Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4eCoulombScatteringModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4eCoulombScatteringModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4eCoulombScatteringModel.cc (Version 8.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4eCoulombScatteringModel.cc,v 1.10 2006/10/26 17:36:17 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-08-02-patch-01-ref $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4eCoulombScatteringModel        34 // File name:     G4eCoulombScatteringModel
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko              36 // Author:        Vladimir Ivanchenko 
 35 //                                                 37 //
 36 // Creation date: 22.08.2005                       38 // Creation date: 22.08.2005
 37 //                                                 39 //
 38 // Modifications: V.Ivanchenko                 <<  40 // Modifications:
 39 //                                             <<  41 // 01.08.06 V.Ivanchenko extend upper limit of table to TeV and review the
 40 //                                             <<  42 //          logic of building - only elements from G4ElementTable
                                                   >>  43 // 08.08.06 V.Ivanchenko build internal table in ekin scale, introduce faclim
                                                   >>  44 // 19.08.06 V.Ivanchenko add inline function ScreeningParameter 
 41 //                                                 45 //
 42 // Class Description:                              46 // Class Description:
 43 //                                                 47 //
 44 // -------------------------------------------     48 // -------------------------------------------------------------------
 45 //                                                 49 //
 46 //....oooOO0OOooo........oooOO0OOooo........oo     50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 47 //....oooOO0OOooo........oooOO0OOooo........oo     51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 48                                                    52 
 49 #include "G4eCoulombScatteringModel.hh"            53 #include "G4eCoulombScatteringModel.hh"
 50 #include "G4PhysicalConstants.hh"              << 
 51 #include "G4SystemOfUnits.hh"                  << 
 52 #include "Randomize.hh"                            54 #include "Randomize.hh"
 53 #include "G4DataVector.hh"                         55 #include "G4DataVector.hh"
 54 #include "G4ElementTable.hh"                       56 #include "G4ElementTable.hh"
                                                   >>  57 #include "G4PhysicsLogVector.hh"
 55 #include "G4ParticleChangeForGamma.hh"             58 #include "G4ParticleChangeForGamma.hh"
 56 #include "G4Proton.hh"                         << 
 57 #include "G4ParticleTable.hh"                  << 
 58 #include "G4IonTable.hh"                       << 
 59 #include "G4ProductionCutsTable.hh"            << 
 60 #include "G4NucleiProperties.hh"               << 
 61 #include "G4Pow.hh"                            << 
 62 #include "G4NistManager.hh"                    << 
 63                                                    59 
 64 //....oooOO0OOooo........oooOO0OOooo........oo     60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 65                                                    61 
 66 using namespace std;                               62 using namespace std;
 67                                                    63 
 68 G4eCoulombScatteringModel::G4eCoulombScatterin <<  64 G4eCoulombScatteringModel::G4eCoulombScatteringModel(
 69   : G4VEmModel("eCoulombScattering"), isCombin <<  65   G4double thetaMin, G4double thetaMax, G4bool build, 
 70 {                                              <<  66   G4double tlim, const G4String& nam)
 71   fNistManager = G4NistManager::Instance();    <<  67   : G4VEmModel(nam),
 72   theIonTable  = G4ParticleTable::GetParticleT <<  68     cosThetaMin(cos(thetaMin)),
 73   theProton    = G4Proton::Proton();           <<  69     cosThetaMax(cos(thetaMax)),
 74                                                <<  70     q2Limit(tlim),
 75   wokvi = new G4WentzelOKandVIxSection(isCombi <<  71     theCrossSectionTable(0),
 76                                                <<  72     lowKEnergy(keV),
 77   mass = CLHEP::proton_mass_c2;                <<  73     highKEnergy(TeV),
                                                   >>  74     alpha2(fine_structure_const*fine_structure_const),
                                                   >>  75     faclim(100.0),
                                                   >>  76     nbins(12),
                                                   >>  77     nmax(100),
                                                   >>  78     buildTable(build),
                                                   >>  79     isInitialised(false)
                                                   >>  80 {
                                                   >>  81   a0 = alpha2*electron_mass_c2*electron_mass_c2/(0.885*0.885);
                                                   >>  82   G4double p0 = electron_mass_c2*classic_electr_radius;
                                                   >>  83   coeff = twopi*p0*p0;
 78 }                                                  84 }
 79                                                    85 
 80 //....oooOO0OOooo........oooOO0OOooo........oo     86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 81                                                    87 
 82 G4eCoulombScatteringModel::~G4eCoulombScatteri     88 G4eCoulombScatteringModel::~G4eCoulombScatteringModel()
 83 {                                                  89 {
 84   delete wokvi;                                <<  90   if(theCrossSectionTable) {
                                                   >>  91     theCrossSectionTable->clearAndDestroy();
                                                   >>  92     delete theCrossSectionTable;
                                                   >>  93   }
 85 }                                                  94 }
 86                                                    95 
 87 //....oooOO0OOooo........oooOO0OOooo........oo     96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 88                                                    97 
 89 void G4eCoulombScatteringModel::Initialise(con <<  98 void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* p,
 90              const G4DataVector& cuts)         <<  99              const G4DataVector&)
 91 {                                                 100 {
 92   SetupParticle(part);                         << 101   if(isInitialised) return;
 93   currentCouple = nullptr;                     << 102   isInitialised = true;
 94                                                   103 
 95   G4double tet = PolarAngleLimit();            << 104   if(pParticleChange)
                                                   >> 105     fParticleChange = 
                                                   >> 106       reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
                                                   >> 107   else
                                                   >> 108     fParticleChange = new G4ParticleChangeForGamma();
 96                                                   109 
 97   // defined theta limit between single and mu << 110   if(!buildTable || p->GetParticleName() == "GenericIon") return;
 98   if(isCombined) {                             << 
 99     if(tet >= CLHEP::pi) { cosThetaMin = -1.0; << 
100     else if(tet > 0.0) { cosThetaMin = std::co << 
101                                                << 
102     // single scattering without multiple      << 
103   } else if(tet > 0.0) {                       << 
104     cosThetaMin = std::cos(std::min(tet, CLHEP << 
105   }                                            << 
106                                                   111 
107   wokvi->Initialise(part, cosThetaMin);        << 112   // Compute cross section multiplied by Ptot^2*beta^2
108   pCuts = &cuts;                               << 113   theCrossSectionTable = new G4PhysicsTable();
109   /*                                           << 114   G4PhysicsLogVector* ptrVector;
110   G4cout << "G4eCoulombScatteringModel::Initia << 115   G4double e, value;
111      << part->GetParticleName() << " 1-cos(Tet << 116   nbins = 2*G4int(log10(highKEnergy/lowKEnergy));
112      << " 1-cos(TetMax)= " << 1. - cosThetaMax << 
113   G4cout << "cut[0]= " << (*pCuts)[0] << G4end << 
114   */                                           << 
115   if(nullptr == fParticleChange) {             << 
116     fParticleChange = GetParticleChangeForGamm << 
117   }                                            << 
118   if(IsMaster() && mass < GeV && part->GetPart << 
119     InitialiseElementSelectors(part, cuts);    << 
120   }                                            << 
121 }                                              << 
122                                                   117 
123 //....oooOO0OOooo........oooOO0OOooo........oo << 118   const  G4ElementTable* elmt = G4Element::GetElementTable();
                                                   >> 119   size_t nelm =  G4Element::GetNumberOfElements();
124                                                   120 
125 void G4eCoulombScatteringModel::InitialiseLoca << 121   for(size_t j=0; j<nelm; j++) { 
126             G4VEmModel* masterModel)           << 
127 {                                              << 
128   SetElementSelectors(masterModel->GetElementS << 
129 }                                              << 
130                                                << 
131 //....oooOO0OOooo........oooOO0OOooo........oo << 
132                                                   122 
133 G4double                                       << 123     ptrVector  = new G4PhysicsLogVector(lowKEnergy, highKEnergy, nbins);
134 G4eCoulombScatteringModel::MinPrimaryEnergy(co << 124     const G4Element* elm = (*elmt)[j]; 
135               const G4ParticleDefinition* part << 125     G4double Z =  elm->GetZ();
136               G4double)                        << 126     index[G4int(Z)] = j;
137 {                                              << 127     for(G4int i=0; i<=nbins; i++) {
138   SetupParticle(part);                         << 128       e     = ptrVector->GetLowEdgeEnergy( i ) ;
                                                   >> 129       value = CalculateCrossSectionPerAtom(p, e, Z);  
                                                   >> 130       ptrVector->PutValue( i, log(value) );
                                                   >> 131     }
139                                                   132 
140   // define cut using cuts for proton          << 133     theCrossSectionTable->insert(ptrVector);
141   G4double cut =                               << 
142     std::max(recoilThreshold, (*pCuts)[Current << 
143                                                << 
144   // find out lightest element                 << 
145   const G4ElementVector* theElementVector = ma << 
146   std::size_t nelm = material->GetNumberOfElem << 
147                                                << 
148   // select lightest element                   << 
149   G4int Z = 300;                               << 
150   for (std::size_t j=0; j<nelm; ++j) {         << 
151     Z = std::min(Z,(*theElementVector)[j]->Get << 
152   }                                               134   }
153   G4int A = G4lrint(fNistManager->GetAtomicMas << 
154   G4double targetMass = G4NucleiProperties::Ge << 
155   G4double t = std::max(cut, 0.5*(cut + sqrt(2 << 
156                                                << 
157   return t;                                    << 
158 }                                                 135 }
159                                                   136 
160 //....oooOO0OOooo........oooOO0OOooo........oo << 137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
161                                                   138 
162 G4double G4eCoulombScatteringModel::ComputeCro << 139 G4double G4eCoulombScatteringModel::CalculateCrossSectionPerAtom(
163                 const G4ParticleDefinition* p, << 140                  const G4ParticleDefinition* p,      
164     G4double kinEnergy,                        << 141            G4double kinEnergy, 
165     G4double Z, G4double,                      << 142            G4double Z)
166     G4double cutEnergy, G4double)              << 
167 {                                                 143 {
168   /*                                           << 
169   G4cout << "### G4eCoulombScatteringModel::Co << 
170    << p->GetParticleName()<<" Z= "<<Z<<" e(MeV << 
171    << G4endl;                                  << 
172   */                                           << 
173   G4double cross = 0.0;                           144   G4double cross = 0.0;
174   elecRatio = 0.0;                             << 145   G4double m     = p->GetPDGMass();
175   if(p != particle) { SetupParticle(p); }      << 146   G4double tkin  = std::max(keV, kinEnergy);
176                                                << 147   G4double mom2  = tkin*(tkin + 2.0*m);
177   // cross section is set to zero to avoid pro << 148   G4double costm = std::max(cosThetaMax, 1.0 - 0.5*q2Limit/mom2);
178   if(kinEnergy <= 0.0) { return cross; }       << 149   if(costm < cosThetaMin) {
179   DefineMaterial(CurrentCouple());             << 150     G4double q        = p->GetPDGCharge()/eplus;
180   G4double costmin = wokvi->SetupKinematic(kin << 151     G4double q2       = q*q;
181                                                << 152     G4double invbeta2 = 1.0 +  m*m/mom2;
182   //G4cout << "cosThetaMax= "<<cosThetaMax<<"  << 153     G4double A = ScreeningParameter(Z, q2, mom2, invbeta2);
183                                                << 154     G4double a = 2.0*A + 1.0;
184   if(cosThetaMax < costmin) {                  << 155     cross = coeff*Z*(Z + 1.0)*q2*invbeta2*(cosThetaMin - costm)/
185     G4int iz = G4lrint(Z);                     << 156       ((a - cosThetaMin)*(a - costm)*mom2);
186     G4double cut = (0.0 < fixedCut) ? fixedCut << 157     /*
187     costmin = wokvi->SetupTarget(iz, cut);     << 158     if(Z == 13 || Z == 79) {
188     //G4cout << "SetupTarget: Z= " << iz << "  << 159       G4cout << "## e= " << kinEnergy << "  beta= " << sqrt (1.0/invbeta2)
189     //     << costmin << G4endl;               << 160        <<"  Z= " << Z 
190     G4double costmax = (1 == iz && particle == << 161        << " sig(bn)= " << cross/barn 
191       ? 0.0 : cosThetaMax;                     << 162        << "  cosMax= " <<  costm 
192     if(costmin > costmax) {                    << 163        << "  cosMin= " <<  cosThetaMin 
193       cross = wokvi->ComputeNuclearCrossSectio << 164        << G4endl;
194         + wokvi->ComputeElectronCrossSection(c << 165       G4double atommass = 27.0;
                                                   >> 166       if(Z == 79) atommass = 197.0;
                                                   >> 167       G4double u0 = 1.e+6*atommass*cm2/(cross*Avogadro);
                                                   >> 168       G4double u1 = 0.5*u0/( A* ( (1.0 + A)*log(1.0 + 1.0/A) -1.0 ) );
                                                   >> 169       G4cout << "  l0= " << u0 << "  l1= " << u1 
                                                   >> 170        << "   A= " << A << G4endl;
195     }                                             171     }
196     /*                                         << 
197     if(p->GetParticleName() == "e-")           << 
198     G4cout << "Z= " << Z << " e(MeV)= " << kin << 
199      << " cross(b)= " << cross/barn << " 1-cos << 
200      << " 1-costmax= " << 1-costmax            << 
201      << " 1-cosThetaMax= " << 1-cosThetaMax    << 
202      << "  " << currentMaterial->GetName()     << 
203      << G4endl;                                << 
204     */                                            172     */
205   }                                               173   }
206   //G4cout << "====== cross= " << cross << G4e << 174   return cross;
207   return cross;                                << 
208 }                                                 175 }
209                                                   176 
210 //....oooOO0OOooo........oooOO0OOooo........oo    177 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
211                                                   178 
212 void G4eCoulombScatteringModel::SampleSecondar << 179 std::vector<G4DynamicParticle*>* G4eCoulombScatteringModel::SampleSecondaries(
213                 std::vector<G4DynamicParticle* << 180                              const G4MaterialCutsCouple* couple,
214     const G4MaterialCutsCouple* couple,        << 181                              const G4DynamicParticle* dp,
215     const G4DynamicParticle* dp,               << 182                                    G4double,
216     G4double cutEnergy,                        << 183                                    G4double)
217     G4double)                                  << 
218 {                                                 184 {
                                                   >> 185   const G4Material* aMaterial = couple->GetMaterial();
                                                   >> 186   const G4ParticleDefinition* p = dp->GetDefinition();
                                                   >> 187   
                                                   >> 188   G4double mass      = dp->GetMass();
219   G4double kinEnergy = dp->GetKineticEnergy();    189   G4double kinEnergy = dp->GetKineticEnergy();
220   SetupParticle(dp->GetDefinition());          << 190   G4double mom2      = kinEnergy*(kinEnergy + 2.0*mass);
221   DefineMaterial(couple);                      << 
222   /*                                           << 
223   G4cout << "G4eCoulombScatteringModel::Sample << 
224      << kinEnergy << "  " << particle->GetPart << 
225      << " cut= " << cutEnergy<< G4endl;        << 
226   */                                           << 
227   // Choose nucleus                            << 
228   G4double cut = (0.0 < fixedCut) ? fixedCut : << 
229                                                << 
230   wokvi->SetupKinematic(kinEnergy, currentMate << 
231                                                << 
232   const G4Element* currentElement = SelectTarg << 
233                                        dp->Get << 
234   G4int iz = currentElement->GetZasInt();      << 
235                                                << 
236   G4double costmin = wokvi->SetupTarget(iz, cu << 
237   G4double costmax = (1 == iz && particle == t << 
238     ? 0.0 :  cosThetaMax;                      << 
239   if(costmin <= costmax) { return; }           << 
240                                                << 
241   G4double cross = wokvi->ComputeNuclearCrossS << 
242   G4double ecross = wokvi->ComputeElectronCros << 
243   G4double ratio = ecross/(cross + ecross);    << 
244                                                << 
245   G4int ia = SelectIsotopeNumber(currentElemen << 
246   G4double targetMass = G4NucleiProperties::Ge << 
247   wokvi->SetTargetMass(targetMass);            << 
248                                                << 
249   G4ThreeVector newDirection =                 << 
250     wokvi->SampleSingleScattering(costmin, cos << 
251   G4double cost = newDirection.z();            << 
252     /*                                         << 
253       G4cout << "SampleSec: e(MeV)= " << kinEn << 
254              << " 1-costmin= " << 1-costmin    << 
255              << " 1-costmax= " << 1-costmax    << 
256              << " 1-cost= " << 1-cost          << 
257              << " ratio= " << ratio            << 
258              << G4endl;                        << 
259     */                                         << 
260   G4ThreeVector direction = dp->GetMomentumDir << 
261   newDirection.rotateUz(direction);            << 
262                                                   191 
263   fParticleChange->ProposeMomentumDirection(ne << 192   const G4Element* elm = SelectRandomAtom(aMaterial, p, kinEnergy);
                                                   >> 193   G4double Z  = elm->GetZ();
                                                   >> 194   G4double q  = p->GetPDGCharge()/eplus;
                                                   >> 195   G4double q2 = q*q;
264                                                   196 
265   // recoil sampling assuming a small recoil   << 197   G4double invbeta2  = 1.0 + mass*mass/mom2;
266   // and first order correction to primary 4-m << 198   G4double a = 2.*ScreeningParameter(Z, q2, mom2, invbeta2);
267   G4double mom2 = wokvi->GetMomentumSquare();  << 
268   G4double trec = mom2*(1.0 - cost)            << 
269     /(targetMass + (mass + kinEnergy)*(1.0 - c << 
270                                                << 
271   // the check likely not needed               << 
272   trec = std::min(trec, kinEnergy);            << 
273   G4double finalT = kinEnergy - trec;          << 
274   G4double edep = 0.0;                         << 
275     /*                                         << 
276     G4cout<<"G4eCoulombScatteringModel: finalT << 
277     <<trec << " Z= " << iz << " A= " << ia     << 
278     << " tcut(keV)= " << (*pCuts)[currentMater << 
279     */                                         << 
280   G4double tcut = recoilThreshold;             << 
281   if(pCuts) { tcut= std::max(tcut,(*pCuts)[cur << 
282                                                   199 
283   if(trec > tcut) {                            << 200   G4double costm = std::max(cosThetaMax, 1.0 - 0.5*q2Limit/mom2);
284     G4ParticleDefinition* ion = theIonTable->G << 201   if(costm >= cosThetaMin) return 0; 
285     G4ThreeVector dir = (direction*sqrt(mom2)  << 202 
286        newDirection*sqrt(finalT*(2*mass + fina << 203   G4double x   = G4UniformRand();
287     auto newdp = new G4DynamicParticle(ion, di << 204   G4double y   = (a + 1.0 - cosThetaMin)/(cosThetaMin - costm);
288     fvect->push_back(newdp);                   << 205   G4double st2 = 0.5*(y*(1.0 - costm) - a*x)/(y + x); 
289   } else {                                     << 206   if(st2 < 0.0 || st2 > 1.0) {
290     edep = trec;                               << 207     G4cout << "G4eCoulombScatteringModel::SampleSecondaries WARNING st2= " 
291     fParticleChange->ProposeNonIonizingEnergyD << 208      << st2 << G4endl;
                                                   >> 209     st2 = 0.0;
292   }                                               210   }
293                                                   211 
294     // finelize primary energy and energy bala << 212   G4double tet = 2.0*asin(sqrt(st2));
295     // this threshold may be applied only beca << 213   G4double cost= cos(tet);
296     // e+e- msc model is applied               << 214   G4double sint= sin(tet);
297   if(finalT < 0.0) {                           << 215 
298     edep += finalT;                            << 216   G4double phi  = twopi * G4UniformRand();
299     finalT = 0.0;                              << 217 
300   }                                            << 218   G4ThreeVector direction = dp->GetMomentumDirection(); 
301   edep = std::max(edep, 0.0);                  << 219   G4ThreeVector newDirection(cos(phi)*sint,sin(phi)*sint,cost);
302   fParticleChange->SetProposedKineticEnergy(fi << 220   newDirection.rotateUz(direction);   
303   fParticleChange->ProposeLocalEnergyDeposit(e << 221 
                                                   >> 222   fParticleChange->ProposeMomentumDirection(newDirection);   
                                                   >> 223  
                                                   >> 224   return 0;
304 }                                                 225 }
305                                                   226 
306 //....oooOO0OOooo........oooOO0OOooo........oo    227 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 228 
                                                   >> 229 
307                                                   230