Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4eCoulombScatteringModel.cc,v 1.91 2010-11-13 18:45:55 vnivanch Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class file 31 // GEANT4 Class file 30 // 32 // 31 // 33 // 32 // File name: G4eCoulombScatteringModel 34 // File name: G4eCoulombScatteringModel 33 // 35 // 34 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 35 // 37 // 36 // Creation date: 22.08.2005 38 // Creation date: 22.08.2005 37 // 39 // 38 // Modifications: V.Ivanchenko << 40 // Modifications: 39 // 41 // >> 42 // 01.08.06 V.Ivanchenko extend upper limit of table to TeV and review the >> 43 // logic of building - only elements from G4ElementTable >> 44 // 08.08.06 V.Ivanchenko build internal table in ekin scale, introduce faclim >> 45 // 19.08.06 V.Ivanchenko add inline function ScreeningParameter >> 46 // 09.10.07 V.Ivanchenko reorganized methods, add cut dependence in scattering off e- >> 47 // 09.06.08 V.Ivanchenko add SelectIsotope and sampling of the recoil ion >> 48 // 16.06.09 C.Consolandi fixed computation of effective mass >> 49 // 27.05.10 V.Ivanchenko added G4WentzelOKandVIxSection class to >> 50 // compute cross sections and sample scattering angle 40 // 51 // 41 // 52 // 42 // Class Description: 53 // Class Description: 43 // 54 // 44 // ------------------------------------------- 55 // ------------------------------------------------------------------- 45 // 56 // 46 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 47 //....oooOO0OOooo........oooOO0OOooo........oo 58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 48 59 49 #include "G4eCoulombScatteringModel.hh" 60 #include "G4eCoulombScatteringModel.hh" 50 #include "G4PhysicalConstants.hh" << 51 #include "G4SystemOfUnits.hh" << 52 #include "Randomize.hh" 61 #include "Randomize.hh" 53 #include "G4DataVector.hh" 62 #include "G4DataVector.hh" 54 #include "G4ElementTable.hh" 63 #include "G4ElementTable.hh" 55 #include "G4ParticleChangeForGamma.hh" 64 #include "G4ParticleChangeForGamma.hh" 56 #include "G4Proton.hh" 65 #include "G4Proton.hh" 57 #include "G4ParticleTable.hh" 66 #include "G4ParticleTable.hh" 58 #include "G4IonTable.hh" << 59 #include "G4ProductionCutsTable.hh" 67 #include "G4ProductionCutsTable.hh" 60 #include "G4NucleiProperties.hh" 68 #include "G4NucleiProperties.hh" 61 #include "G4Pow.hh" 69 #include "G4Pow.hh" >> 70 #include "G4LossTableManager.hh" >> 71 #include "G4ProcessManager.hh" 62 #include "G4NistManager.hh" 72 #include "G4NistManager.hh" 63 73 64 //....oooOO0OOooo........oooOO0OOooo........oo 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 65 75 66 using namespace std; 76 using namespace std; 67 77 68 G4eCoulombScatteringModel::G4eCoulombScatterin << 78 G4eCoulombScatteringModel::G4eCoulombScatteringModel(const G4String& nam) 69 : G4VEmModel("eCoulombScattering"), isCombin << 79 : G4VEmModel(nam), >> 80 cosThetaMin(1.0), >> 81 cosThetaMax(-1.0), >> 82 isInitialised(false) 70 { 83 { 71 fNistManager = G4NistManager::Instance(); 84 fNistManager = G4NistManager::Instance(); 72 theIonTable = G4ParticleTable::GetParticleT << 85 theParticleTable = G4ParticleTable::GetParticleTable(); 73 theProton = G4Proton::Proton(); << 86 theProton = G4Proton::Proton(); >> 87 currentMaterial = 0; >> 88 currentElement = 0; >> 89 lowEnergyLimit = 1*keV; >> 90 recoilThreshold = 0.*keV; >> 91 particle = 0; >> 92 currentCouple = 0; >> 93 wokvi = new G4WentzelOKandVIxSection(); 74 94 75 wokvi = new G4WentzelOKandVIxSection(isCombi << 95 currentMaterialIndex = 0; 76 96 77 mass = CLHEP::proton_mass_c2; << 97 cosTetMinNuc = 1.0; >> 98 cosTetMaxNuc = -1.0; >> 99 elecRatio = 0.0; >> 100 mass = proton_mass_c2; 78 } 101 } 79 102 80 //....oooOO0OOooo........oooOO0OOooo........oo 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 104 82 G4eCoulombScatteringModel::~G4eCoulombScatteri 105 G4eCoulombScatteringModel::~G4eCoulombScatteringModel() 83 { 106 { 84 delete wokvi; 107 delete wokvi; 85 } 108 } 86 109 87 //....oooOO0OOooo........oooOO0OOooo........oo 110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 88 111 89 void G4eCoulombScatteringModel::Initialise(con << 112 void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* p, 90 const G4DataVector& cuts) 113 const G4DataVector& cuts) 91 { 114 { 92 SetupParticle(part); << 115 SetupParticle(p); 93 currentCouple = nullptr; << 116 currentCouple = 0; 94 << 117 cosThetaMin = cos(PolarAngleLimit()); 95 G4double tet = PolarAngleLimit(); << 118 wokvi->Initialise(p, cosThetaMin); 96 << 97 // defined theta limit between single and mu << 98 if(isCombined) { << 99 if(tet >= CLHEP::pi) { cosThetaMin = -1.0; << 100 else if(tet > 0.0) { cosThetaMin = std::co << 101 << 102 // single scattering without multiple << 103 } else if(tet > 0.0) { << 104 cosThetaMin = std::cos(std::min(tet, CLHEP << 105 } << 106 << 107 wokvi->Initialise(part, cosThetaMin); << 108 pCuts = &cuts; << 109 /* 119 /* 110 G4cout << "G4eCoulombScatteringModel::Initia << 120 G4cout << "G4eCoulombScatteringModel: factorA2(GeV^2) = " << factorA2/(GeV*GeV) 111 << part->GetParticleName() << " 1-cos(Tet << 121 << " 1-cos(ThetaLimit)= " << 1 - cosThetaMin 112 << " 1-cos(TetMax)= " << 1. - cosThetaMax << 122 << " cos(thetaMax)= " << cosThetaMax 113 G4cout << "cut[0]= " << (*pCuts)[0] << G4end << 123 << G4endl; 114 */ 124 */ 115 if(nullptr == fParticleChange) { << 125 pCuts = G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(3); >> 126 //G4cout << "!!! G4eCoulombScatteringModel::Initialise for " >> 127 // << p->GetParticleName() << " cos(TetMin)= " << cosThetaMin >> 128 // << " cos(TetMax)= " << cosThetaMax <<G4endl; >> 129 // G4cout << "cut0= " << cuts[0] << " cut1= " << cuts[1] << G4endl; >> 130 if(!isInitialised) { >> 131 isInitialised = true; 116 fParticleChange = GetParticleChangeForGamm 132 fParticleChange = GetParticleChangeForGamma(); 117 } 133 } 118 if(IsMaster() && mass < GeV && part->GetPart << 134 if(mass < GeV && particle->GetParticleType() != "nucleus") { 119 InitialiseElementSelectors(part, cuts); << 135 InitialiseElementSelectors(p,cuts); 120 } 136 } 121 } 137 } 122 138 123 //....oooOO0OOooo........oooOO0OOooo........oo 139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 124 140 125 void G4eCoulombScatteringModel::InitialiseLoca << 126 G4VEmModel* masterModel) << 127 { << 128 SetElementSelectors(masterModel->GetElementS << 129 } << 130 << 131 //....oooOO0OOooo........oooOO0OOooo........oo << 132 << 133 G4double << 134 G4eCoulombScatteringModel::MinPrimaryEnergy(co << 135 const G4ParticleDefinition* part << 136 G4double) << 137 { << 138 SetupParticle(part); << 139 << 140 // define cut using cuts for proton << 141 G4double cut = << 142 std::max(recoilThreshold, (*pCuts)[Current << 143 << 144 // find out lightest element << 145 const G4ElementVector* theElementVector = ma << 146 std::size_t nelm = material->GetNumberOfElem << 147 << 148 // select lightest element << 149 G4int Z = 300; << 150 for (std::size_t j=0; j<nelm; ++j) { << 151 Z = std::min(Z,(*theElementVector)[j]->Get << 152 } << 153 G4int A = G4lrint(fNistManager->GetAtomicMas << 154 G4double targetMass = G4NucleiProperties::Ge << 155 G4double t = std::max(cut, 0.5*(cut + sqrt(2 << 156 << 157 return t; << 158 } << 159 << 160 //....oooOO0OOooo........oooOO0OOooo........oo << 161 << 162 G4double G4eCoulombScatteringModel::ComputeCro 141 G4double G4eCoulombScatteringModel::ComputeCrossSectionPerAtom( 163 const G4ParticleDefinition* p, 142 const G4ParticleDefinition* p, 164 G4double kinEnergy, 143 G4double kinEnergy, 165 G4double Z, G4double, 144 G4double Z, G4double, 166 G4double cutEnergy, G4double) 145 G4double cutEnergy, G4double) 167 { 146 { 168 /* << 147 //G4cout << "### G4eCoulombScatteringModel::ComputeCrossSectionPerAtom for " 169 G4cout << "### G4eCoulombScatteringModel::Co << 148 // << p->GetParticleName()<<" Z= "<<Z<<" e(MeV)= "<< kinEnergy/MeV << G4endl; 170 << p->GetParticleName()<<" Z= "<<Z<<" e(MeV << 149 G4double xsec = 0.0; 171 << G4endl; << 172 */ << 173 G4double cross = 0.0; << 174 elecRatio = 0.0; << 175 if(p != particle) { SetupParticle(p); } 150 if(p != particle) { SetupParticle(p); } 176 151 177 // cross section is set to zero to avoid pro 152 // cross section is set to zero to avoid problems in sample secondary 178 if(kinEnergy <= 0.0) { return cross; } << 153 if(kinEnergy <= 0.0) { return xsec; } 179 DefineMaterial(CurrentCouple()); 154 DefineMaterial(CurrentCouple()); 180 G4double costmin = wokvi->SetupKinematic(kin << 155 cosTetMinNuc = wokvi->SetupKinematic(kinEnergy, currentMaterial); 181 << 156 if(cosThetaMax < cosTetMinNuc) { 182 //G4cout << "cosThetaMax= "<<cosThetaMax<<" << 157 G4int iz = G4int(Z); 183 << 158 cosTetMinNuc = wokvi->SetupTarget(iz, cutEnergy); 184 if(cosThetaMax < costmin) { << 159 cosTetMaxNuc = cosThetaMax; 185 G4int iz = G4lrint(Z); << 160 if(iz == 1 && cosTetMaxNuc < 0.0 && particle == theProton) { 186 G4double cut = (0.0 < fixedCut) ? fixedCut << 161 cosTetMaxNuc = 0.0; 187 costmin = wokvi->SetupTarget(iz, cut); << 188 //G4cout << "SetupTarget: Z= " << iz << " << 189 // << costmin << G4endl; << 190 G4double costmax = (1 == iz && particle == << 191 ? 0.0 : cosThetaMax; << 192 if(costmin > costmax) { << 193 cross = wokvi->ComputeNuclearCrossSectio << 194 + wokvi->ComputeElectronCrossSection(c << 195 } 162 } 196 /* << 163 xsec = wokvi->ComputeNuclearCrossSection(cosTetMinNuc, cosTetMaxNuc); 197 if(p->GetParticleName() == "e-") << 164 elecRatio = wokvi->ComputeElectronCrossSection(cosTetMinNuc, cosThetaMax); 198 G4cout << "Z= " << Z << " e(MeV)= " << kin << 165 xsec += elecRatio; 199 << " cross(b)= " << cross/barn << " 1-cos << 166 if(xsec > 0.0) { elecRatio /= xsec; } 200 << " 1-costmax= " << 1-costmax << 201 << " 1-cosThetaMax= " << 1-cosThetaMax << 202 << " " << currentMaterial->GetName() << 203 << G4endl; << 204 */ << 205 } 167 } 206 //G4cout << "====== cross= " << cross << G4e << 168 /* 207 return cross; << 169 G4cout << "e(MeV)= " << kinEnergy/MeV << " xsec(b)= " << xsec/barn >> 170 << " 1-cosTetMinNuc= " << 1-cosTetMinNuc >> 171 << " 1-cosTetMaxNuc2= " << 1-cosTetMaxNuc2 >> 172 << " 1-cosTetMaxElec= " << 1-cosTetMaxElec >> 173 << " screenZ= " << screenZ >> 174 << " formfactA= " << formfactA << G4endl; >> 175 */ >> 176 return xsec; 208 } 177 } 209 178 210 //....oooOO0OOooo........oooOO0OOooo........oo 179 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 211 180 212 void G4eCoulombScatteringModel::SampleSecondar 181 void G4eCoulombScatteringModel::SampleSecondaries( 213 std::vector<G4DynamicParticle* 182 std::vector<G4DynamicParticle*>* fvect, 214 const G4MaterialCutsCouple* couple, 183 const G4MaterialCutsCouple* couple, 215 const G4DynamicParticle* dp, 184 const G4DynamicParticle* dp, 216 G4double cutEnergy, 185 G4double cutEnergy, 217 G4double) 186 G4double) 218 { 187 { 219 G4double kinEnergy = dp->GetKineticEnergy(); 188 G4double kinEnergy = dp->GetKineticEnergy(); >> 189 if(kinEnergy < lowEnergyLimit) { >> 190 fParticleChange->SetProposedKineticEnergy(0.0); >> 191 fParticleChange->ProposeLocalEnergyDeposit(kinEnergy); >> 192 fParticleChange->ProposeNonIonizingEnergyDeposit(kinEnergy); >> 193 if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0) >> 194 { fParticleChange->ProposeTrackStatus(fStopButAlive); } >> 195 else { fParticleChange->ProposeTrackStatus(fStopAndKill); } >> 196 return; >> 197 } 220 SetupParticle(dp->GetDefinition()); 198 SetupParticle(dp->GetDefinition()); 221 DefineMaterial(couple); 199 DefineMaterial(couple); 222 /* << 223 G4cout << "G4eCoulombScatteringModel::Sample << 224 << kinEnergy << " " << particle->GetPart << 225 << " cut= " << cutEnergy<< G4endl; << 226 */ << 227 // Choose nucleus << 228 G4double cut = (0.0 < fixedCut) ? fixedCut : << 229 200 230 wokvi->SetupKinematic(kinEnergy, currentMate << 201 //G4cout << "G4eCoulombScatteringModel::SampleSecondaries e(MeV)= " >> 202 // << kinEnergy << " " << particle->GetParticleName() >> 203 // << " cut= " << cutEnergy<< G4endl; >> 204 >> 205 // Choose nucleus >> 206 currentElement = SelectRandomAtom(couple,particle, >> 207 kinEnergy,cutEnergy,kinEnergy); 231 208 232 const G4Element* currentElement = SelectTarg << 209 G4double Z = currentElement->GetZ(); 233 dp->Get << 210 234 G4int iz = currentElement->GetZasInt(); << 211 if(ComputeCrossSectionPerAtom(particle,kinEnergy, Z, 235 << 212 kinEnergy, cutEnergy, kinEnergy) == 0.0) 236 G4double costmin = wokvi->SetupTarget(iz, cu << 213 { return; } 237 G4double costmax = (1 == iz && particle == t << 238 ? 0.0 : cosThetaMax; << 239 if(costmin <= costmax) { return; } << 240 << 241 G4double cross = wokvi->ComputeNuclearCrossS << 242 G4double ecross = wokvi->ComputeElectronCros << 243 G4double ratio = ecross/(cross + ecross); << 244 214 >> 215 G4int iz = G4int(Z); 245 G4int ia = SelectIsotopeNumber(currentElemen 216 G4int ia = SelectIsotopeNumber(currentElement); 246 G4double targetMass = G4NucleiProperties::Ge 217 G4double targetMass = G4NucleiProperties::GetNuclearMass(ia, iz); 247 wokvi->SetTargetMass(targetMass); << 248 218 249 G4ThreeVector newDirection = 219 G4ThreeVector newDirection = 250 wokvi->SampleSingleScattering(costmin, cos << 220 wokvi->SampleSingleScattering(cosTetMinNuc, cosThetaMax, elecRatio); 251 G4double cost = newDirection.z(); 221 G4double cost = newDirection.z(); 252 /* << 222 253 G4cout << "SampleSec: e(MeV)= " << kinEn << 254 << " 1-costmin= " << 1-costmin << 255 << " 1-costmax= " << 1-costmax << 256 << " 1-cost= " << 1-cost << 257 << " ratio= " << ratio << 258 << G4endl; << 259 */ << 260 G4ThreeVector direction = dp->GetMomentumDir 223 G4ThreeVector direction = dp->GetMomentumDirection(); 261 newDirection.rotateUz(direction); 224 newDirection.rotateUz(direction); 262 225 263 fParticleChange->ProposeMomentumDirection(ne 226 fParticleChange->ProposeMomentumDirection(newDirection); 264 227 265 // recoil sampling assuming a small recoil 228 // recoil sampling assuming a small recoil 266 // and first order correction to primary 4-m 229 // and first order correction to primary 4-momentum 267 G4double mom2 = wokvi->GetMomentumSquare(); 230 G4double mom2 = wokvi->GetMomentumSquare(); 268 G4double trec = mom2*(1.0 - cost) << 231 G4double trec = mom2*(1.0 - cost)/(targetMass + (mass + kinEnergy)*(1.0 - cost)); 269 /(targetMass + (mass + kinEnergy)*(1.0 - c << 270 << 271 // the check likely not needed << 272 trec = std::min(trec, kinEnergy); << 273 G4double finalT = kinEnergy - trec; 232 G4double finalT = kinEnergy - trec; 274 G4double edep = 0.0; << 233 //G4cout<<"G4eCoulombScatteringModel: finalT= "<<finalT<<" Trec= "<<trec<<G4endl; 275 /* << 234 if(finalT <= lowEnergyLimit) { 276 G4cout<<"G4eCoulombScatteringModel: finalT << 235 trec = kinEnergy; 277 <<trec << " Z= " << iz << " A= " << ia << 236 finalT = 0.0; 278 << " tcut(keV)= " << (*pCuts)[currentMater << 237 if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0) 279 */ << 238 { fParticleChange->ProposeTrackStatus(fStopButAlive); } >> 239 else { fParticleChange->ProposeTrackStatus(fStopAndKill); } >> 240 } >> 241 >> 242 fParticleChange->SetProposedKineticEnergy(finalT); 280 G4double tcut = recoilThreshold; 243 G4double tcut = recoilThreshold; 281 if(pCuts) { tcut= std::max(tcut,(*pCuts)[cur 244 if(pCuts) { tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]); } 282 245 283 if(trec > tcut) { 246 if(trec > tcut) { 284 G4ParticleDefinition* ion = theIonTable->G << 247 G4ParticleDefinition* ion = theParticleTable->FindIon(iz, ia, 0, iz); 285 G4ThreeVector dir = (direction*sqrt(mom2) 248 G4ThreeVector dir = (direction*sqrt(mom2) - 286 newDirection*sqrt(finalT*(2*mass + fina 249 newDirection*sqrt(finalT*(2*mass + finalT))).unit(); 287 auto newdp = new G4DynamicParticle(ion, di << 250 G4DynamicParticle* newdp = new G4DynamicParticle(ion, dir, trec); 288 fvect->push_back(newdp); 251 fvect->push_back(newdp); 289 } else { 252 } else { 290 edep = trec; << 253 fParticleChange->ProposeLocalEnergyDeposit(trec); 291 fParticleChange->ProposeNonIonizingEnergyD << 254 fParticleChange->ProposeNonIonizingEnergyDeposit(trec); 292 } 255 } 293 << 256 294 // finelize primary energy and energy bala << 257 return; 295 // this threshold may be applied only beca << 296 // e+e- msc model is applied << 297 if(finalT < 0.0) { << 298 edep += finalT; << 299 finalT = 0.0; << 300 } << 301 edep = std::max(edep, 0.0); << 302 fParticleChange->SetProposedKineticEnergy(fi << 303 fParticleChange->ProposeLocalEnergyDeposit(e << 304 } 258 } 305 259 306 //....oooOO0OOooo........oooOO0OOooo........oo 260 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 261 >> 262 307 263