Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4eCoulombScatteringModel.cc 96934 2016-05-18 09:10:41Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4eCoulombScatteringModel 33 // File name: G4eCoulombScatteringModel 33 // 34 // 34 // Author: Vladimir Ivanchenko 35 // Author: Vladimir Ivanchenko 35 // 36 // 36 // Creation date: 22.08.2005 37 // Creation date: 22.08.2005 37 // 38 // 38 // Modifications: V.Ivanchenko << 39 // Modifications: 39 // 40 // >> 41 // 01.08.06 V.Ivanchenko extend upper limit of table to TeV and review the >> 42 // logic of building - only elements from G4ElementTable >> 43 // 08.08.06 V.Ivanchenko build internal table in ekin scale, introduce faclim >> 44 // 19.08.06 V.Ivanchenko add inline function ScreeningParameter >> 45 // 09.10.07 V.Ivanchenko reorganized methods, add cut dependence in scattering off e- >> 46 // 09.06.08 V.Ivanchenko add SelectIsotope and sampling of the recoil ion >> 47 // 16.06.09 C.Consolandi fixed computation of effective mass >> 48 // 27.05.10 V.Ivanchenko added G4WentzelOKandVIxSection class to >> 49 // compute cross sections and sample scattering angle 40 // 50 // 41 // 51 // 42 // Class Description: 52 // Class Description: 43 // 53 // 44 // ------------------------------------------- 54 // ------------------------------------------------------------------- 45 // 55 // 46 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 47 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 48 58 49 #include "G4eCoulombScatteringModel.hh" 59 #include "G4eCoulombScatteringModel.hh" 50 #include "G4PhysicalConstants.hh" 60 #include "G4PhysicalConstants.hh" 51 #include "G4SystemOfUnits.hh" 61 #include "G4SystemOfUnits.hh" 52 #include "Randomize.hh" 62 #include "Randomize.hh" 53 #include "G4DataVector.hh" 63 #include "G4DataVector.hh" 54 #include "G4ElementTable.hh" 64 #include "G4ElementTable.hh" 55 #include "G4ParticleChangeForGamma.hh" 65 #include "G4ParticleChangeForGamma.hh" 56 #include "G4Proton.hh" 66 #include "G4Proton.hh" 57 #include "G4ParticleTable.hh" 67 #include "G4ParticleTable.hh" 58 #include "G4IonTable.hh" 68 #include "G4IonTable.hh" 59 #include "G4ProductionCutsTable.hh" 69 #include "G4ProductionCutsTable.hh" 60 #include "G4NucleiProperties.hh" 70 #include "G4NucleiProperties.hh" 61 #include "G4Pow.hh" 71 #include "G4Pow.hh" >> 72 #include "G4LossTableManager.hh" >> 73 #include "G4LossTableBuilder.hh" 62 #include "G4NistManager.hh" 74 #include "G4NistManager.hh" 63 75 64 //....oooOO0OOooo........oooOO0OOooo........oo 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 65 77 66 using namespace std; 78 using namespace std; 67 79 68 G4eCoulombScatteringModel::G4eCoulombScatterin 80 G4eCoulombScatteringModel::G4eCoulombScatteringModel(G4bool combined) 69 : G4VEmModel("eCoulombScattering"), isCombin << 81 : G4VEmModel("eCoulombScattering"), >> 82 cosThetaMin(1.0), >> 83 cosThetaMax(-1.0), >> 84 isCombined(combined) 70 { 85 { >> 86 fParticleChange = nullptr; 71 fNistManager = G4NistManager::Instance(); 87 fNistManager = G4NistManager::Instance(); 72 theIonTable = G4ParticleTable::GetParticleT 88 theIonTable = G4ParticleTable::GetParticleTable()->GetIonTable(); 73 theProton = G4Proton::Proton(); 89 theProton = G4Proton::Proton(); >> 90 currentMaterial = 0; >> 91 fixedCut = -1.0; 74 92 75 wokvi = new G4WentzelOKandVIxSection(isCombi << 93 pCuts = nullptr; 76 94 77 mass = CLHEP::proton_mass_c2; << 95 recoilThreshold = 0.*keV; // by default does not work >> 96 >> 97 particle = nullptr; >> 98 currentCouple = nullptr; >> 99 wokvi = new G4WentzelOKandVIxSection(combined); >> 100 >> 101 currentMaterialIndex = 0; >> 102 mass = proton_mass_c2; >> 103 elecRatio = 0.0; 78 } 104 } 79 105 80 //....oooOO0OOooo........oooOO0OOooo........oo 106 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 107 82 G4eCoulombScatteringModel::~G4eCoulombScatteri 108 G4eCoulombScatteringModel::~G4eCoulombScatteringModel() 83 { 109 { 84 delete wokvi; 110 delete wokvi; 85 } 111 } 86 112 87 //....oooOO0OOooo........oooOO0OOooo........oo 113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 88 114 89 void G4eCoulombScatteringModel::Initialise(con 115 void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* part, 90 const G4DataVector& cuts) 116 const G4DataVector& cuts) 91 { 117 { 92 SetupParticle(part); 118 SetupParticle(part); 93 currentCouple = nullptr; << 119 currentCouple = 0; 94 << 95 G4double tet = PolarAngleLimit(); << 96 120 97 // defined theta limit between single and mu << 98 if(isCombined) { 121 if(isCombined) { 99 if(tet >= CLHEP::pi) { cosThetaMin = -1.0; << 122 cosThetaMin = 1.0; 100 else if(tet > 0.0) { cosThetaMin = std::co << 123 G4double tet = PolarAngleLimit(); 101 << 124 if(tet >= pi) { cosThetaMin = -1.0; } 102 // single scattering without multiple << 125 else if(tet > 0.0) { cosThetaMin = cos(tet); } 103 } else if(tet > 0.0) { << 104 cosThetaMin = std::cos(std::min(tet, CLHEP << 105 } 126 } 106 127 107 wokvi->Initialise(part, cosThetaMin); 128 wokvi->Initialise(part, cosThetaMin); >> 129 /* >> 130 G4cout << "G4eCoulombScatteringModel: " << particle->GetParticleName() >> 131 << " 1-cos(ThetaLimit)= " << 1 - cosThetaMin >> 132 << " cos(thetaMax)= " << cosThetaMax >> 133 << G4endl; >> 134 */ 108 pCuts = &cuts; 135 pCuts = &cuts; >> 136 //G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(3); 109 /* 137 /* 110 G4cout << "G4eCoulombScatteringModel::Initia << 138 G4cout << "!!! G4eCoulombScatteringModel::Initialise for " 111 << part->GetParticleName() << " 1-cos(Tet << 139 << part->GetParticleName() << " cos(TetMin)= " << cosThetaMin 112 << " 1-cos(TetMax)= " << 1. - cosThetaMax << 140 << " cos(TetMax)= " << cosThetaMax <<G4endl; 113 G4cout << "cut[0]= " << (*pCuts)[0] << G4end << 141 G4cout << "cut= " << (*pCuts)[0] << " cut1= " << (*pCuts)[1] << G4endl; 114 */ 142 */ 115 if(nullptr == fParticleChange) { << 143 if(!fParticleChange) { 116 fParticleChange = GetParticleChangeForGamm 144 fParticleChange = GetParticleChangeForGamma(); 117 } 145 } 118 if(IsMaster() && mass < GeV && part->GetPart 146 if(IsMaster() && mass < GeV && part->GetParticleName() != "GenericIon") { 119 InitialiseElementSelectors(part, cuts); << 147 InitialiseElementSelectors(part,cuts); 120 } 148 } 121 } 149 } 122 150 123 //....oooOO0OOooo........oooOO0OOooo........oo 151 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 124 152 125 void G4eCoulombScatteringModel::InitialiseLoca 153 void G4eCoulombScatteringModel::InitialiseLocal(const G4ParticleDefinition*, 126 G4VEmModel* masterModel) 154 G4VEmModel* masterModel) 127 { 155 { 128 SetElementSelectors(masterModel->GetElementS 156 SetElementSelectors(masterModel->GetElementSelectors()); 129 } 157 } 130 158 131 //....oooOO0OOooo........oooOO0OOooo........oo 159 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 132 160 133 G4double 161 G4double 134 G4eCoulombScatteringModel::MinPrimaryEnergy(co 162 G4eCoulombScatteringModel::MinPrimaryEnergy(const G4Material* material, 135 const G4ParticleDefinition* part 163 const G4ParticleDefinition* part, 136 G4double) 164 G4double) 137 { 165 { 138 SetupParticle(part); 166 SetupParticle(part); 139 167 140 // define cut using cuts for proton 168 // define cut using cuts for proton 141 G4double cut = 169 G4double cut = 142 std::max(recoilThreshold, (*pCuts)[Current 170 std::max(recoilThreshold, (*pCuts)[CurrentCouple()->GetIndex()]); 143 171 144 // find out lightest element 172 // find out lightest element 145 const G4ElementVector* theElementVector = ma 173 const G4ElementVector* theElementVector = material->GetElementVector(); 146 std::size_t nelm = material->GetNumberOfElem << 174 G4int nelm = material->GetNumberOfElements(); 147 175 148 // select lightest element 176 // select lightest element 149 G4int Z = 300; 177 G4int Z = 300; 150 for (std::size_t j=0; j<nelm; ++j) { << 178 for (G4int j=0; j<nelm; ++j) { 151 Z = std::min(Z,(*theElementVector)[j]->Get 179 Z = std::min(Z,(*theElementVector)[j]->GetZasInt()); 152 } 180 } 153 G4int A = G4lrint(fNistManager->GetAtomicMas 181 G4int A = G4lrint(fNistManager->GetAtomicMassAmu(Z)); 154 G4double targetMass = G4NucleiProperties::Ge 182 G4double targetMass = G4NucleiProperties::GetNuclearMass(A, Z); 155 G4double t = std::max(cut, 0.5*(cut + sqrt(2 183 G4double t = std::max(cut, 0.5*(cut + sqrt(2*cut*targetMass))); 156 184 157 return t; 185 return t; 158 } 186 } 159 187 160 //....oooOO0OOooo........oooOO0OOooo........oo 188 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 161 189 162 G4double G4eCoulombScatteringModel::ComputeCro 190 G4double G4eCoulombScatteringModel::ComputeCrossSectionPerAtom( 163 const G4ParticleDefinition* p, 191 const G4ParticleDefinition* p, 164 G4double kinEnergy, 192 G4double kinEnergy, 165 G4double Z, G4double, 193 G4double Z, G4double, 166 G4double cutEnergy, G4double) 194 G4double cutEnergy, G4double) 167 { 195 { 168 /* << 196 //G4cout << "### G4eCoulombScatteringModel::ComputeCrossSectionPerAtom for " 169 G4cout << "### G4eCoulombScatteringModel::Co << 197 //<< p->GetParticleName()<<" Z= "<<Z<<" e(MeV)= "<< kinEnergy/MeV << G4endl; 170 << p->GetParticleName()<<" Z= "<<Z<<" e(MeV << 171 << G4endl; << 172 */ << 173 G4double cross = 0.0; 198 G4double cross = 0.0; 174 elecRatio = 0.0; 199 elecRatio = 0.0; 175 if(p != particle) { SetupParticle(p); } 200 if(p != particle) { SetupParticle(p); } 176 201 177 // cross section is set to zero to avoid pro 202 // cross section is set to zero to avoid problems in sample secondary 178 if(kinEnergy <= 0.0) { return cross; } 203 if(kinEnergy <= 0.0) { return cross; } 179 DefineMaterial(CurrentCouple()); 204 DefineMaterial(CurrentCouple()); 180 G4double costmin = wokvi->SetupKinematic(kin 205 G4double costmin = wokvi->SetupKinematic(kinEnergy, currentMaterial); 181 << 182 //G4cout << "cosThetaMax= "<<cosThetaMax<<" << 183 << 184 if(cosThetaMax < costmin) { 206 if(cosThetaMax < costmin) { 185 G4int iz = G4lrint(Z); 207 G4int iz = G4lrint(Z); 186 G4double cut = (0.0 < fixedCut) ? fixedCut << 208 G4double cut = cutEnergy; >> 209 if(fixedCut > 0.0) { cut = fixedCut; } 187 costmin = wokvi->SetupTarget(iz, cut); 210 costmin = wokvi->SetupTarget(iz, cut); 188 //G4cout << "SetupTarget: Z= " << iz << " << 211 G4double costmax = cosThetaMax; 189 // << costmin << G4endl; << 212 if(iz == 1 && costmax < 0.0 && particle == theProton) { 190 G4double costmax = (1 == iz && particle == << 213 costmax = 0.0; 191 ? 0.0 : cosThetaMax; << 214 } 192 if(costmin > costmax) { 215 if(costmin > costmax) { 193 cross = wokvi->ComputeNuclearCrossSectio 216 cross = wokvi->ComputeNuclearCrossSection(costmin, costmax) 194 + wokvi->ComputeElectronCrossSection(c << 217 + wokvi->ComputeElectronCrossSection(costmin, costmax); 195 } 218 } 196 /* << 219 /* 197 if(p->GetParticleName() == "e-") << 220 if(p->GetParticleName() == "mu+") 198 G4cout << "Z= " << Z << " e(MeV)= " << kin << 221 G4cout << "e(MeV)= " << kinEnergy/MeV << " cross(b)= " << cross/barn 199 << " cross(b)= " << cross/barn << " 1-cos << 222 << " 1-costmin= " << 1-costmin 200 << " 1-costmax= " << 1-costmax << 223 << " 1-costmax= " << 1-costmax 201 << " 1-cosThetaMax= " << 1-cosThetaMax << 224 << " 1-cosThetaMax= " << 1-cosThetaMax 202 << " " << currentMaterial->GetName() << 225 << G4endl; 203 << G4endl; << 204 */ 226 */ 205 } 227 } 206 //G4cout << "====== cross= " << cross << G4e << 207 return cross; 228 return cross; 208 } 229 } 209 230 210 //....oooOO0OOooo........oooOO0OOooo........oo 231 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 211 232 212 void G4eCoulombScatteringModel::SampleSecondar 233 void G4eCoulombScatteringModel::SampleSecondaries( 213 std::vector<G4DynamicParticle* 234 std::vector<G4DynamicParticle*>* fvect, 214 const G4MaterialCutsCouple* couple, 235 const G4MaterialCutsCouple* couple, 215 const G4DynamicParticle* dp, 236 const G4DynamicParticle* dp, 216 G4double cutEnergy, 237 G4double cutEnergy, 217 G4double) 238 G4double) 218 { 239 { 219 G4double kinEnergy = dp->GetKineticEnergy(); 240 G4double kinEnergy = dp->GetKineticEnergy(); 220 SetupParticle(dp->GetDefinition()); 241 SetupParticle(dp->GetDefinition()); 221 DefineMaterial(couple); 242 DefineMaterial(couple); 222 /* 243 /* 223 G4cout << "G4eCoulombScatteringModel::Sample 244 G4cout << "G4eCoulombScatteringModel::SampleSecondaries e(MeV)= " 224 << kinEnergy << " " << particle->GetPart 245 << kinEnergy << " " << particle->GetParticleName() 225 << " cut= " << cutEnergy<< G4endl; 246 << " cut= " << cutEnergy<< G4endl; 226 */ 247 */ 227 // Choose nucleus 248 // Choose nucleus 228 G4double cut = (0.0 < fixedCut) ? fixedCut : << 249 G4double cut = cutEnergy; >> 250 if(fixedCut > 0.0) { cut = fixedCut; } 229 251 230 wokvi->SetupKinematic(kinEnergy, currentMate 252 wokvi->SetupKinematic(kinEnergy, currentMaterial); 231 253 232 const G4Element* currentElement = SelectTarg << 254 const G4Element* currentElement = 233 dp->Get << 255 SelectRandomAtom(couple,particle,kinEnergy,cut,kinEnergy); >> 256 234 G4int iz = currentElement->GetZasInt(); 257 G4int iz = currentElement->GetZasInt(); 235 258 236 G4double costmin = wokvi->SetupTarget(iz, cu 259 G4double costmin = wokvi->SetupTarget(iz, cut); 237 G4double costmax = (1 == iz && particle == t << 260 G4double costmax = cosThetaMax; 238 ? 0.0 : cosThetaMax; << 261 if(iz == 1 && costmax < 0.0 && particle == theProton) { 239 if(costmin <= costmax) { return; } << 262 costmax = 0.0; 240 << 263 } 241 G4double cross = wokvi->ComputeNuclearCrossS << 264 242 G4double ecross = wokvi->ComputeElectronCros << 265 if(costmin > costmax) { 243 G4double ratio = ecross/(cross + ecross); << 266 G4double cross = wokvi->ComputeNuclearCrossSection(costmin, costmax); 244 << 267 G4double ecross = wokvi->ComputeElectronCrossSection(costmin, costmax); 245 G4int ia = SelectIsotopeNumber(currentElemen << 268 G4double ratio = ecross/(cross + ecross); 246 G4double targetMass = G4NucleiProperties::Ge << 269 247 wokvi->SetTargetMass(targetMass); << 270 G4int ia = SelectIsotopeNumber(currentElement); 248 << 271 G4double targetMass = G4NucleiProperties::GetNuclearMass(ia, iz); 249 G4ThreeVector newDirection = << 272 wokvi->SetTargetMass(targetMass); 250 wokvi->SampleSingleScattering(costmin, cos << 273 251 G4double cost = newDirection.z(); << 274 G4ThreeVector newDirection = >> 275 wokvi->SampleSingleScattering(costmin, costmax, ratio); >> 276 G4double cost = newDirection.z(); 252 /* 277 /* 253 G4cout << "SampleSec: e(MeV)= " << kinEn 278 G4cout << "SampleSec: e(MeV)= " << kinEnergy/MeV 254 << " 1-costmin= " << 1-costmin 279 << " 1-costmin= " << 1-costmin 255 << " 1-costmax= " << 1-costmax 280 << " 1-costmax= " << 1-costmax 256 << " 1-cost= " << 1-cost 281 << " 1-cost= " << 1-cost 257 << " ratio= " << ratio 282 << " ratio= " << ratio 258 << G4endl; 283 << G4endl; 259 */ 284 */ 260 G4ThreeVector direction = dp->GetMomentumDir << 285 G4ThreeVector direction = dp->GetMomentumDirection(); 261 newDirection.rotateUz(direction); << 286 newDirection.rotateUz(direction); 262 287 263 fParticleChange->ProposeMomentumDirection(ne << 288 fParticleChange->ProposeMomentumDirection(newDirection); 264 289 265 // recoil sampling assuming a small recoil << 290 // recoil sampling assuming a small recoil 266 // and first order correction to primary 4-m << 291 // and first order correction to primary 4-momentum 267 G4double mom2 = wokvi->GetMomentumSquare(); << 292 G4double mom2 = wokvi->GetMomentumSquare(); 268 G4double trec = mom2*(1.0 - cost) << 293 G4double trec = mom2*(1.0 - cost) 269 /(targetMass + (mass + kinEnergy)*(1.0 - c << 294 /(targetMass + (mass + kinEnergy)*(1.0 - cost)); 270 << 295 271 // the check likely not needed << 296 // the check likely not needed 272 trec = std::min(trec, kinEnergy); << 297 if(trec > kinEnergy) { trec = kinEnergy; } 273 G4double finalT = kinEnergy - trec; << 298 G4double finalT = kinEnergy - trec; 274 G4double edep = 0.0; << 299 G4double edep = 0.0; 275 /* 300 /* 276 G4cout<<"G4eCoulombScatteringModel: finalT 301 G4cout<<"G4eCoulombScatteringModel: finalT= "<<finalT<<" Trec= " 277 <<trec << " Z= " << iz << " A= " << ia 302 <<trec << " Z= " << iz << " A= " << ia 278 << " tcut(keV)= " << (*pCuts)[currentMater 303 << " tcut(keV)= " << (*pCuts)[currentMaterialIndex]/keV << G4endl; 279 */ 304 */ 280 G4double tcut = recoilThreshold; << 305 G4double tcut = recoilThreshold; 281 if(pCuts) { tcut= std::max(tcut,(*pCuts)[cur << 306 if(pCuts) { tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]); } 282 307 283 if(trec > tcut) { << 308 if(trec > tcut) { 284 G4ParticleDefinition* ion = theIonTable->G << 309 G4ParticleDefinition* ion = theIonTable->GetIon(iz, ia, 0); 285 G4ThreeVector dir = (direction*sqrt(mom2) << 310 G4ThreeVector dir = (direction*sqrt(mom2) - 286 newDirection*sqrt(finalT*(2*mass + fina << 311 newDirection*sqrt(finalT*(2*mass + finalT))).unit(); 287 auto newdp = new G4DynamicParticle(ion, di << 312 G4DynamicParticle* newdp = new G4DynamicParticle(ion, dir, trec); 288 fvect->push_back(newdp); << 313 fvect->push_back(newdp); 289 } else { << 314 } else { 290 edep = trec; << 315 edep = trec; 291 fParticleChange->ProposeNonIonizingEnergyD << 316 fParticleChange->ProposeNonIonizingEnergyDeposit(edep); 292 } << 317 } 293 318 294 // finelize primary energy and energy bala 319 // finelize primary energy and energy balance 295 // this threshold may be applied only beca 320 // this threshold may be applied only because for low-enegry 296 // e+e- msc model is applied 321 // e+e- msc model is applied 297 if(finalT < 0.0) { << 322 if(finalT < 0.0) { 298 edep += finalT; << 323 edep += finalT; 299 finalT = 0.0; << 324 finalT = 0.0; 300 } << 325 if(edep < 0.0) { edep = 0.0; } 301 edep = std::max(edep, 0.0); << 326 } 302 fParticleChange->SetProposedKineticEnergy(fi << 327 fParticleChange->SetProposedKineticEnergy(finalT); 303 fParticleChange->ProposeLocalEnergyDeposit(e << 328 fParticleChange->ProposeLocalEnergyDeposit(edep); >> 329 } 304 } 330 } 305 331 306 //....oooOO0OOooo........oooOO0OOooo........oo 332 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 333 >> 334 307 335