Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4eCoulombScatteringModel.cc,v 1.78.2.1 2010/04/06 09:14:44 gcosmo Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03-patch-01 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class file 31 // GEANT4 Class file 30 // 32 // 31 // 33 // 32 // File name: G4eCoulombScatteringModel 34 // File name: G4eCoulombScatteringModel 33 // 35 // 34 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 35 // 37 // 36 // Creation date: 22.08.2005 38 // Creation date: 22.08.2005 37 // 39 // 38 // Modifications: V.Ivanchenko << 40 // Modifications: 39 // 41 // >> 42 // 01.08.06 V.Ivanchenko extend upper limit of table to TeV and review the >> 43 // logic of building - only elements from G4ElementTable >> 44 // 08.08.06 V.Ivanchenko build internal table in ekin scale, introduce faclim >> 45 // 19.08.06 V.Ivanchenko add inline function ScreeningParameter >> 46 // 09.10.07 V.Ivanchenko reorganized methods, add cut dependence in scattering off e- >> 47 // 09.06.08 V.Ivanchenko add SelectIsotope and sampling of the recoil ion >> 48 // 16.06.09 C.Consolandi fixed computation of effective mass 40 // 49 // 41 // 50 // 42 // Class Description: 51 // Class Description: 43 // 52 // 44 // ------------------------------------------- 53 // ------------------------------------------------------------------- 45 // 54 // 46 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 47 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 48 57 49 #include "G4eCoulombScatteringModel.hh" 58 #include "G4eCoulombScatteringModel.hh" 50 #include "G4PhysicalConstants.hh" << 51 #include "G4SystemOfUnits.hh" << 52 #include "Randomize.hh" 59 #include "Randomize.hh" 53 #include "G4DataVector.hh" 60 #include "G4DataVector.hh" 54 #include "G4ElementTable.hh" 61 #include "G4ElementTable.hh" >> 62 #include "G4PhysicsLogVector.hh" 55 #include "G4ParticleChangeForGamma.hh" 63 #include "G4ParticleChangeForGamma.hh" >> 64 #include "G4Electron.hh" >> 65 #include "G4Positron.hh" 56 #include "G4Proton.hh" 66 #include "G4Proton.hh" 57 #include "G4ParticleTable.hh" 67 #include "G4ParticleTable.hh" 58 #include "G4IonTable.hh" << 59 #include "G4ProductionCutsTable.hh" 68 #include "G4ProductionCutsTable.hh" 60 #include "G4NucleiProperties.hh" 69 #include "G4NucleiProperties.hh" 61 #include "G4Pow.hh" << 62 #include "G4NistManager.hh" << 63 70 64 //....oooOO0OOooo........oooOO0OOooo........oo 71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 65 72 >> 73 G4double G4eCoulombScatteringModel::ScreenRSquare[] = {0.0}; >> 74 G4double G4eCoulombScatteringModel::FormFactor[] = {0.0}; >> 75 66 using namespace std; 76 using namespace std; 67 77 68 G4eCoulombScatteringModel::G4eCoulombScatterin << 78 G4eCoulombScatteringModel::G4eCoulombScatteringModel(const G4String& nam) 69 : G4VEmModel("eCoulombScattering"), isCombin << 79 : G4VEmModel(nam), >> 80 cosThetaMin(1.0), >> 81 cosThetaMax(-1.0), >> 82 q2Limit(TeV*TeV), >> 83 alpha2(fine_structure_const*fine_structure_const), >> 84 faclim(100.0), >> 85 isInitialised(false) 70 { 86 { 71 fNistManager = G4NistManager::Instance(); 87 fNistManager = G4NistManager::Instance(); 72 theIonTable = G4ParticleTable::GetParticleT << 88 theParticleTable = G4ParticleTable::GetParticleTable(); 73 theProton = G4Proton::Proton(); << 89 theElectron = G4Electron::Electron(); 74 << 90 thePositron = G4Positron::Positron(); 75 wokvi = new G4WentzelOKandVIxSection(isCombi << 91 theProton = G4Proton::Proton(); 76 << 92 currentMaterial = 0; 77 mass = CLHEP::proton_mass_c2; << 93 currentElement = 0; >> 94 lowEnergyLimit = 100*eV; >> 95 G4double p0 = electron_mass_c2*classic_electr_radius; >> 96 coeff = twopi*p0*p0; >> 97 tkin = targetZ = mom2 = etag = 0.0; >> 98 elecXSection = nucXSection = 0.0; >> 99 recoilThreshold = 0.*keV; >> 100 ecut = DBL_MAX; >> 101 particle = 0; >> 102 currentCouple = 0; >> 103 >> 104 // Thomas-Fermi screening radii >> 105 // Formfactors from A.V. Butkevich et al., NIM A 488 (2002) 282 >> 106 >> 107 if(0.0 == ScreenRSquare[0]) { >> 108 G4double a0 = electron_mass_c2/0.88534; >> 109 G4double constn = 6.937e-6/(MeV*MeV); >> 110 >> 111 ScreenRSquare[0] = alpha2*a0*a0; >> 112 for(G4int j=1; j<100; ++j) { >> 113 G4double x = a0*fNistManager->GetZ13(j); >> 114 ScreenRSquare[j] = alpha2*x*x; >> 115 x = fNistManager->GetA27(j); >> 116 FormFactor[j] = constn*x*x; >> 117 } >> 118 } 78 } 119 } 79 120 80 //....oooOO0OOooo........oooOO0OOooo........oo 121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 122 82 G4eCoulombScatteringModel::~G4eCoulombScatteri 123 G4eCoulombScatteringModel::~G4eCoulombScatteringModel() 83 { << 124 {} 84 delete wokvi; << 85 } << 86 125 87 //....oooOO0OOooo........oooOO0OOooo........oo 126 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 88 127 89 void G4eCoulombScatteringModel::Initialise(con << 128 void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* p, 90 const G4DataVector& cuts) 129 const G4DataVector& cuts) 91 { 130 { 92 SetupParticle(part); << 131 SetupParticle(p); 93 currentCouple = nullptr; << 132 currentCouple = 0; 94 << 133 elecXSection = nucXSection = 0.0; 95 G4double tet = PolarAngleLimit(); << 134 tkin = targetZ = mom2 = DBL_MIN; 96 << 135 ecut = etag = DBL_MAX; 97 // defined theta limit between single and mu << 136 cosThetaMin = cos(PolarAngleLimit()); 98 if(isCombined) { << 137 pCuts = G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(3); 99 if(tet >= CLHEP::pi) { cosThetaMin = -1.0; << 138 //G4cout << "!!! G4eCoulombScatteringModel::Initialise for " 100 else if(tet > 0.0) { cosThetaMin = std::co << 139 // << p->GetParticleName() << " cos(TetMin)= " << cosThetaMin 101 << 140 // << " cos(TetMax)= " << cosThetaMax <<G4endl; 102 // single scattering without multiple << 141 // G4cout << "cut0= " << cuts[0] << " cut1= " << cuts[1] << G4endl; 103 } else if(tet > 0.0) { << 142 if(!isInitialised) { 104 cosThetaMin = std::cos(std::min(tet, CLHEP << 143 isInitialised = true; 105 } << 106 << 107 wokvi->Initialise(part, cosThetaMin); << 108 pCuts = &cuts; << 109 /* << 110 G4cout << "G4eCoulombScatteringModel::Initia << 111 << part->GetParticleName() << " 1-cos(Tet << 112 << " 1-cos(TetMax)= " << 1. - cosThetaMax << 113 G4cout << "cut[0]= " << (*pCuts)[0] << G4end << 114 */ << 115 if(nullptr == fParticleChange) { << 116 fParticleChange = GetParticleChangeForGamm 144 fParticleChange = GetParticleChangeForGamma(); 117 } 145 } 118 if(IsMaster() && mass < GeV && part->GetPart << 146 if(mass < GeV && particle->GetParticleType() != "nucleus") { 119 InitialiseElementSelectors(part, cuts); << 147 InitialiseElementSelectors(p,cuts); 120 } 148 } 121 } 149 } 122 150 123 //....oooOO0OOooo........oooOO0OOooo........oo 151 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 124 152 125 void G4eCoulombScatteringModel::InitialiseLoca << 153 void G4eCoulombScatteringModel::ComputeMaxElectronScattering(G4double cutEnergy) 126 G4VEmModel* masterModel) << 127 { 154 { 128 SetElementSelectors(masterModel->GetElementS << 155 ecut = cutEnergy; 129 } << 156 G4double tmax = tkin; 130 << 157 cosTetMaxElec = 1.0; 131 //....oooOO0OOooo........oooOO0OOooo........oo << 158 if(mass > MeV) { 132 << 159 G4double ratio = electron_mass_c2/mass; 133 G4double << 160 G4double tau = tkin/mass; 134 G4eCoulombScatteringModel::MinPrimaryEnergy(co << 161 tmax = 2.0*electron_mass_c2*tau*(tau + 2.)/ 135 const G4ParticleDefinition* part << 162 (1.0 + 2.0*ratio*(tau + 1.0) + ratio*ratio); 136 G4double) << 163 cosTetMaxElec = 1.0 - std::min(cutEnergy, tmax)*electron_mass_c2/mom2; 137 { << 164 } else { 138 SetupParticle(part); << 139 165 140 // define cut using cuts for proton << 166 if(particle == theElectron) tmax *= 0.5; 141 G4double cut = << 167 G4double t = std::min(cutEnergy, tmax); 142 std::max(recoilThreshold, (*pCuts)[Current << 168 G4double mom21 = t*(t + 2.0*electron_mass_c2); 143 << 169 G4double t1 = tkin - t; 144 // find out lightest element << 170 //G4cout << "tkin= " << tkin << " t= " << t << " t1= " << t1 << G4endl; 145 const G4ElementVector* theElementVector = ma << 171 if(t1 > 0.0) { 146 std::size_t nelm = material->GetNumberOfElem << 172 G4double mom22 = t1*(t1 + 2.0*mass); 147 << 173 G4double ctm = (mom2 + mom22 - mom21)*0.5/sqrt(mom2*mom22); 148 // select lightest element << 174 //G4cout << "ctm= " << ctm << G4endl; 149 G4int Z = 300; << 175 if(ctm < 1.0) cosTetMaxElec = ctm; 150 for (std::size_t j=0; j<nelm; ++j) { << 176 if(ctm < -1.0) cosTetMaxElec = -1.0; 151 Z = std::min(Z,(*theElementVector)[j]->Get << 177 } 152 } 178 } 153 G4int A = G4lrint(fNistManager->GetAtomicMas << 154 G4double targetMass = G4NucleiProperties::Ge << 155 G4double t = std::max(cut, 0.5*(cut + sqrt(2 << 156 << 157 return t; << 158 } 179 } 159 180 160 //....oooOO0OOooo........oooOO0OOooo........oo 181 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 161 182 162 G4double G4eCoulombScatteringModel::ComputeCro 183 G4double G4eCoulombScatteringModel::ComputeCrossSectionPerAtom( 163 const G4ParticleDefinition* p, 184 const G4ParticleDefinition* p, 164 G4double kinEnergy, 185 G4double kinEnergy, 165 G4double Z, G4double, 186 G4double Z, G4double, 166 G4double cutEnergy, G4double) 187 G4double cutEnergy, G4double) 167 { 188 { 168 /* << 189 //G4cout << "### G4eCoulombScatteringModel::ComputeCrossSectionPerAtom for " 169 G4cout << "### G4eCoulombScatteringModel::Co << 190 // << p->GetParticleName()<<" Z= "<<Z<<" e(MeV)= "<< kinEnergy/MeV << G4endl; 170 << p->GetParticleName()<<" Z= "<<Z<<" e(MeV << 191 G4double xsec = 0.0; 171 << G4endl; << 192 SetupParticle(p); 172 */ << 173 G4double cross = 0.0; << 174 elecRatio = 0.0; << 175 if(p != particle) { SetupParticle(p); } << 176 193 177 // cross section is set to zero to avoid pro 194 // cross section is set to zero to avoid problems in sample secondary 178 if(kinEnergy <= 0.0) { return cross; } << 195 if(kinEnergy < lowEnergyLimit) { return xsec; } 179 DefineMaterial(CurrentCouple()); 196 DefineMaterial(CurrentCouple()); 180 G4double costmin = wokvi->SetupKinematic(kin << 197 SetupKinematic(kinEnergy, cutEnergy); >> 198 if(cosTetMaxNuc < cosTetMinNuc) { >> 199 SetupTarget(Z, kinEnergy); >> 200 xsec = CrossSectionPerAtom(); >> 201 } >> 202 /* >> 203 G4cout << "e(MeV)= " << kinEnergy/MeV << " xsec(b)= " << xsec/barn >> 204 << "cosTetMinNuc= " << cosTetMinNuc >> 205 << " cosTetMaxNuc= " << cosTetMaxNuc >> 206 << " cosTetMaxElec= " << cosTetMaxElec >> 207 << " screenZ= " << screenZ >> 208 << " formfactA= " << formfactA << G4endl; >> 209 */ >> 210 return xsec; >> 211 } >> 212 >> 213 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 181 214 182 //G4cout << "cosThetaMax= "<<cosThetaMax<<" << 215 G4double G4eCoulombScatteringModel::CrossSectionPerAtom() >> 216 { >> 217 // This method needs initialisation before be called >> 218 //G4double fac = coeff*targetZ*chargeSquare*invbeta2/mom2; 183 219 184 if(cosThetaMax < costmin) { << 220 G4double meff = targetMass/(mass+targetMass); 185 G4int iz = G4lrint(Z); << 221 G4double fac = coeff*targetZ*chargeSquare*invbeta2/(mom2*meff*meff); 186 G4double cut = (0.0 < fixedCut) ? fixedCut << 222 187 costmin = wokvi->SetupTarget(iz, cut); << 223 elecXSection = 0.0; 188 //G4cout << "SetupTarget: Z= " << iz << " << 224 nucXSection = 0.0; 189 // << costmin << G4endl; << 225 190 G4double costmax = (1 == iz && particle == << 226 G4double x = 1.0 - cosTetMinNuc; 191 ? 0.0 : cosThetaMax; << 227 G4double x1 = x + screenZ; 192 if(costmin > costmax) { << 228 193 cross = wokvi->ComputeNuclearCrossSectio << 229 if(cosTetMaxElec2 < cosTetMinNuc) { 194 + wokvi->ComputeElectronCrossSection(c << 230 elecXSection = fac*(cosTetMinNuc - cosTetMaxElec2)/ >> 231 (x1*(1.0 - cosTetMaxElec2 + screenZ)); >> 232 nucXSection = elecXSection; >> 233 } >> 234 >> 235 //G4cout << "XS tkin(MeV)= " << tkin<<" xs= " <<nucXSection >> 236 // << " costmax= " << cosTetMaxNuc2 >> 237 // << " costmin= " << cosTetMinNuc << " Z= " << targetZ <<G4endl; >> 238 if(cosTetMaxNuc2 < cosTetMinNuc) { >> 239 G4double s = screenZ*formfactA; >> 240 G4double z1 = 1.0 - cosTetMaxNuc2 + screenZ; >> 241 G4double s1 = 1.0 - s; >> 242 G4double d = s1/formfactA; >> 243 //G4cout <<"x1= "<<x1<<" z1= " <<z1<<" s= "<<s << " d= " <<d <<G4endl; >> 244 if(d < 0.2*x1) { >> 245 G4double x2 = x1*x1; >> 246 G4double z2 = z1*z1; >> 247 x = (1.0/(x1*x2) - 1.0/(z1*z2) - d*1.5*(1.0/(x2*x2) - 1.0/(z2*z2)))/ >> 248 (3.0*formfactA*formfactA); >> 249 } else { >> 250 G4double x2 = x1 + d; >> 251 G4double z2 = z1 + d; >> 252 x = (1.0/x1 - 1.0/z1 + 1.0/x2 - 1.0/z2 - 2.0*log(z1*x2/(z2*x1))/d)/(s1*s1); 195 } 253 } 196 /* << 254 nucXSection += fac*targetZ*x; 197 if(p->GetParticleName() == "e-") << 198 G4cout << "Z= " << Z << " e(MeV)= " << kin << 199 << " cross(b)= " << cross/barn << " 1-cos << 200 << " 1-costmax= " << 1-costmax << 201 << " 1-cosThetaMax= " << 1-cosThetaMax << 202 << " " << currentMaterial->GetName() << 203 << G4endl; << 204 */ << 205 } 255 } 206 //G4cout << "====== cross= " << cross << G4e << 256 //G4cout<<" cross(bn)= "<<nucXSection/barn<<" xsElec(bn)= "<<elecXSection/barn 207 return cross; << 257 // << " Asc= " << screenZ << G4endl; >> 258 >> 259 return nucXSection; 208 } 260 } 209 261 210 //....oooOO0OOooo........oooOO0OOooo........oo 262 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 211 263 212 void G4eCoulombScatteringModel::SampleSecondar 264 void G4eCoulombScatteringModel::SampleSecondaries( 213 std::vector<G4DynamicParticle* 265 std::vector<G4DynamicParticle*>* fvect, 214 const G4MaterialCutsCouple* couple, 266 const G4MaterialCutsCouple* couple, 215 const G4DynamicParticle* dp, 267 const G4DynamicParticle* dp, 216 G4double cutEnergy, 268 G4double cutEnergy, 217 G4double) 269 G4double) 218 { 270 { 219 G4double kinEnergy = dp->GetKineticEnergy(); 271 G4double kinEnergy = dp->GetKineticEnergy(); 220 SetupParticle(dp->GetDefinition()); << 272 if(kinEnergy < lowEnergyLimit) { return; } 221 DefineMaterial(couple); 273 DefineMaterial(couple); 222 /* << 274 SetupParticle(dp->GetDefinition()); 223 G4cout << "G4eCoulombScatteringModel::Sample << 224 << kinEnergy << " " << particle->GetPart << 225 << " cut= " << cutEnergy<< G4endl; << 226 */ << 227 // Choose nucleus << 228 G4double cut = (0.0 < fixedCut) ? fixedCut : << 229 275 230 wokvi->SetupKinematic(kinEnergy, currentMate << 276 SetupKinematic(kinEnergy, cutEnergy); >> 277 //G4cout << "G4eCoulombScatteringModel::SampleSecondaries e(MeV)= " >> 278 // << kinEnergy << " " << particle->GetParticleName() >> 279 // << " cut= " << cutEnergy<< G4endl; >> 280 >> 281 // Choose nucleus >> 282 currentElement = SelectRandomAtom(couple,particle, >> 283 kinEnergy,cutEnergy,kinEnergy); 231 284 232 const G4Element* currentElement = SelectTarg << 285 SetupTarget(currentElement->GetZ(),kinEnergy); 233 dp->Get << 234 G4int iz = currentElement->GetZasInt(); << 235 << 236 G4double costmin = wokvi->SetupTarget(iz, cu << 237 G4double costmax = (1 == iz && particle == t << 238 ? 0.0 : cosThetaMax; << 239 if(costmin <= costmax) { return; } << 240 << 241 G4double cross = wokvi->ComputeNuclearCrossS << 242 G4double ecross = wokvi->ComputeElectronCros << 243 G4double ratio = ecross/(cross + ecross); << 244 286 245 G4int ia = SelectIsotopeNumber(currentElemen 287 G4int ia = SelectIsotopeNumber(currentElement); 246 G4double targetMass = G4NucleiProperties::Ge << 288 targetMass = G4NucleiProperties::GetNuclearMass(ia, iz); 247 wokvi->SetTargetMass(targetMass); << 289 >> 290 G4double z1 = SampleCosineTheta(); >> 291 if(z1 <= 0.0) { return; } >> 292 G4double cost = 1.0 - z1; >> 293 >> 294 G4double sint = sqrt(z1*(1.0 + cost)); >> 295 >> 296 //G4cout<<"## Sampled sint= " << sint << " Z= " << targetZ << " A= " << ia >> 297 // << " screenZ= " << screenZ << " cn= " << formfactA << G4endl; >> 298 >> 299 G4double phi = twopi * G4UniformRand(); 248 300 249 G4ThreeVector newDirection = << 250 wokvi->SampleSingleScattering(costmin, cos << 251 G4double cost = newDirection.z(); << 252 /* << 253 G4cout << "SampleSec: e(MeV)= " << kinEn << 254 << " 1-costmin= " << 1-costmin << 255 << " 1-costmax= " << 1-costmax << 256 << " 1-cost= " << 1-cost << 257 << " ratio= " << ratio << 258 << G4endl; << 259 */ << 260 G4ThreeVector direction = dp->GetMomentumDir 301 G4ThreeVector direction = dp->GetMomentumDirection(); >> 302 G4ThreeVector newDirection(cos(phi)*sint,sin(phi)*sint,cost); 261 newDirection.rotateUz(direction); 303 newDirection.rotateUz(direction); 262 304 263 fParticleChange->ProposeMomentumDirection(ne 305 fParticleChange->ProposeMomentumDirection(newDirection); 264 306 265 // recoil sampling assuming a small recoil 307 // recoil sampling assuming a small recoil 266 // and first order correction to primary 4-m 308 // and first order correction to primary 4-momentum 267 G4double mom2 = wokvi->GetMomentumSquare(); << 309 G4double q2 = 2*z1*mom2; 268 G4double trec = mom2*(1.0 - cost) << 310 G4double trec = q2/(sqrt(targetMass*targetMass + q2) + targetMass); 269 /(targetMass + (mass + kinEnergy)*(1.0 - c << 270 << 271 // the check likely not needed << 272 trec = std::min(trec, kinEnergy); << 273 G4double finalT = kinEnergy - trec; 311 G4double finalT = kinEnergy - trec; 274 G4double edep = 0.0; << 312 //G4cout<<"G4eCoulombScatteringModel: finalT= "<<finalT<<" Trec= "<<trec<<G4endl; 275 /* << 313 if(finalT <= lowEnergyLimit) { 276 G4cout<<"G4eCoulombScatteringModel: finalT << 314 trec = kinEnergy; 277 <<trec << " Z= " << iz << " A= " << ia << 315 finalT = 0.0; 278 << " tcut(keV)= " << (*pCuts)[currentMater << 316 } 279 */ << 317 >> 318 fParticleChange->SetProposedKineticEnergy(finalT); 280 G4double tcut = recoilThreshold; 319 G4double tcut = recoilThreshold; 281 if(pCuts) { tcut= std::max(tcut,(*pCuts)[cur 320 if(pCuts) { tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]); } 282 321 283 if(trec > tcut) { 322 if(trec > tcut) { 284 G4ParticleDefinition* ion = theIonTable->G << 323 G4ParticleDefinition* ion = theParticleTable->FindIon(iz, ia, 0, iz); 285 G4ThreeVector dir = (direction*sqrt(mom2) 324 G4ThreeVector dir = (direction*sqrt(mom2) - 286 newDirection*sqrt(finalT*(2*mass + fina 325 newDirection*sqrt(finalT*(2*mass + finalT))).unit(); 287 auto newdp = new G4DynamicParticle(ion, di << 326 G4DynamicParticle* newdp = new G4DynamicParticle(ion, dir, trec); 288 fvect->push_back(newdp); 327 fvect->push_back(newdp); 289 } else { 328 } else { 290 edep = trec; << 329 fParticleChange->ProposeLocalEnergyDeposit(trec); 291 fParticleChange->ProposeNonIonizingEnergyD << 330 fParticleChange->ProposeNonIonizingEnergyDeposit(trec); 292 } 331 } >> 332 >> 333 return; >> 334 } 293 335 294 // finelize primary energy and energy bala << 336 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 295 // this threshold may be applied only beca << 337 296 // e+e- msc model is applied << 338 G4double G4eCoulombScatteringModel::SampleCosineTheta() 297 if(finalT < 0.0) { << 339 { 298 edep += finalT; << 340 G4double costm = cosTetMaxNuc2; 299 finalT = 0.0; << 341 G4double formf = formfactA; 300 } << 342 G4double prob = 0.0; 301 edep = std::max(edep, 0.0); << 343 G4double xs = CrossSectionPerAtom(); 302 fParticleChange->SetProposedKineticEnergy(fi << 344 if(xs > 0.0) prob = elecXSection/xs; 303 fParticleChange->ProposeLocalEnergyDeposit(e << 345 >> 346 // scattering off e or A? >> 347 if(G4UniformRand() < prob) { >> 348 costm = cosTetMaxElec2; >> 349 formf = 0.0; >> 350 } >> 351 >> 352 /* >> 353 G4cout << "SampleCost: e(MeV)= " << tkin >> 354 << " 1-ctmaxN= " << 1. - cosTetMinNuc >> 355 << " 1-ctmax= " << 1. - costm >> 356 << " Z= " << targetZ >> 357 << " screenZ= " << screenZ >> 358 << " formf= " << formf >> 359 << G4endl; >> 360 */ >> 361 >> 362 if(costm >= cosTetMinNuc) return 0.0; >> 363 >> 364 G4double x1 = 1. - cosTetMinNuc + screenZ; >> 365 G4double x2 = 1. - costm + screenZ; >> 366 G4double x3 = cosTetMinNuc - costm; >> 367 G4double grej, z1; >> 368 do { >> 369 z1 = x1*x2/(x1 + G4UniformRand()*x3) - screenZ; >> 370 grej = 1.0/(1.0 + formf*z1); >> 371 //G4cout << "z1= " << z1 << " grej= " << grej << " x1= " << x1 >> 372 // <<" x2= " << x2 <<" x3= " << x3 << G4endl; >> 373 } while ( G4UniformRand() > grej*grej ); >> 374 >> 375 if(mass > MeV) { >> 376 if(G4UniformRand() > (1. - z1*0.5)/(1.0 + z1*sqrt(mom2)/targetMass)) { >> 377 return 0.0; >> 378 } >> 379 } >> 380 >> 381 // G4cout << "z1= " << z1 << " cross= " << nucXSection/barn >> 382 // << " crossE= " << elecXSection/barn << G4endl; >> 383 >> 384 return z1; 304 } 385 } 305 386 306 //....oooOO0OOooo........oooOO0OOooo........oo 387 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 388 >> 389 307 390