit(UpperBoundLambda,"Energy") >> 617 << " in " << NbinLambda << " bins." >> 618 << "\n Step function: finalRange(mm)= " << finalRange >> 619 << ", dRoverRange= " << dRoverRange >> 620 << G4endl; 110 } 621 } 111 622 112 //....oooOO0OOooo........oooOO0OOooo........oo 623 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 113 624