Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4eIonisation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4eIonisation.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4eIonisation.cc (Version 4.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // ------------------------------------------- << 
 27 //                                                 23 //
 28 // GEANT4 Class file                           <<  24 // $Id: G4eIonisation.cc,v 1.22 2001/11/09 13:59:47 maire Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-04-00 $
 29 //                                                 26 //
                                                   >>  27 //--------------- G4eIonisation physics process --------------------------------
                                                   >>  28 //                by Laszlo Urban, 20 March 1997 
                                                   >>  29 //------------------------------------------------------------------------------
 30 //                                                 30 //
 31 // File name:     G4eIonisation                <<  31 // 07-04-98 remove 'tracking cut' of the ionizing particle, mma 
 32 //                                             <<  32 // 04-09-98 new methods SetBining() PrintInfo()
 33 // Author:        Laszlo Urban                 <<  33 // 07-09-98 Cleanup
 34 //                                             <<  34 // 02-02-99 correction inDoIt , L.Urban
 35 // Creation date: 20.03.1997                   <<  35 // 10-02-00 modifications , new e.m. structure, L.Urban
 36 //                                             <<  36 // 28-05-01 V.Ivanchenko minor changes to provide ANSI -wall compilation 
 37 // Modified by Michel Maire and Vladimir Ivanc <<  37 // 09-08-01 new methods Store/Retrieve PhysicsTable (mma)
 38 //                                             <<  38 // 13-08-01 new function ComputeRestrictedMeandEdx()  (mma)
 39 // ------------------------------------------- <<  39 // 17-09-01 migration of Materials to pure STL (mma) 
 40 //                                             <<  40 // 21-09-01 completion of RetrievePhysicsTable() (mma)
 41 //....oooOO0OOooo........oooOO0OOooo........oo <<  41 // 29-10-01 all static functions no more inlined (mma)
 42 //....oooOO0OOooo........oooOO0OOooo........oo <<  42 // 07-11-01 particleMass and Charge become local variables 
 43                                                <<  43 //------------------------------------------------------------------------------
                                                   >>  44 
                                                   >>  45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  47  
 44 #include "G4eIonisation.hh"                        48 #include "G4eIonisation.hh"
 45 #include "G4Electron.hh"                       <<  49 #include "G4UnitsTable.hh"
 46 #include "G4MollerBhabhaModel.hh"              << 
 47 #include "G4EmParameters.hh"                   << 
 48 #include "G4EmStandUtil.hh"                    << 
 49                                                    50 
 50 //....oooOO0OOooo........oooOO0OOooo........oo <<  51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 51                                                    52 
 52 G4eIonisation::G4eIonisation(const G4String& n <<  53 G4double G4eIonisation::LowerBoundLambda = 1.*keV;
 53   : G4VEnergyLossProcess(name),                <<  54 G4double G4eIonisation::UpperBoundLambda = 100.*TeV;
 54     theElectron(G4Electron::Electron()),       <<  55 G4int    G4eIonisation::NbinLambda = 100;
 55     isElectron(true),                          <<  56 
 56     isInitialised(false)                       <<  57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  58 
                                                   >>  59 G4eIonisation::G4eIonisation(const G4String& processName)
                                                   >>  60    : G4VeEnergyLoss(processName),
                                                   >>  61      theMeanFreePathTable(NULL)
                                                   >>  62 { }
                                                   >>  63 
                                                   >>  64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  65 
                                                   >>  66 G4eIonisation::~G4eIonisation() 
 57 {                                                  67 {
 58   SetProcessSubType(fIonisation);              <<  68      if (theMeanFreePathTable)
 59   SetSecondaryParticle(theElectron);           <<  69        {theMeanFreePathTable->clearAndDestroy(); delete theMeanFreePathTable;}
                                                   >>  70 }
                                                   >>  71 
                                                   >>  72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  73 
                                                   >>  74 void G4eIonisation::SetLowerBoundLambda(G4double val) 
                                                   >>  75      {LowerBoundLambda = val;}
                                                   >>  76     
                                                   >>  77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  78     
                                                   >>  79 void G4eIonisation::SetUpperBoundLambda(G4double val) 
                                                   >>  80      {UpperBoundLambda = val;}
                                                   >>  81 
                                                   >>  82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  83     
                                                   >>  84 void G4eIonisation::SetNbinLambda(G4int n) 
                                                   >>  85      {NbinLambda = n;}
                                                   >>  86 
                                                   >>  87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  88   
                                                   >>  89 G4double G4eIonisation::GetLowerBoundLambda() 
                                                   >>  90         {return LowerBoundLambda;}
                                                   >>  91  
                                                   >>  92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  93     
                                                   >>  94 G4double G4eIonisation::GetUpperBoundLambda() 
                                                   >>  95         {return UpperBoundLambda;}
                                                   >>  96 
                                                   >>  97 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  98      
                                                   >>  99 G4int G4eIonisation::GetNbinLambda() 
                                                   >> 100      {return NbinLambda;}
                                                   >> 101     
                                                   >> 102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 103   
                                                   >> 104 void G4eIonisation::BuildPhysicsTable(const G4ParticleDefinition& aParticleType)
                                                   >> 105 // just call BuildLossTable+BuildLambdaTable
                                                   >> 106 {
                                                   >> 107   // get bining from EnergyLoss
                                                   >> 108   LowestKineticEnergy  = GetLowerBoundEloss();
                                                   >> 109   HighestKineticEnergy = GetUpperBoundEloss();
                                                   >> 110   TotBin               = GetNbinEloss();
                                                   >> 111  
                                                   >> 112   BuildLossTable(aParticleType);
                                                   >> 113 
                                                   >> 114   if (&aParticleType==G4Electron::Electron())
                                                   >> 115     {
                                                   >> 116      RecorderOfElectronProcess[CounterOfElectronProcess] = (*this).theLossTable;
                                                   >> 117      CounterOfElectronProcess++;
                                                   >> 118     }
                                                   >> 119   else
                                                   >> 120     {
                                                   >> 121      RecorderOfPositronProcess[CounterOfPositronProcess] = (*this).theLossTable;
                                                   >> 122      CounterOfPositronProcess++;
                                                   >> 123     }
                                                   >> 124  
                                                   >> 125   BuildLambdaTable(aParticleType);
                                                   >> 126  
                                                   >> 127   BuildDEDXTable(aParticleType);
                                                   >> 128                                              
                                                   >> 129   if (&aParticleType==G4Electron::Electron()) PrintInfoDefinition();  
                                                   >> 130 }
                                                   >> 131 
                                                   >> 132 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 133 
                                                   >> 134 void G4eIonisation::BuildLossTable(const G4ParticleDefinition& aParticleType)
                                                   >> 135 {
                                                   >> 136 // Build tables of dE/dx due to  the ionization process
                                                   >> 137 // the tables are built for *MATERIALS*
                                                   >> 138 
                                                   >> 139 // create table
                                                   >> 140 //   
                                                   >> 141  const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
                                                   >> 142  G4int numOfMaterials = G4Material::GetNumberOfMaterials();
                                                   >> 143 
                                                   >> 144  if (theLossTable) {theLossTable->clearAndDestroy(); delete theLossTable;}
                                                   >> 145  theLossTable = new G4PhysicsTable(numOfMaterials);
                                                   >> 146  
                                                   >> 147 // get DeltaCut in energy
                                                   >> 148  G4double* DeltaCutInKineticEnergy = aParticleType.GetEnergyCuts(); 
                                                   >> 149 
                                                   >> 150 // loop for materials
                                                   >> 151 //
                                                   >> 152  for (G4int J=0; J<numOfMaterials; J++)
                                                   >> 153     {
                                                   >> 154      // create physics vector and fill it
                                                   >> 155      G4PhysicsLogVector* aVector = new G4PhysicsLogVector(
                                                   >> 156                          LowestKineticEnergy, HighestKineticEnergy, TotBin);
                                                   >> 157   
                                                   >> 158      const G4Material* material = (*theMaterialTable)[J];
                                                   >> 159      G4double DeltaThreshold = DeltaCutInKineticEnergy[J];
                                                   >> 160 
                                                   >> 161      // now comes the loop for the kinetic energy values
                                                   >> 162      //
                                                   >> 163       for (G4int i = 0; i < TotBin; i++)
                                                   >> 164          {
                                                   >> 165           G4double dEdx = ComputeRestrictedMeandEdx(aParticleType,
                                                   >> 166                                              aVector->GetLowEdgeEnergy(i),
                                                   >> 167                                              material,
                                                   >> 168                                              DeltaThreshold);
                                                   >> 169           aVector->PutValue(i,dEdx);
                                                   >> 170          }          
                                                   >> 171       theLossTable->insert(aVector);
                                                   >> 172     }
 60 }                                                 173 }
 61                                                   174 
 62 //....oooOO0OOooo........oooOO0OOooo........oo << 175 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 176 
                                                   >> 177 void G4eIonisation::BuildLambdaTable(const G4ParticleDefinition& aParticleType)
                                                   >> 178 {
                                                   >> 179   // Build mean free path tables for the delta ray production process
                                                   >> 180   //     tables are built for MATERIALS 
 63                                                   181 
 64 G4eIonisation::~G4eIonisation() = default;     << 182   //create table
                                                   >> 183   //
                                                   >> 184   const G4MaterialTable* theMaterialTable=G4Material::GetMaterialTable();
                                                   >> 185   G4int numOfMaterials = G4Material::GetNumberOfMaterials();
                                                   >> 186   
                                                   >> 187   if (theMeanFreePathTable)
                                                   >> 188     { theMeanFreePathTable->clearAndDestroy(); delete theMeanFreePathTable;}
                                                   >> 189 
                                                   >> 190   theMeanFreePathTable = new G4PhysicsTable(numOfMaterials);
                                                   >> 191 
                                                   >> 192   // get electron  cuts in kinetic energy
                                                   >> 193   // The electron cuts needed in the case of the positron , too!
                                                   >> 194   // This is the reason why SetCut has to be called for electron first !!
                                                   >> 195 
                                                   >> 196   if((G4Electron::Electron()->GetEnergyCuts() == 0) &&
                                                   >> 197       (&aParticleType == G4Positron::Positron()))
                                                   >> 198   {
                                                   >> 199      G4cout << " The ELECTRON energy cuts needed to compute energy loss"
                                                   >> 200                " and mean free path; and for POSITRON, too. " << G4endl;
                                                   >> 201      G4Exception(" Call SetCut for e- first !!");
                                                   >> 202   }
                                                   >> 203    
                                                   >> 204   G4double* DeltaCutInKineticEnergy = G4Electron::Electron()->GetEnergyCuts() ;
                                                   >> 205  
                                                   >> 206   // loop for materials 
                                                   >> 207 
                                                   >> 208  for (G4int J=0 ; J < numOfMaterials; J++)
                                                   >> 209     { 
                                                   >> 210      //create physics vector then fill it ....
                                                   >> 211 
                                                   >> 212      G4PhysicsLogVector* aVector = new G4PhysicsLogVector(
                                                   >> 213                LowerBoundLambda, UpperBoundLambda, NbinLambda);
                                                   >> 214 
                                                   >> 215      // compute the (macroscopic) cross section first
                                                   >> 216  
                                                   >> 217      const G4Material* material= (*theMaterialTable)[J];        
                                                   >> 218      const G4ElementVector* theElementVector = material->GetElementVector();
                                                   >> 219      const G4double* NbOfAtomsPerVolume = material->GetVecNbOfAtomsPerVolume();
                                                   >> 220      G4int NumberOfElements = material->GetNumberOfElements();
                                                   >> 221  
                                                   >> 222      // get the electron kinetic energy cut for the actual material,
                                                   >> 223      // it will be used in ComputeCrossSectionPerAtom
                                                   >> 224      // (--> it will be the same for all the elements in this material )
                                                   >> 225      G4double DeltaThreshold = DeltaCutInKineticEnergy[J];
                                                   >> 226 
                                                   >> 227      for (G4int i = 0 ; i < NbinLambda ; i++)
                                                   >> 228         {
                                                   >> 229     G4double LowEdgeEnergy = aVector->GetLowEdgeEnergy(i);
                                                   >> 230     G4double SIGMA = 0.;           
                                                   >> 231           for (G4int iel=0; iel<NumberOfElements; iel++ )
                                                   >> 232              {
                                                   >> 233               SIGMA += NbOfAtomsPerVolume[iel]*
                                                   >> 234                        ComputeCrossSectionPerAtom(aParticleType,
                                                   >> 235                                                   LowEdgeEnergy,
                                                   >> 236                                (*theElementVector)[iel]->GetZ(),
                                                   >> 237                                                 DeltaThreshold);
                                                   >> 238              }
                                                   >> 239 
                                                   >> 240           // mean free path = 1./macroscopic cross section
                                                   >> 241           G4double Value = SIGMA > DBL_MIN ? 1./SIGMA : DBL_MAX;     
                                                   >> 242           aVector->PutValue(i, Value);
                                                   >> 243         }
                                                   >> 244      theMeanFreePathTable->insert(aVector);
                                                   >> 245     }
                                                   >> 246 }
 65                                                   247 
 66 //....oooOO0OOooo........oooOO0OOooo........oo << 248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 67                                                   249 
 68 G4double G4eIonisation::MinPrimaryEnergy(const << 250 G4double G4eIonisation::ComputeRestrictedMeandEdx (
 69            const G4Material*,                  << 251                                  const G4ParticleDefinition& aParticleType,
 70            G4double cut)                       << 252                                  G4double KineticEnergy,
                                                   >> 253          const G4Material* material,
                                                   >> 254          G4double DeltaThreshold)
 71 {                                                 255 {
 72   G4double x = cut;                            << 256  // calculate the dE/dx due to the ionization process (Geant4 internal units)
 73   if(isElectron) x += cut;                     << 257  // Seltzer-Berger formula
 74   return x;                                    << 258  //
                                                   >> 259  G4double particleMass = aParticleType.GetPDGMass();      
                                                   >> 260  
                                                   >> 261  G4double ElectronDensity = material->GetElectronDensity();
                                                   >> 262  G4double Eexc = material->GetIonisation()->GetMeanExcitationEnergy();
                                                   >> 263  Eexc  /= particleMass; G4double Eexcm2 = Eexc*Eexc;
                                                   >> 264 
                                                   >> 265  // for the lowenergy extrapolation
                                                   >> 266  G4double Zeff = material->GetTotNbOfElectPerVolume()/
                                                   >> 267                  material->GetTotNbOfAtomsPerVolume();
                                                   >> 268  G4double Th = 0.25*sqrt(Zeff)*keV;
                                                   >> 269  G4double Tsav = 0.;
                                                   >> 270  if (KineticEnergy < Th) {Tsav = KineticEnergy; KineticEnergy = Th;}
                                                   >> 271  
                                                   >> 272  G4double tau = KineticEnergy/particleMass;
                                                   >> 273  G4double gamma = tau + 1., gamma2 = gamma*gamma, bg2 = tau*(tau+2.);
                                                   >> 274  G4double beta2 = bg2/gamma2;
                                                   >> 275  
                                                   >> 276  G4double Tmax,d,dEdx;
                                                   >> 277 
                                                   >> 278  // electron
                                                   >> 279  if (&aParticleType==G4Electron::Electron())
                                                   >> 280    {
                                                   >> 281      Tmax = KineticEnergy/2.;  
                                                   >> 282      d = G4std::min(DeltaThreshold, Tmax)/particleMass;
                                                   >> 283      dEdx = log(2.*(tau+2.)/Eexcm2)-1.-beta2
                                                   >> 284             + log((tau-d)*d)+tau/(tau-d)
                                                   >> 285             + (0.5*d*d+(2.*tau+1.)*log(1.-d/tau))/gamma2;
                                                   >> 286    }
                                                   >> 287    
                                                   >> 288  else        //positron
                                                   >> 289    {
                                                   >> 290      Tmax = KineticEnergy;  
                                                   >> 291      d = G4std::min(DeltaThreshold, Tmax)/particleMass;
                                                   >> 292      G4double d2=d*d/2., d3=d*d*d/3., d4=d*d*d*d/4.;
                                                   >> 293      G4double y=1./(1.+gamma);
                                                   >> 294      dEdx = log(2.*(tau+2.)/Eexcm2)+log(tau*d)
                                                   >> 295             - beta2*(tau+2.*d-y*(3.*d2+y*(d-d3+y*(d2-tau*d3+d4))))/tau;
                                                   >> 296    } 
                                                   >> 297 
                                                   >> 298  //density correction 
                                                   >> 299  G4double Cden   = material->GetIonisation()->GetCdensity();
                                                   >> 300  G4double Mden   = material->GetIonisation()->GetMdensity();
                                                   >> 301  G4double Aden   = material->GetIonisation()->GetAdensity();
                                                   >> 302  G4double X0den  = material->GetIonisation()->GetX0density();
                                                   >> 303  G4double X1den  = material->GetIonisation()->GetX1density();
                                                   >> 304   
                                                   >> 305  const G4double twoln10 = 2.*log(10.); 
                                                   >> 306  G4double  x = log(bg2)/twoln10;
                                                   >> 307  G4double delta;
                                                   >> 308  if (x < X0den) delta = 0.;
                                                   >> 309  else          {delta = twoln10*x - Cden;
                                                   >> 310                 if (x < X1den) delta += Aden*pow((X1den-x),Mden);
                                                   >> 311                } 
                                                   >> 312 
                                                   >> 313  //now you can compute the total ionization loss
                                                   >> 314  dEdx -= delta;
                                                   >> 315  dEdx *= twopi_mc2_rcl2*ElectronDensity/beta2;
                                                   >> 316  if (dEdx <= 0.) dEdx = 0.;
                                                   >> 317    
                                                   >> 318  // low energy ?
                                                   >> 319  const G4double Tl = 0.2*keV; 
                                                   >> 320  if (Tsav > 0.)
                                                   >> 321    {
                                                   >> 322     if (Tsav >= Tl) dEdx *= sqrt(KineticEnergy/Tsav);
                                                   >> 323     else            dEdx *= sqrt(KineticEnergy*Tsav)/Tl;
                                                   >> 324    }
                                                   >> 325  return dEdx;
 75 }                                                 326 }
 76                                                   327 
 77 //....oooOO0OOooo........oooOO0OOooo........oo << 328 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 78                                                   329 
 79 G4bool G4eIonisation::IsApplicable(const G4Par << 330 G4double G4eIonisation::ComputeCrossSectionPerAtom(
                                                   >> 331                                  const G4ParticleDefinition& aParticleType,
                                                   >> 332                                  G4double KineticEnergy,
                                                   >> 333                                  G4double AtomicNumber ,
                                                   >> 334                                  G4double DeltaThreshold)
 80 {                                                 335 {
 81   return (&p == theElectron || &p == G4Positro << 336   // calculates the cross section per atom (Geant4 internal units) 
                                                   >> 337   //(it is called for elements , AtomicNumber = Z )
                                                   >> 338   
                                                   >> 339   G4double particleMass = aParticleType.GetPDGMass();
                                                   >> 340   G4double TotalEnergy = KineticEnergy + particleMass;
                                                   >> 341 
                                                   >> 342   G4double betasquare = KineticEnergy*(TotalEnergy+particleMass)
                                                   >> 343                        /(TotalEnergy*TotalEnergy);
                                                   >> 344   G4double gamma = TotalEnergy/particleMass, gamma2 = gamma*gamma;
                                                   >> 345   G4double x=DeltaThreshold/KineticEnergy, x2 = x*x;
                                                   >> 346 
                                                   >> 347   G4double MaxKineticEnergyTransfer;
                                                   >> 348   if (&aParticleType==G4Electron::Electron())
                                                   >> 349                       MaxKineticEnergyTransfer = 0.5*KineticEnergy;
                                                   >> 350   else                MaxKineticEnergyTransfer =     KineticEnergy;
                                                   >> 351 
                                                   >> 352  // now you can calculate the total cross section
                                                   >> 353  //
                                                   >> 354  G4double TotalCrossSection = 0.; 
                                                   >> 355  if (MaxKineticEnergyTransfer > DeltaThreshold)
                                                   >> 356    {
                                                   >> 357     if (&aParticleType==G4Electron::Electron())   //Moller (e-e-) scattering
                                                   >> 358       {
                                                   >> 359         TotalCrossSection  = (gamma-1.)*(gamma-1.)*(0.5-x)/gamma2 + 1./x
                                                   >> 360                             - 1./(1.-x)-(2.*gamma-1.)*log((1.-x)/x)/gamma2; 
                                                   >> 361         TotalCrossSection /= betasquare; 
                                                   >> 362       }
                                                   >> 363     else                                         //Bhabha (e+e-) scattering
                                                   >> 364       {
                                                   >> 365        G4double y=1./(1.+gamma), y2 =y*y, y12=1.-2.*y;
                                                   >> 366        G4double b1=2.-y2, b2=y12*(3.+y2), b4=y12*y12*y12, b3=b4+y12*y12;
                                                   >> 367        TotalCrossSection = (1./x-1.)/betasquare+b1*log(x)+b2*(1.-x)
                                                   >> 368                           - b3*(1.-x2)/2.+b4*(1.-x2*x)/3.;
                                                   >> 369       }   
                                                   >> 370     TotalCrossSection *= (twopi_mc2_rcl2*AtomicNumber/KineticEnergy);
                                                   >> 371    }
                                                   >> 372  return TotalCrossSection ;
 82 }                                                 373 }
 83                                                   374 
 84 //....oooOO0OOooo........oooOO0OOooo........oo << 375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 85                                                   376 
 86 void G4eIonisation::InitialiseEnergyLossProces << 377 G4VParticleChange* G4eIonisation::PostStepDoIt( const G4Track& trackData,   
 87         const G4ParticleDefinition* part,      << 378                                                 const G4Step&  stepData)
 88         const G4ParticleDefinition*)           << 
 89 {                                                 379 {
 90   if(!isInitialised) {                         << 380   aParticleChange.Initialize(trackData);
 91     if(part != theElectron) { isElectron = fal << 381   
 92     if (nullptr == EmModel(0)) { SetEmModel(ne << 382   G4Material*               aMaterial = trackData.GetMaterial();
 93     G4EmParameters* param = G4EmParameters::In << 383   const G4DynamicParticle*  aParticle = trackData.GetDynamicParticle();
 94     EmModel(0)->SetLowEnergyLimit(param->MinKi << 384 
 95     EmModel(0)->SetHighEnergyLimit(param->MaxK << 385   G4double particleMass = aParticle->GetDefinition()->GetPDGMass();
 96     if (nullptr == FluctModel()) {             << 386   G4double Charge       = aParticle->GetDefinition()->GetPDGCharge();  
 97       SetFluctModel(G4EmStandUtil::ModelOfFluc << 387   G4double KineticEnergy = aParticle->GetKineticEnergy();
                                                   >> 388   G4double TotalEnergy = KineticEnergy + particleMass;
                                                   >> 389   G4double Psquare = KineticEnergy*(TotalEnergy+particleMass);
                                                   >> 390   G4double TotalMomentum = sqrt(Psquare);
                                                   >> 391   G4ParticleMomentum ParticleDirection = aParticle->GetMomentumDirection();
                                                   >> 392 
                                                   >> 393   // get kinetic energy cut for the electron
                                                   >> 394   G4double* DeltaCutInKineticEnergy = G4Electron::Electron()->GetEnergyCuts() ;
                                                   >> 395   G4double DeltaThreshold = DeltaCutInKineticEnergy[aMaterial->GetIndex()];
                                                   >> 396 
                                                   >> 397   // some kinematics
                                                   >> 398   G4double MaxKineticEnergyTransfer;
                                                   >> 399   if (Charge < 0.) MaxKineticEnergyTransfer = 0.5*KineticEnergy;
                                                   >> 400   else             MaxKineticEnergyTransfer =     KineticEnergy;
                                                   >> 401 
                                                   >> 402   // sampling kinetic energy of the delta ray 
                                                   >> 403 
                                                   >> 404   if (MaxKineticEnergyTransfer <= DeltaThreshold)
                                                   >> 405      // pathological case (should not happen, there is no change at all)
                                                   >> 406      return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData);
                                                   >> 407 
                                                   >> 408 
                                                   >> 409   // normal case
                                                   >> 410   G4double cc,y,y2,c2,b0,b1,b2,b3,b4,x,x1,grej,grejc;
                                                   >> 411  
                                                   >> 412   G4double tau = KineticEnergy/particleMass;
                                                   >> 413   G4double gamma = tau+1., gamma2=gamma*gamma;
                                                   >> 414   G4double xc = DeltaThreshold/KineticEnergy, xc1=1.-xc;
                                                   >> 415 
                                                   >> 416   if (Charge < 0.)  // Moller (e-e-) scattering
                                                   >> 417     { 
                                                   >> 418       b1=4./(9.*gamma2-10.*gamma+5.);
                                                   >> 419       b2=tau*tau*b1; b3=(2.*gamma2+2.*gamma-1.)*b1;
                                                   >> 420       cc=1.-2.*xc;       
                                                   >> 421       do { 
                                                   >> 422            x    = xc/(1.-cc*G4UniformRand()); x1 = 1.-x;
                                                   >> 423            grej = b2*x*x-b3*x/x1+b1*gamma2/(x1*x1);
                                                   >> 424          } while (G4UniformRand()>grej);
 98     }                                             425     }
 99     AddEmModel(1, EmModel(), FluctModel());    << 426   else             // Bhabha (e+e-) scattering
100     isInitialised = true;                      << 427     {
                                                   >> 428       y=1./(gamma+1.); y2=y*y; cc=1.-2.*y;
                                                   >> 429       b1=2.-y2; b2=cc*(3.+y2);
                                                   >> 430       c2=cc*cc; b4=c2*cc; b3=c2+b4;
                                                   >> 431       b0=gamma2/(gamma2-1.);
                                                   >> 432       grejc=(((b4*xc-b3)*xc+b2)*xc-b1)*xc+b0;
                                                   >> 433       do {
                                                   >> 434            x    = xc/(1.-xc1*G4UniformRand());
                                                   >> 435            grej = ((((b4*x-b3)*x+b2)*x-b1)*x+b0)/grejc;
                                                   >> 436          } while (G4UniformRand()>grej);
                                                   >> 437     }
                                                   >> 438  
                                                   >> 439     G4double DeltaKineticEnergy = x * KineticEnergy;
                                                   >> 440 
                                                   >> 441   // protection :do not produce a secondary with 0. kinetic energy !
                                                   >> 442   if (DeltaKineticEnergy <= 0.)
                                                   >> 443      return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData);
                                                   >> 444 
                                                   >> 445   G4double DeltaTotalMomentum = sqrt(DeltaKineticEnergy*(DeltaKineticEnergy +
                                                   >> 446                                                       2.*electron_mass_c2 ));
                                                   >> 447    
                                                   >> 448   G4double costheta = DeltaKineticEnergy * (TotalEnergy + electron_mass_c2)
                                                   >> 449                       /(DeltaTotalMomentum * TotalMomentum);
                                                   >> 450 
                                                   >> 451   if (costheta < -1.) costheta = -1.;
                                                   >> 452   if (costheta > +1.) costheta = +1.;
                                                   >> 453 
                                                   >> 454   //  direction of the delta electron
                                                   >> 455 
                                                   >> 456   G4double phi = twopi * G4UniformRand(); 
                                                   >> 457   G4double sintheta = sqrt((1.+costheta)*(1.-costheta));
                                                   >> 458   G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta;
                                                   >> 459 
                                                   >> 460   G4ThreeVector DeltaDirection(dirx,diry,dirz);
                                                   >> 461   DeltaDirection.rotateUz(ParticleDirection);
                                                   >> 462 
                                                   >> 463   // create G4DynamicParticle object for delta ray
                                                   >> 464 
                                                   >> 465   G4DynamicParticle* theDeltaRay = new G4DynamicParticle;
                                                   >> 466   theDeltaRay->SetKineticEnergy( DeltaKineticEnergy );
                                                   >> 467   theDeltaRay->SetMomentumDirection(
                                                   >> 468                    DeltaDirection.x(),DeltaDirection.y(),DeltaDirection.z()); 
                                                   >> 469   theDeltaRay->SetDefinition(G4Electron::Electron());
                                                   >> 470    
                                                   >> 471   // fill aParticleChange 
                                                   >> 472   // changed energy and momentum of the actual particle
                                                   >> 473   G4double finalKineticEnergy = KineticEnergy - DeltaKineticEnergy;
                                                   >> 474   
                                                   >> 475   G4double Edep = 0.;
                                                   >> 476 
                                                   >> 477   if (finalKineticEnergy > MinKineticEnergy)
                                                   >> 478     {
                                                   >> 479       G4double finalPx = TotalMomentum*ParticleDirection.x()
                                                   >> 480                         - DeltaTotalMomentum*DeltaDirection.x(); 
                                                   >> 481       G4double finalPy = TotalMomentum*ParticleDirection.y()
                                                   >> 482                         - DeltaTotalMomentum*DeltaDirection.y(); 
                                                   >> 483       G4double finalPz = TotalMomentum*ParticleDirection.z()
                                                   >> 484                         - DeltaTotalMomentum*DeltaDirection.z(); 
                                                   >> 485       G4double finalMomentum =
                                                   >> 486                 sqrt(finalPx*finalPx+finalPy*finalPy+finalPz*finalPz);
                                                   >> 487       finalPx /= finalMomentum;
                                                   >> 488       finalPy /= finalMomentum;
                                                   >> 489       finalPz /= finalMomentum; 
                                                   >> 490 
                                                   >> 491       aParticleChange.SetMomentumChange(finalPx, finalPy, finalPz);
                                                   >> 492     }
                                                   >> 493   else
                                                   >> 494     {
                                                   >> 495       Edep = finalKineticEnergy;
                                                   >> 496       finalKineticEnergy = 0.;      
                                                   >> 497       if (Charge < 0.) aParticleChange.SetStatusChange(fStopAndKill);
                                                   >> 498       else             aParticleChange.SetStatusChange(fStopButAlive);
                                                   >> 499     }
                                                   >> 500       
                                                   >> 501   aParticleChange.SetEnergyChange(finalKineticEnergy);
                                                   >> 502   aParticleChange.SetNumberOfSecondaries(1);  
                                                   >> 503   aParticleChange.AddSecondary(theDeltaRay);
                                                   >> 504   aParticleChange.SetLocalEnergyDeposit(Edep);
                                                   >> 505       
                                                   >> 506   return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData);
                                                   >> 507 }
                                                   >> 508 
                                                   >> 509 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 510 
                                                   >> 511 G4bool G4eIonisation::StorePhysicsTable(G4ParticleDefinition* particle,
                                                   >> 512                       const G4String& directory, 
                                                   >> 513                       G4bool          ascii)
                                                   >> 514 {
                                                   >> 515   G4String filename;
                                                   >> 516   
                                                   >> 517   // store stopping power table
                                                   >> 518   filename = GetPhysicsTableFileName(particle,directory,"StoppingPower",ascii);
                                                   >> 519   if ( !theLossTable->StorePhysicsTable(filename, ascii) ){
                                                   >> 520     G4cout << " FAIL theLossTable->StorePhysicsTable in " << filename
                                                   >> 521            << G4endl;
                                                   >> 522     return false;
101   }                                               523   }
                                                   >> 524   // store mean free path table
                                                   >> 525   filename = GetPhysicsTableFileName(particle,directory,"MeanFreePath",ascii);
                                                   >> 526   if ( !theMeanFreePathTable->StorePhysicsTable(filename, ascii) ){
                                                   >> 527     G4cout << " FAIL theMeanFreePathTable->StorePhysicsTable in " << filename
                                                   >> 528            << G4endl;
                                                   >> 529     return false;
                                                   >> 530   }
                                                   >> 531   
                                                   >> 532   G4cout << GetProcessName() << " for " << particle->GetParticleName() 
                                                   >> 533          << ": Success to store the PhysicsTables in "  
                                                   >> 534          << directory << G4endl;
                                                   >> 535   return true;
102 }                                                 536 }
103                                                   537 
104 //....oooOO0OOooo........oooOO0OOooo........oo << 538 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
105                                                   539 
106 void G4eIonisation::ProcessDescription(std::os << 540 G4bool G4eIonisation::RetrievePhysicsTable(G4ParticleDefinition* particle,
                                                   >> 541                    const G4String& directory, 
                                                   >> 542                          G4bool          ascii)
107 {                                                 543 {
108   out << "  Ionisation";                       << 544   // delete theLossTable and theMeanFreePathTable
109   G4VEnergyLossProcess::ProcessDescription(out << 545   if (theLossTable != 0) {
                                                   >> 546     theLossTable->clearAndDestroy();
                                                   >> 547     delete theLossTable; 
                                                   >> 548   }   
                                                   >> 549   if (theMeanFreePathTable != 0) {
                                                   >> 550     theMeanFreePathTable->clearAndDestroy();
                                                   >> 551     delete theMeanFreePathTable;
                                                   >> 552   }
                                                   >> 553 
                                                   >> 554   // get bining from EnergyLoss
                                                   >> 555   LowestKineticEnergy  = GetLowerBoundEloss();
                                                   >> 556   HighestKineticEnergy = GetUpperBoundEloss();
                                                   >> 557   TotBin               = GetNbinEloss();
                                                   >> 558   
                                                   >> 559   G4String filename;
                                                   >> 560   
                                                   >> 561   // retreive stopping power table
                                                   >> 562   filename = GetPhysicsTableFileName(particle,directory,"StoppingPower",ascii);
                                                   >> 563   theLossTable = new G4PhysicsTable(G4Material::GetNumberOfMaterials());
                                                   >> 564   if ( !theLossTable->RetrievePhysicsTable(filename, ascii) ){
                                                   >> 565     G4cout << " FAIL theLossTable->RetrievePhysicsTable in " << filename
                                                   >> 566            << G4endl;  
                                                   >> 567     return false;
                                                   >> 568   }
                                                   >> 569   
                                                   >> 570   // retreive mean free path table
                                                   >> 571   filename = GetPhysicsTableFileName(particle,directory,"MeanFreePath",ascii);
                                                   >> 572   theMeanFreePathTable = new G4PhysicsTable(G4Material::GetNumberOfMaterials());
                                                   >> 573   if ( !theMeanFreePathTable->RetrievePhysicsTable(filename, ascii) ){
                                                   >> 574     G4cout << " FAIL theMeanFreePathTable->RetrievePhysicsTable in " << filename
                                                   >> 575            << G4endl;  
                                                   >> 576     return false;
                                                   >> 577   }
                                                   >> 578   
                                                   >> 579   G4cout << GetProcessName() << " for " << particle->GetParticleName()
                                                   >> 580          << ": Success to retrieve the PhysicsTables from "
                                                   >> 581          << directory << G4endl;
                                                   >> 582    
                                                   >> 583   if (particle==G4Electron::Electron())
                                                   >> 584     {
                                                   >> 585      RecorderOfElectronProcess[CounterOfElectronProcess] = (*this).theLossTable;
                                                   >> 586      CounterOfElectronProcess++;
                                                   >> 587     }
                                                   >> 588   else
                                                   >> 589     {
                                                   >> 590      RecorderOfPositronProcess[CounterOfPositronProcess] = (*this).theLossTable;
                                                   >> 591      CounterOfPositronProcess++;
                                                   >> 592     }
                                                   >> 593    
                                                   >> 594   BuildDEDXTable(*particle);
                                                   >> 595      
                                                   >> 596   return true;
110 }                                                 597 }
                                                   >> 598  
                                                   >> 599 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 600  
                                                   >> 601 void G4eIonisation::PrintInfoDefinition()
                                                   >> 602 {
                                                   >> 603   G4String comments = "delta cross sections from Moller+Bhabha. "
                                                   >> 604             "Good description from 1 KeV to 100 GeV.\n"
                                                   >> 605             "        delta ray energy sampled from  differential Xsection.";
                                                   >> 606                      
                                                   >> 607   G4cout << G4endl << GetProcessName() << ":  " << comments
                                                   >> 608          << "\n        PhysicsTables from "
                                                   >> 609    << G4BestUnit(LowerBoundLambda,"Energy")
                                                   >> 610          << " to " << G4BestUnit(UpperBoundLambda,"Energy") 
                                                   >> 611          << " in " << NbinLambda << " bins. \n";
                                                   >> 612 }         
111                                                   613 
112 //....oooOO0OOooo........oooOO0OOooo........oo    614 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
113                                                   615