Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4eCoulombScatteringModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4eCoulombScatteringModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4eCoulombScatteringModel.cc (Version 9.3.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4eCoulombScatteringModel.cc,v 1.78.2.1 2010/04/06 09:14:44 gcosmo Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-03-patch-01 $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4eCoulombScatteringModel        34 // File name:     G4eCoulombScatteringModel
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko              36 // Author:        Vladimir Ivanchenko 
 35 //                                                 37 //
 36 // Creation date: 22.08.2005                       38 // Creation date: 22.08.2005
 37 //                                                 39 //
 38 // Modifications: V.Ivanchenko                 <<  40 // Modifications:
 39 //                                                 41 //
                                                   >>  42 // 01.08.06 V.Ivanchenko extend upper limit of table to TeV and review the
                                                   >>  43 //          logic of building - only elements from G4ElementTable
                                                   >>  44 // 08.08.06 V.Ivanchenko build internal table in ekin scale, introduce faclim
                                                   >>  45 // 19.08.06 V.Ivanchenko add inline function ScreeningParameter 
                                                   >>  46 // 09.10.07 V.Ivanchenko reorganized methods, add cut dependence in scattering off e- 
                                                   >>  47 // 09.06.08 V.Ivanchenko add SelectIsotope and sampling of the recoil ion 
                                                   >>  48 // 16.06.09 C.Consolandi fixed computation of effective mass
 40 //                                                 49 //
 41 //                                                 50 //
 42 // Class Description:                              51 // Class Description:
 43 //                                                 52 //
 44 // -------------------------------------------     53 // -------------------------------------------------------------------
 45 //                                                 54 //
 46 //....oooOO0OOooo........oooOO0OOooo........oo     55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 47 //....oooOO0OOooo........oooOO0OOooo........oo     56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 48                                                    57 
 49 #include "G4eCoulombScatteringModel.hh"            58 #include "G4eCoulombScatteringModel.hh"
 50 #include "G4PhysicalConstants.hh"              << 
 51 #include "G4SystemOfUnits.hh"                  << 
 52 #include "Randomize.hh"                            59 #include "Randomize.hh"
 53 #include "G4DataVector.hh"                         60 #include "G4DataVector.hh"
 54 #include "G4ElementTable.hh"                       61 #include "G4ElementTable.hh"
                                                   >>  62 #include "G4PhysicsLogVector.hh"
 55 #include "G4ParticleChangeForGamma.hh"             63 #include "G4ParticleChangeForGamma.hh"
                                                   >>  64 #include "G4Electron.hh"
                                                   >>  65 #include "G4Positron.hh"
 56 #include "G4Proton.hh"                             66 #include "G4Proton.hh"
 57 #include "G4ParticleTable.hh"                      67 #include "G4ParticleTable.hh"
 58 #include "G4IonTable.hh"                       << 
 59 #include "G4ProductionCutsTable.hh"                68 #include "G4ProductionCutsTable.hh"
 60 #include "G4NucleiProperties.hh"                   69 #include "G4NucleiProperties.hh"
 61 #include "G4Pow.hh"                            << 
 62 #include "G4NistManager.hh"                    << 
 63                                                    70 
 64 //....oooOO0OOooo........oooOO0OOooo........oo     71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 65                                                    72 
                                                   >>  73 G4double G4eCoulombScatteringModel::ScreenRSquare[] = {0.0};
                                                   >>  74 G4double G4eCoulombScatteringModel::FormFactor[]    = {0.0};
                                                   >>  75 
 66 using namespace std;                               76 using namespace std;
 67                                                    77 
 68 G4eCoulombScatteringModel::G4eCoulombScatterin <<  78 G4eCoulombScatteringModel::G4eCoulombScatteringModel(const G4String& nam)
 69   : G4VEmModel("eCoulombScattering"), isCombin <<  79   : G4VEmModel(nam),
                                                   >>  80     cosThetaMin(1.0),
                                                   >>  81     cosThetaMax(-1.0),
                                                   >>  82     q2Limit(TeV*TeV),
                                                   >>  83     alpha2(fine_structure_const*fine_structure_const),
                                                   >>  84     faclim(100.0),
                                                   >>  85     isInitialised(false)
 70 {                                                  86 {
 71   fNistManager = G4NistManager::Instance();        87   fNistManager = G4NistManager::Instance();
 72   theIonTable  = G4ParticleTable::GetParticleT <<  88   theParticleTable = G4ParticleTable::GetParticleTable();
 73   theProton    = G4Proton::Proton();           <<  89   theElectron = G4Electron::Electron();
 74                                                <<  90   thePositron = G4Positron::Positron();
 75   wokvi = new G4WentzelOKandVIxSection(isCombi <<  91   theProton   = G4Proton::Proton();
 76                                                <<  92   currentMaterial = 0; 
 77   mass = CLHEP::proton_mass_c2;                <<  93   currentElement  = 0;
                                                   >>  94   lowEnergyLimit  = 100*eV;
                                                   >>  95   G4double p0 = electron_mass_c2*classic_electr_radius;
                                                   >>  96   coeff  = twopi*p0*p0;
                                                   >>  97   tkin = targetZ = mom2 = etag = 0.0;
                                                   >>  98   elecXSection = nucXSection = 0.0;
                                                   >>  99   recoilThreshold = 0.*keV;
                                                   >> 100   ecut = DBL_MAX;
                                                   >> 101   particle = 0;
                                                   >> 102   currentCouple = 0;
                                                   >> 103 
                                                   >> 104   // Thomas-Fermi screening radii
                                                   >> 105   // Formfactors from A.V. Butkevich et al., NIM A 488 (2002) 282
                                                   >> 106 
                                                   >> 107   if(0.0 == ScreenRSquare[0]) {
                                                   >> 108     G4double a0 = electron_mass_c2/0.88534; 
                                                   >> 109     G4double constn = 6.937e-6/(MeV*MeV);
                                                   >> 110 
                                                   >> 111     ScreenRSquare[0] = alpha2*a0*a0;
                                                   >> 112     for(G4int j=1; j<100; ++j) {
                                                   >> 113       G4double x = a0*fNistManager->GetZ13(j);
                                                   >> 114       ScreenRSquare[j] = alpha2*x*x;
                                                   >> 115       x = fNistManager->GetA27(j); 
                                                   >> 116       FormFactor[j] = constn*x*x;
                                                   >> 117     } 
                                                   >> 118   }
 78 }                                                 119 }
 79                                                   120 
 80 //....oooOO0OOooo........oooOO0OOooo........oo    121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 81                                                   122 
 82 G4eCoulombScatteringModel::~G4eCoulombScatteri    123 G4eCoulombScatteringModel::~G4eCoulombScatteringModel()
 83 {                                              << 124 {}
 84   delete wokvi;                                << 
 85 }                                              << 
 86                                                   125 
 87 //....oooOO0OOooo........oooOO0OOooo........oo    126 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 88                                                   127 
 89 void G4eCoulombScatteringModel::Initialise(con << 128 void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* p,
 90              const G4DataVector& cuts)            129              const G4DataVector& cuts)
 91 {                                                 130 {
 92   SetupParticle(part);                         << 131   SetupParticle(p);
 93   currentCouple = nullptr;                     << 132   currentCouple = 0;
 94                                                << 133   elecXSection = nucXSection = 0.0;
 95   G4double tet = PolarAngleLimit();            << 134   tkin = targetZ = mom2 = DBL_MIN;
 96                                                << 135   ecut = etag = DBL_MAX;
 97   // defined theta limit between single and mu << 136   cosThetaMin = cos(PolarAngleLimit());
 98   if(isCombined) {                             << 137   pCuts = G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(3);
 99     if(tet >= CLHEP::pi) { cosThetaMin = -1.0; << 138   //G4cout << "!!! G4eCoulombScatteringModel::Initialise for " 
100     else if(tet > 0.0) { cosThetaMin = std::co << 139   //   << p->GetParticleName() << "  cos(TetMin)= " << cosThetaMin 
101                                                << 140   //   << "  cos(TetMax)= " << cosThetaMax <<G4endl;
102     // single scattering without multiple      << 141   // G4cout << "cut0= " << cuts[0] << "  cut1= " << cuts[1] << G4endl;
103   } else if(tet > 0.0) {                       << 142   if(!isInitialised) {
104     cosThetaMin = std::cos(std::min(tet, CLHEP << 143     isInitialised = true;
105   }                                            << 
106                                                << 
107   wokvi->Initialise(part, cosThetaMin);        << 
108   pCuts = &cuts;                               << 
109   /*                                           << 
110   G4cout << "G4eCoulombScatteringModel::Initia << 
111      << part->GetParticleName() << " 1-cos(Tet << 
112      << " 1-cos(TetMax)= " << 1. - cosThetaMax << 
113   G4cout << "cut[0]= " << (*pCuts)[0] << G4end << 
114   */                                           << 
115   if(nullptr == fParticleChange) {             << 
116     fParticleChange = GetParticleChangeForGamm    144     fParticleChange = GetParticleChangeForGamma();
117   }                                               145   }
118   if(IsMaster() && mass < GeV && part->GetPart << 146   if(mass < GeV && particle->GetParticleType() != "nucleus") {
119     InitialiseElementSelectors(part, cuts);    << 147     InitialiseElementSelectors(p,cuts);
120   }                                               148   }
121 }                                                 149 }
122                                                   150 
123 //....oooOO0OOooo........oooOO0OOooo........oo    151 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
124                                                   152 
125 void G4eCoulombScatteringModel::InitialiseLoca << 153 void G4eCoulombScatteringModel::ComputeMaxElectronScattering(G4double cutEnergy)
126             G4VEmModel* masterModel)           << 
127 {                                                 154 {
128   SetElementSelectors(masterModel->GetElementS << 155   ecut = cutEnergy;
129 }                                              << 156   G4double tmax = tkin;
130                                                << 157   cosTetMaxElec = 1.0;
131 //....oooOO0OOooo........oooOO0OOooo........oo << 158   if(mass > MeV) {
132                                                << 159     G4double ratio = electron_mass_c2/mass;
133 G4double                                       << 160     G4double tau = tkin/mass;
134 G4eCoulombScatteringModel::MinPrimaryEnergy(co << 161     tmax = 2.0*electron_mass_c2*tau*(tau + 2.)/
135               const G4ParticleDefinition* part << 162       (1.0 + 2.0*ratio*(tau + 1.0) + ratio*ratio); 
136               G4double)                        << 163     cosTetMaxElec = 1.0 - std::min(cutEnergy, tmax)*electron_mass_c2/mom2;
137 {                                              << 164   } else {
138   SetupParticle(part);                         << 
139                                                   165 
140   // define cut using cuts for proton          << 166     if(particle == theElectron) tmax *= 0.5;
141   G4double cut =                               << 167     G4double t = std::min(cutEnergy, tmax);
142     std::max(recoilThreshold, (*pCuts)[Current << 168     G4double mom21 = t*(t + 2.0*electron_mass_c2);
143                                                << 169     G4double t1 = tkin - t;
144   // find out lightest element                 << 170     //G4cout << "tkin= " << tkin << " t= " << t << " t1= " << t1 << G4endl;
145   const G4ElementVector* theElementVector = ma << 171     if(t1 > 0.0) {
146   std::size_t nelm = material->GetNumberOfElem << 172       G4double mom22 = t1*(t1 + 2.0*mass);
147                                                << 173       G4double ctm = (mom2 + mom22 - mom21)*0.5/sqrt(mom2*mom22);
148   // select lightest element                   << 174       //G4cout << "ctm= " << ctm << G4endl;
149   G4int Z = 300;                               << 175       if(ctm <  1.0) cosTetMaxElec = ctm;
150   for (std::size_t j=0; j<nelm; ++j) {         << 176       if(ctm < -1.0) cosTetMaxElec = -1.0;
151     Z = std::min(Z,(*theElementVector)[j]->Get << 177     }
152   }                                               178   }
153   G4int A = G4lrint(fNistManager->GetAtomicMas << 
154   G4double targetMass = G4NucleiProperties::Ge << 
155   G4double t = std::max(cut, 0.5*(cut + sqrt(2 << 
156                                                << 
157   return t;                                    << 
158 }                                                 179 }
159                                                   180 
160 //....oooOO0OOooo........oooOO0OOooo........oo    181 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
161                                                   182 
162 G4double G4eCoulombScatteringModel::ComputeCro    183 G4double G4eCoulombScatteringModel::ComputeCrossSectionPerAtom(
163                 const G4ParticleDefinition* p,    184                 const G4ParticleDefinition* p,
164     G4double kinEnergy,                           185     G4double kinEnergy,
165     G4double Z, G4double,                         186     G4double Z, G4double,
166     G4double cutEnergy, G4double)                 187     G4double cutEnergy, G4double)
167 {                                                 188 {
168   /*                                           << 189   //G4cout << "### G4eCoulombScatteringModel::ComputeCrossSectionPerAtom  for " 
169   G4cout << "### G4eCoulombScatteringModel::Co << 190   //  << p->GetParticleName()<<" Z= "<<Z<<" e(MeV)= "<< kinEnergy/MeV << G4endl; 
170    << p->GetParticleName()<<" Z= "<<Z<<" e(MeV << 191   G4double xsec = 0.0;
171    << G4endl;                                  << 192   SetupParticle(p);
172   */                                           << 
173   G4double cross = 0.0;                        << 
174   elecRatio = 0.0;                             << 
175   if(p != particle) { SetupParticle(p); }      << 
176                                                   193 
177   // cross section is set to zero to avoid pro    194   // cross section is set to zero to avoid problems in sample secondary
178   if(kinEnergy <= 0.0) { return cross; }       << 195   if(kinEnergy < lowEnergyLimit) { return xsec; }
179   DefineMaterial(CurrentCouple());                196   DefineMaterial(CurrentCouple());
180   G4double costmin = wokvi->SetupKinematic(kin << 197   SetupKinematic(kinEnergy, cutEnergy);
                                                   >> 198   if(cosTetMaxNuc < cosTetMinNuc) {
                                                   >> 199     SetupTarget(Z, kinEnergy);
                                                   >> 200     xsec = CrossSectionPerAtom();  
                                                   >> 201   }
                                                   >> 202   /*
                                                   >> 203   G4cout << "e(MeV)= " << kinEnergy/MeV << " xsec(b)= " << xsec/barn  
                                                   >> 204    << "cosTetMinNuc= " << cosTetMinNuc
                                                   >> 205    << " cosTetMaxNuc= " << cosTetMaxNuc
                                                   >> 206    << " cosTetMaxElec= " << cosTetMaxElec
                                                   >> 207    << " screenZ= " << screenZ
                                                   >> 208    << " formfactA= " << formfactA << G4endl;
                                                   >> 209   */
                                                   >> 210   return xsec;  
                                                   >> 211 }
                                                   >> 212 
                                                   >> 213 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
181                                                   214 
182   //G4cout << "cosThetaMax= "<<cosThetaMax<<"  << 215 G4double G4eCoulombScatteringModel::CrossSectionPerAtom()
                                                   >> 216 {
                                                   >> 217   // This method needs initialisation before be called
                                                   >> 218   //G4double fac = coeff*targetZ*chargeSquare*invbeta2/mom2;
183                                                   219 
184   if(cosThetaMax < costmin) {                  << 220   G4double meff = targetMass/(mass+targetMass);
185     G4int iz = G4lrint(Z);                     << 221   G4double fac  = coeff*targetZ*chargeSquare*invbeta2/(mom2*meff*meff);
186     G4double cut = (0.0 < fixedCut) ? fixedCut << 222 
187     costmin = wokvi->SetupTarget(iz, cut);     << 223   elecXSection = 0.0;
188     //G4cout << "SetupTarget: Z= " << iz << "  << 224   nucXSection  = 0.0;
189     //     << costmin << G4endl;               << 225 
190     G4double costmax = (1 == iz && particle == << 226   G4double x  = 1.0 - cosTetMinNuc;
191       ? 0.0 : cosThetaMax;                     << 227   G4double x1 = x + screenZ;
192     if(costmin > costmax) {                    << 228 
193       cross = wokvi->ComputeNuclearCrossSectio << 229   if(cosTetMaxElec2 < cosTetMinNuc) {
194         + wokvi->ComputeElectronCrossSection(c << 230     elecXSection = fac*(cosTetMinNuc - cosTetMaxElec2)/
                                                   >> 231       (x1*(1.0 - cosTetMaxElec2 + screenZ));
                                                   >> 232     nucXSection  = elecXSection;
                                                   >> 233   }
                                                   >> 234 
                                                   >> 235   //G4cout << "XS tkin(MeV)= " << tkin<<" xs= " <<nucXSection 
                                                   >> 236   //   << " costmax= " << cosTetMaxNuc2 
                                                   >> 237   //   << " costmin= " << cosTetMinNuc << "  Z= " << targetZ <<G4endl;
                                                   >> 238   if(cosTetMaxNuc2 < cosTetMinNuc) {
                                                   >> 239     G4double s  = screenZ*formfactA;
                                                   >> 240     G4double z1 = 1.0 - cosTetMaxNuc2 + screenZ;
                                                   >> 241     G4double s1 = 1.0 - s;
                                                   >> 242     G4double d  = s1/formfactA;
                                                   >> 243     //G4cout <<"x1= "<<x1<<" z1= " <<z1<<" s= "<<s << " d= " <<d <<G4endl;
                                                   >> 244     if(d < 0.2*x1) {
                                                   >> 245       G4double x2 = x1*x1;
                                                   >> 246       G4double z2 = z1*z1;
                                                   >> 247       x = (1.0/(x1*x2) - 1.0/(z1*z2) - d*1.5*(1.0/(x2*x2) - 1.0/(z2*z2)))/
                                                   >> 248   (3.0*formfactA*formfactA);
                                                   >> 249     } else {
                                                   >> 250       G4double x2 = x1 + d;
                                                   >> 251       G4double z2 = z1 + d;
                                                   >> 252       x = (1.0/x1 - 1.0/z1 + 1.0/x2 - 1.0/z2 - 2.0*log(z1*x2/(z2*x1))/d)/(s1*s1);
195     }                                             253     }
196     /*                                         << 254     nucXSection += fac*targetZ*x;
197     if(p->GetParticleName() == "e-")           << 
198     G4cout << "Z= " << Z << " e(MeV)= " << kin << 
199      << " cross(b)= " << cross/barn << " 1-cos << 
200      << " 1-costmax= " << 1-costmax            << 
201      << " 1-cosThetaMax= " << 1-cosThetaMax    << 
202      << "  " << currentMaterial->GetName()     << 
203      << G4endl;                                << 
204     */                                         << 
205   }                                               255   }
206   //G4cout << "====== cross= " << cross << G4e << 256   //G4cout<<" cross(bn)= "<<nucXSection/barn<<" xsElec(bn)= "<<elecXSection/barn
207   return cross;                                << 257   //  << " Asc= " << screenZ << G4endl; 
                                                   >> 258   
                                                   >> 259   return nucXSection;
208 }                                                 260 }
209                                                   261 
210 //....oooOO0OOooo........oooOO0OOooo........oo    262 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
211                                                   263 
212 void G4eCoulombScatteringModel::SampleSecondar    264 void G4eCoulombScatteringModel::SampleSecondaries(
213                 std::vector<G4DynamicParticle*    265                 std::vector<G4DynamicParticle*>* fvect,
214     const G4MaterialCutsCouple* couple,           266     const G4MaterialCutsCouple* couple,
215     const G4DynamicParticle* dp,                  267     const G4DynamicParticle* dp,
216     G4double cutEnergy,                           268     G4double cutEnergy,
217     G4double)                                     269     G4double)
218 {                                                 270 {
219   G4double kinEnergy = dp->GetKineticEnergy();    271   G4double kinEnergy = dp->GetKineticEnergy();
220   SetupParticle(dp->GetDefinition());          << 272   if(kinEnergy < lowEnergyLimit) { return; }
221   DefineMaterial(couple);                         273   DefineMaterial(couple);
222   /*                                           << 274   SetupParticle(dp->GetDefinition());
223   G4cout << "G4eCoulombScatteringModel::Sample << 
224      << kinEnergy << "  " << particle->GetPart << 
225      << " cut= " << cutEnergy<< G4endl;        << 
226   */                                           << 
227   // Choose nucleus                            << 
228   G4double cut = (0.0 < fixedCut) ? fixedCut : << 
229                                                   275 
230   wokvi->SetupKinematic(kinEnergy, currentMate << 276   SetupKinematic(kinEnergy, cutEnergy);
                                                   >> 277   //G4cout << "G4eCoulombScatteringModel::SampleSecondaries e(MeV)= " 
                                                   >> 278   //   << kinEnergy << "  " << particle->GetParticleName() 
                                                   >> 279   //   << " cut= " << cutEnergy<< G4endl;
                                                   >> 280  
                                                   >> 281   // Choose nucleus
                                                   >> 282   currentElement = SelectRandomAtom(couple,particle,
                                                   >> 283             kinEnergy,cutEnergy,kinEnergy);
231                                                   284 
232   const G4Element* currentElement = SelectTarg << 285   SetupTarget(currentElement->GetZ(),kinEnergy);
233                                        dp->Get << 
234   G4int iz = currentElement->GetZasInt();      << 
235                                                << 
236   G4double costmin = wokvi->SetupTarget(iz, cu << 
237   G4double costmax = (1 == iz && particle == t << 
238     ? 0.0 :  cosThetaMax;                      << 
239   if(costmin <= costmax) { return; }           << 
240                                                << 
241   G4double cross = wokvi->ComputeNuclearCrossS << 
242   G4double ecross = wokvi->ComputeElectronCros << 
243   G4double ratio = ecross/(cross + ecross);    << 
244                                                   286 
245   G4int ia = SelectIsotopeNumber(currentElemen    287   G4int ia = SelectIsotopeNumber(currentElement);
246   G4double targetMass = G4NucleiProperties::Ge << 288   targetMass = G4NucleiProperties::GetNuclearMass(ia, iz);
247   wokvi->SetTargetMass(targetMass);            << 289   
                                                   >> 290   G4double z1 = SampleCosineTheta();
                                                   >> 291   if(z1 <= 0.0) { return; }
                                                   >> 292   G4double cost = 1.0 - z1;
                                                   >> 293 
                                                   >> 294   G4double sint = sqrt(z1*(1.0 + cost));
                                                   >> 295   
                                                   >> 296   //G4cout<<"## Sampled sint= " << sint << "  Z= " << targetZ << " A= " << ia
                                                   >> 297   //  << "  screenZ= " << screenZ << " cn= " << formfactA << G4endl;
                                                   >> 298   
                                                   >> 299   G4double phi  = twopi * G4UniformRand();
248                                                   300 
249   G4ThreeVector newDirection =                 << 
250     wokvi->SampleSingleScattering(costmin, cos << 
251   G4double cost = newDirection.z();            << 
252     /*                                         << 
253       G4cout << "SampleSec: e(MeV)= " << kinEn << 
254              << " 1-costmin= " << 1-costmin    << 
255              << " 1-costmax= " << 1-costmax    << 
256              << " 1-cost= " << 1-cost          << 
257              << " ratio= " << ratio            << 
258              << G4endl;                        << 
259     */                                         << 
260   G4ThreeVector direction = dp->GetMomentumDir    301   G4ThreeVector direction = dp->GetMomentumDirection(); 
                                                   >> 302   G4ThreeVector newDirection(cos(phi)*sint,sin(phi)*sint,cost);
261   newDirection.rotateUz(direction);               303   newDirection.rotateUz(direction);   
262                                                   304 
263   fParticleChange->ProposeMomentumDirection(ne    305   fParticleChange->ProposeMomentumDirection(newDirection);   
264                                                   306 
265   // recoil sampling assuming a small recoil      307   // recoil sampling assuming a small recoil
266   // and first order correction to primary 4-m    308   // and first order correction to primary 4-momentum
267   G4double mom2 = wokvi->GetMomentumSquare();  << 309   G4double q2   = 2*z1*mom2;
268   G4double trec = mom2*(1.0 - cost)            << 310   G4double trec = q2/(sqrt(targetMass*targetMass + q2) + targetMass);
269     /(targetMass + (mass + kinEnergy)*(1.0 - c << 
270                                                << 
271   // the check likely not needed               << 
272   trec = std::min(trec, kinEnergy);            << 
273   G4double finalT = kinEnergy - trec;             311   G4double finalT = kinEnergy - trec; 
274   G4double edep = 0.0;                         << 312   //G4cout<<"G4eCoulombScatteringModel: finalT= "<<finalT<<" Trec= "<<trec<<G4endl;
275     /*                                         << 313   if(finalT <= lowEnergyLimit) { 
276     G4cout<<"G4eCoulombScatteringModel: finalT << 314     trec = kinEnergy;  
277     <<trec << " Z= " << iz << " A= " << ia     << 315     finalT = 0.0;
278     << " tcut(keV)= " << (*pCuts)[currentMater << 316   } 
279     */                                         << 317 
                                                   >> 318   fParticleChange->SetProposedKineticEnergy(finalT);
280   G4double tcut = recoilThreshold;                319   G4double tcut = recoilThreshold;
281   if(pCuts) { tcut= std::max(tcut,(*pCuts)[cur    320   if(pCuts) { tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]); }
282                                                   321 
283   if(trec > tcut) {                               322   if(trec > tcut) {
284     G4ParticleDefinition* ion = theIonTable->G << 323     G4ParticleDefinition* ion = theParticleTable->FindIon(iz, ia, 0, iz);
285     G4ThreeVector dir = (direction*sqrt(mom2)     324     G4ThreeVector dir = (direction*sqrt(mom2) - 
286        newDirection*sqrt(finalT*(2*mass + fina    325        newDirection*sqrt(finalT*(2*mass + finalT))).unit();
287     auto newdp = new G4DynamicParticle(ion, di << 326     G4DynamicParticle* newdp = new G4DynamicParticle(ion, dir, trec);
288     fvect->push_back(newdp);                      327     fvect->push_back(newdp);
289   } else {                                        328   } else {
290     edep = trec;                               << 329     fParticleChange->ProposeLocalEnergyDeposit(trec);
291     fParticleChange->ProposeNonIonizingEnergyD << 330     fParticleChange->ProposeNonIonizingEnergyDeposit(trec);
292   }                                               331   }
                                                   >> 332  
                                                   >> 333   return;
                                                   >> 334 }
293                                                   335 
294     // finelize primary energy and energy bala << 336 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
295     // this threshold may be applied only beca << 337 
296     // e+e- msc model is applied               << 338 G4double G4eCoulombScatteringModel::SampleCosineTheta()
297   if(finalT < 0.0) {                           << 339 {
298     edep += finalT;                            << 340   G4double costm = cosTetMaxNuc2;
299     finalT = 0.0;                              << 341   G4double formf = formfactA;
300   }                                            << 342   G4double prob  = 0.0; 
301   edep = std::max(edep, 0.0);                  << 343   G4double xs = CrossSectionPerAtom();
302   fParticleChange->SetProposedKineticEnergy(fi << 344   if(xs > 0.0) prob = elecXSection/xs;
303   fParticleChange->ProposeLocalEnergyDeposit(e << 345 
                                                   >> 346   // scattering off e or A?
                                                   >> 347   if(G4UniformRand() < prob) {
                                                   >> 348     costm = cosTetMaxElec2;
                                                   >> 349     formf = 0.0;
                                                   >> 350   }
                                                   >> 351 
                                                   >> 352   /*
                                                   >> 353   G4cout << "SampleCost: e(MeV)= " << tkin 
                                                   >> 354      << " 1-ctmaxN= " << 1. - cosTetMinNuc
                                                   >> 355      << " 1-ctmax= " << 1. - costm
                                                   >> 356      << " Z= " << targetZ 
                                                   >> 357          << " screenZ= " << screenZ
                                                   >> 358          << " formf= " << formf 
                                                   >> 359    << G4endl;
                                                   >> 360   */
                                                   >> 361 
                                                   >> 362   if(costm >= cosTetMinNuc) return 0.0; 
                                                   >> 363 
                                                   >> 364   G4double x1 = 1. - cosTetMinNuc + screenZ;
                                                   >> 365   G4double x2 = 1. - costm + screenZ;
                                                   >> 366   G4double x3 = cosTetMinNuc - costm;
                                                   >> 367   G4double grej, z1; 
                                                   >> 368   do {
                                                   >> 369     z1 = x1*x2/(x1 + G4UniformRand()*x3) - screenZ;
                                                   >> 370     grej = 1.0/(1.0 + formf*z1);
                                                   >> 371     //G4cout << "z1= " << z1 << " grej= " << grej << " x1= " << x1
                                                   >> 372     //     <<" x2= " << x2 <<" x3= " << x3 << G4endl;
                                                   >> 373   } while ( G4UniformRand() > grej*grej );  
                                                   >> 374 
                                                   >> 375   if(mass > MeV) {
                                                   >> 376     if(G4UniformRand() > (1. - z1*0.5)/(1.0 + z1*sqrt(mom2)/targetMass)) {
                                                   >> 377       return 0.0;
                                                   >> 378     }
                                                   >> 379   }
                                                   >> 380   
                                                   >> 381   //  G4cout << "z1= " << z1 << " cross= " << nucXSection/barn 
                                                   >> 382   //   << " crossE= " << elecXSection/barn << G4endl;
                                                   >> 383 
                                                   >> 384   return z1;
304 }                                                 385 }
305                                                   386 
306 //....oooOO0OOooo........oooOO0OOooo........oo    387 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 388 
                                                   >> 389 
307                                                   390