Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4eCoulombScatteringModel.cc 79188 2014-02-20 09:22:48Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4eCoulombScatteringModel 33 // File name: G4eCoulombScatteringModel 33 // 34 // 34 // Author: Vladimir Ivanchenko 35 // Author: Vladimir Ivanchenko 35 // 36 // 36 // Creation date: 22.08.2005 37 // Creation date: 22.08.2005 37 // 38 // 38 // Modifications: V.Ivanchenko << 39 // Modifications: 39 // 40 // >> 41 // 01.08.06 V.Ivanchenko extend upper limit of table to TeV and review the >> 42 // logic of building - only elements from G4ElementTable >> 43 // 08.08.06 V.Ivanchenko build internal table in ekin scale, introduce faclim >> 44 // 19.08.06 V.Ivanchenko add inline function ScreeningParameter >> 45 // 09.10.07 V.Ivanchenko reorganized methods, add cut dependence in scattering off e- >> 46 // 09.06.08 V.Ivanchenko add SelectIsotope and sampling of the recoil ion >> 47 // 16.06.09 C.Consolandi fixed computation of effective mass >> 48 // 27.05.10 V.Ivanchenko added G4WentzelOKandVIxSection class to >> 49 // compute cross sections and sample scattering angle 40 // 50 // 41 // 51 // 42 // Class Description: 52 // Class Description: 43 // 53 // 44 // ------------------------------------------- 54 // ------------------------------------------------------------------- 45 // 55 // 46 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 47 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 48 58 49 #include "G4eCoulombScatteringModel.hh" 59 #include "G4eCoulombScatteringModel.hh" 50 #include "G4PhysicalConstants.hh" 60 #include "G4PhysicalConstants.hh" 51 #include "G4SystemOfUnits.hh" 61 #include "G4SystemOfUnits.hh" 52 #include "Randomize.hh" 62 #include "Randomize.hh" 53 #include "G4DataVector.hh" 63 #include "G4DataVector.hh" 54 #include "G4ElementTable.hh" 64 #include "G4ElementTable.hh" 55 #include "G4ParticleChangeForGamma.hh" 65 #include "G4ParticleChangeForGamma.hh" 56 #include "G4Proton.hh" 66 #include "G4Proton.hh" 57 #include "G4ParticleTable.hh" 67 #include "G4ParticleTable.hh" 58 #include "G4IonTable.hh" 68 #include "G4IonTable.hh" 59 #include "G4ProductionCutsTable.hh" 69 #include "G4ProductionCutsTable.hh" 60 #include "G4NucleiProperties.hh" 70 #include "G4NucleiProperties.hh" 61 #include "G4Pow.hh" 71 #include "G4Pow.hh" >> 72 #include "G4LossTableManager.hh" >> 73 #include "G4LossTableBuilder.hh" 62 #include "G4NistManager.hh" 74 #include "G4NistManager.hh" 63 75 64 //....oooOO0OOooo........oooOO0OOooo........oo 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 65 77 66 using namespace std; 78 using namespace std; 67 79 68 G4eCoulombScatteringModel::G4eCoulombScatterin << 80 G4eCoulombScatteringModel::G4eCoulombScatteringModel(const G4String& nam) 69 : G4VEmModel("eCoulombScattering"), isCombin << 81 : G4VEmModel(nam), >> 82 cosThetaMin(1.0), >> 83 cosThetaMax(-1.0), >> 84 isInitialised(false) 70 { 85 { >> 86 fParticleChange = 0; 71 fNistManager = G4NistManager::Instance(); 87 fNistManager = G4NistManager::Instance(); 72 theIonTable = G4ParticleTable::GetParticleT 88 theIonTable = G4ParticleTable::GetParticleTable()->GetIonTable(); 73 theProton = G4Proton::Proton(); 89 theProton = G4Proton::Proton(); >> 90 currentMaterial = 0; >> 91 fixedCut = -1.0; 74 92 75 wokvi = new G4WentzelOKandVIxSection(isCombi << 93 pCuts = 0; 76 94 77 mass = CLHEP::proton_mass_c2; << 95 lowEnergyThreshold = 1*keV; // particle will be killed for lower energy >> 96 recoilThreshold = 0.*keV; // by default does not work >> 97 >> 98 particle = 0; >> 99 currentCouple = 0; >> 100 wokvi = new G4WentzelOKandVIxSection(); >> 101 >> 102 currentMaterialIndex = 0; >> 103 >> 104 cosTetMinNuc = 1.0; >> 105 cosTetMaxNuc = -1.0; >> 106 elecRatio = 0.0; >> 107 mass = proton_mass_c2; 78 } 108 } 79 109 80 //....oooOO0OOooo........oooOO0OOooo........oo 110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 111 82 G4eCoulombScatteringModel::~G4eCoulombScatteri 112 G4eCoulombScatteringModel::~G4eCoulombScatteringModel() 83 { 113 { 84 delete wokvi; 114 delete wokvi; 85 } 115 } 86 116 87 //....oooOO0OOooo........oooOO0OOooo........oo 117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 88 118 89 void G4eCoulombScatteringModel::Initialise(con 119 void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* part, 90 const G4DataVector& cuts) 120 const G4DataVector& cuts) 91 { 121 { 92 SetupParticle(part); 122 SetupParticle(part); 93 currentCouple = nullptr; << 123 currentCouple = 0; 94 << 124 cosThetaMin = cos(PolarAngleLimit()); 95 G4double tet = PolarAngleLimit(); << 96 << 97 // defined theta limit between single and mu << 98 if(isCombined) { << 99 if(tet >= CLHEP::pi) { cosThetaMin = -1.0; << 100 else if(tet > 0.0) { cosThetaMin = std::co << 101 << 102 // single scattering without multiple << 103 } else if(tet > 0.0) { << 104 cosThetaMin = std::cos(std::min(tet, CLHEP << 105 } << 106 << 107 wokvi->Initialise(part, cosThetaMin); 125 wokvi->Initialise(part, cosThetaMin); >> 126 /* >> 127 G4cout << "G4eCoulombScatteringModel: " << particle->GetParticleName() >> 128 << " 1-cos(ThetaLimit)= " << 1 - cosThetaMin >> 129 << " cos(thetaMax)= " << cosThetaMax >> 130 << G4endl; >> 131 */ 108 pCuts = &cuts; 132 pCuts = &cuts; >> 133 // G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(3); 109 /* 134 /* 110 G4cout << "G4eCoulombScatteringModel::Initia << 135 G4cout << "!!! G4eCoulombScatteringModel::Initialise for " 111 << part->GetParticleName() << " 1-cos(Tet << 136 << part->GetParticleName() << " cos(TetMin)= " << cosThetaMin 112 << " 1-cos(TetMax)= " << 1. - cosThetaMax << 137 << " cos(TetMax)= " << cosThetaMax <<G4endl; 113 G4cout << "cut[0]= " << (*pCuts)[0] << G4end << 138 G4cout << "cut= " << pCuts[0] << " cut1= " << pCuts[1] << G4endl; 114 */ 139 */ 115 if(nullptr == fParticleChange) { << 140 if(!isInitialised) { >> 141 isInitialised = true; 116 fParticleChange = GetParticleChangeForGamm 142 fParticleChange = GetParticleChangeForGamma(); 117 } 143 } 118 if(IsMaster() && mass < GeV && part->GetPart 144 if(IsMaster() && mass < GeV && part->GetParticleName() != "GenericIon") { 119 InitialiseElementSelectors(part, cuts); << 145 InitialiseElementSelectors(part,cuts); 120 } 146 } 121 } 147 } 122 148 123 //....oooOO0OOooo........oooOO0OOooo........oo 149 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 124 150 125 void G4eCoulombScatteringModel::InitialiseLoca 151 void G4eCoulombScatteringModel::InitialiseLocal(const G4ParticleDefinition*, 126 G4VEmModel* masterModel) 152 G4VEmModel* masterModel) 127 { 153 { 128 SetElementSelectors(masterModel->GetElementS 154 SetElementSelectors(masterModel->GetElementSelectors()); 129 } 155 } 130 156 131 //....oooOO0OOooo........oooOO0OOooo........oo 157 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 132 158 133 G4double 159 G4double 134 G4eCoulombScatteringModel::MinPrimaryEnergy(co 160 G4eCoulombScatteringModel::MinPrimaryEnergy(const G4Material* material, 135 const G4ParticleDefinition* part 161 const G4ParticleDefinition* part, 136 G4double) 162 G4double) 137 { 163 { 138 SetupParticle(part); 164 SetupParticle(part); 139 165 140 // define cut using cuts for proton 166 // define cut using cuts for proton 141 G4double cut = 167 G4double cut = 142 std::max(recoilThreshold, (*pCuts)[Current 168 std::max(recoilThreshold, (*pCuts)[CurrentCouple()->GetIndex()]); 143 169 144 // find out lightest element 170 // find out lightest element 145 const G4ElementVector* theElementVector = ma 171 const G4ElementVector* theElementVector = material->GetElementVector(); 146 std::size_t nelm = material->GetNumberOfElem << 172 G4int nelm = material->GetNumberOfElements(); 147 << 148 // select lightest element << 149 G4int Z = 300; 173 G4int Z = 300; 150 for (std::size_t j=0; j<nelm; ++j) { << 174 for (G4int j=0; j<nelm; ++j) { 151 Z = std::min(Z,(*theElementVector)[j]->Get << 175 G4int iz = (G4int)(*theElementVector)[j]->GetZ(); >> 176 if(iz < Z) { Z = iz; } 152 } 177 } 153 G4int A = G4lrint(fNistManager->GetAtomicMas 178 G4int A = G4lrint(fNistManager->GetAtomicMassAmu(Z)); 154 G4double targetMass = G4NucleiProperties::Ge 179 G4double targetMass = G4NucleiProperties::GetNuclearMass(A, Z); 155 G4double t = std::max(cut, 0.5*(cut + sqrt(2 180 G4double t = std::max(cut, 0.5*(cut + sqrt(2*cut*targetMass))); 156 181 157 return t; << 182 return std::max(lowEnergyThreshold, t); 158 } 183 } 159 184 160 //....oooOO0OOooo........oooOO0OOooo........oo 185 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 161 186 162 G4double G4eCoulombScatteringModel::ComputeCro 187 G4double G4eCoulombScatteringModel::ComputeCrossSectionPerAtom( 163 const G4ParticleDefinition* p, 188 const G4ParticleDefinition* p, 164 G4double kinEnergy, 189 G4double kinEnergy, 165 G4double Z, G4double, 190 G4double Z, G4double, 166 G4double cutEnergy, G4double) 191 G4double cutEnergy, G4double) 167 { 192 { 168 /* << 193 //G4cout << "### G4eCoulombScatteringModel::ComputeCrossSectionPerAtom for " 169 G4cout << "### G4eCoulombScatteringModel::Co << 194 //<< p->GetParticleName()<<" Z= "<<Z<<" e(MeV)= "<< kinEnergy/MeV << G4endl; 170 << p->GetParticleName()<<" Z= "<<Z<<" e(MeV << 171 << G4endl; << 172 */ << 173 G4double cross = 0.0; 195 G4double cross = 0.0; 174 elecRatio = 0.0; << 175 if(p != particle) { SetupParticle(p); } 196 if(p != particle) { SetupParticle(p); } 176 197 177 // cross section is set to zero to avoid pro 198 // cross section is set to zero to avoid problems in sample secondary 178 if(kinEnergy <= 0.0) { return cross; } 199 if(kinEnergy <= 0.0) { return cross; } 179 DefineMaterial(CurrentCouple()); 200 DefineMaterial(CurrentCouple()); 180 G4double costmin = wokvi->SetupKinematic(kin << 201 cosTetMinNuc = wokvi->SetupKinematic(kinEnergy, currentMaterial); 181 << 202 if(cosThetaMax < cosTetMinNuc) { 182 //G4cout << "cosThetaMax= "<<cosThetaMax<<" << 203 G4int iz = G4int(Z); 183 << 204 G4double cut = cutEnergy; 184 if(cosThetaMax < costmin) { << 205 if(fixedCut > 0.0) { cut = fixedCut; } 185 G4int iz = G4lrint(Z); << 206 cosTetMinNuc = wokvi->SetupTarget(iz, cut); 186 G4double cut = (0.0 < fixedCut) ? fixedCut << 207 cosTetMaxNuc = cosThetaMax; 187 costmin = wokvi->SetupTarget(iz, cut); << 208 if(iz == 1 && cosTetMaxNuc < 0.0 && particle == theProton) { 188 //G4cout << "SetupTarget: Z= " << iz << " << 209 cosTetMaxNuc = 0.0; 189 // << costmin << G4endl; << 190 G4double costmax = (1 == iz && particle == << 191 ? 0.0 : cosThetaMax; << 192 if(costmin > costmax) { << 193 cross = wokvi->ComputeNuclearCrossSectio << 194 + wokvi->ComputeElectronCrossSection(c << 195 } 210 } 196 /* << 211 cross = wokvi->ComputeNuclearCrossSection(cosTetMinNuc, cosTetMaxNuc); 197 if(p->GetParticleName() == "e-") << 212 elecRatio = wokvi->ComputeElectronCrossSection(cosTetMinNuc, cosThetaMax); 198 G4cout << "Z= " << Z << " e(MeV)= " << kin << 213 cross += elecRatio; 199 << " cross(b)= " << cross/barn << " 1-cos << 214 if(cross > 0.0) { elecRatio /= cross; } 200 << " 1-costmax= " << 1-costmax << 201 << " 1-cosThetaMax= " << 1-cosThetaMax << 202 << " " << currentMaterial->GetName() << 203 << G4endl; << 204 */ << 205 } 215 } 206 //G4cout << "====== cross= " << cross << G4e << 216 /* >> 217 if(p->GetParticleName() == "e-") >> 218 G4cout << "e(MeV)= " << kinEnergy/MeV << " cross(b)= " << cross/barn >> 219 << " 1-cosTetMinNuc= " << 1-cosTetMinNuc >> 220 << " 1-cosTetMaxNuc= " << 1-cosTetMaxNuc >> 221 << G4endl; >> 222 */ 207 return cross; 223 return cross; 208 } 224 } 209 225 210 //....oooOO0OOooo........oooOO0OOooo........oo 226 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 211 227 212 void G4eCoulombScatteringModel::SampleSecondar 228 void G4eCoulombScatteringModel::SampleSecondaries( 213 std::vector<G4DynamicParticle* 229 std::vector<G4DynamicParticle*>* fvect, 214 const G4MaterialCutsCouple* couple, 230 const G4MaterialCutsCouple* couple, 215 const G4DynamicParticle* dp, 231 const G4DynamicParticle* dp, 216 G4double cutEnergy, 232 G4double cutEnergy, 217 G4double) 233 G4double) 218 { 234 { 219 G4double kinEnergy = dp->GetKineticEnergy(); 235 G4double kinEnergy = dp->GetKineticEnergy(); >> 236 >> 237 // absorb particle below low-energy limit to avoid situation >> 238 // when a particle has no energy loss >> 239 if(kinEnergy < lowEnergyThreshold) { >> 240 fParticleChange->SetProposedKineticEnergy(0.0); >> 241 fParticleChange->ProposeLocalEnergyDeposit(kinEnergy); >> 242 fParticleChange->ProposeNonIonizingEnergyDeposit(kinEnergy); >> 243 return; >> 244 } 220 SetupParticle(dp->GetDefinition()); 245 SetupParticle(dp->GetDefinition()); 221 DefineMaterial(couple); 246 DefineMaterial(couple); 222 /* 247 /* 223 G4cout << "G4eCoulombScatteringModel::Sample 248 G4cout << "G4eCoulombScatteringModel::SampleSecondaries e(MeV)= " 224 << kinEnergy << " " << particle->GetPart 249 << kinEnergy << " " << particle->GetParticleName() 225 << " cut= " << cutEnergy<< G4endl; 250 << " cut= " << cutEnergy<< G4endl; 226 */ 251 */ 227 // Choose nucleus 252 // Choose nucleus 228 G4double cut = (0.0 < fixedCut) ? fixedCut : << 253 G4double cut = cutEnergy; >> 254 if(fixedCut > 0.0) { cut = fixedCut; } 229 255 230 wokvi->SetupKinematic(kinEnergy, currentMate << 256 const G4Element* currentElement = >> 257 SelectRandomAtom(couple,particle,kinEnergy,cut,kinEnergy); 231 258 232 const G4Element* currentElement = SelectTarg << 259 G4double Z = currentElement->GetZ(); 233 dp->Get << 234 G4int iz = currentElement->GetZasInt(); << 235 << 236 G4double costmin = wokvi->SetupTarget(iz, cu << 237 G4double costmax = (1 == iz && particle == t << 238 ? 0.0 : cosThetaMax; << 239 if(costmin <= costmax) { return; } << 240 << 241 G4double cross = wokvi->ComputeNuclearCrossS << 242 G4double ecross = wokvi->ComputeElectronCros << 243 G4double ratio = ecross/(cross + ecross); << 244 260 >> 261 if(ComputeCrossSectionPerAtom(particle,kinEnergy, Z, >> 262 kinEnergy, cut, kinEnergy) == 0.0) >> 263 { return; } >> 264 >> 265 G4int iz = G4int(Z); 245 G4int ia = SelectIsotopeNumber(currentElemen 266 G4int ia = SelectIsotopeNumber(currentElement); 246 G4double targetMass = G4NucleiProperties::Ge 267 G4double targetMass = G4NucleiProperties::GetNuclearMass(ia, iz); 247 wokvi->SetTargetMass(targetMass); 268 wokvi->SetTargetMass(targetMass); 248 269 249 G4ThreeVector newDirection = 270 G4ThreeVector newDirection = 250 wokvi->SampleSingleScattering(costmin, cos << 271 wokvi->SampleSingleScattering(cosTetMinNuc, cosThetaMax, elecRatio); 251 G4double cost = newDirection.z(); 272 G4double cost = newDirection.z(); 252 /* << 273 253 G4cout << "SampleSec: e(MeV)= " << kinEn << 254 << " 1-costmin= " << 1-costmin << 255 << " 1-costmax= " << 1-costmax << 256 << " 1-cost= " << 1-cost << 257 << " ratio= " << ratio << 258 << G4endl; << 259 */ << 260 G4ThreeVector direction = dp->GetMomentumDir 274 G4ThreeVector direction = dp->GetMomentumDirection(); 261 newDirection.rotateUz(direction); 275 newDirection.rotateUz(direction); 262 276 263 fParticleChange->ProposeMomentumDirection(ne 277 fParticleChange->ProposeMomentumDirection(newDirection); 264 278 265 // recoil sampling assuming a small recoil 279 // recoil sampling assuming a small recoil 266 // and first order correction to primary 4-m 280 // and first order correction to primary 4-momentum 267 G4double mom2 = wokvi->GetMomentumSquare(); 281 G4double mom2 = wokvi->GetMomentumSquare(); 268 G4double trec = mom2*(1.0 - cost) 282 G4double trec = mom2*(1.0 - cost) 269 /(targetMass + (mass + kinEnergy)*(1.0 - c 283 /(targetMass + (mass + kinEnergy)*(1.0 - cost)); 270 284 271 // the check likely not needed 285 // the check likely not needed 272 trec = std::min(trec, kinEnergy); << 286 if(trec > kinEnergy) { trec = kinEnergy; } 273 G4double finalT = kinEnergy - trec; 287 G4double finalT = kinEnergy - trec; 274 G4double edep = 0.0; 288 G4double edep = 0.0; 275 /* << 289 //G4cout<<"G4eCoulombScatteringModel: finalT= "<<finalT<<" Trec= " 276 G4cout<<"G4eCoulombScatteringModel: finalT << 290 // <<trec << " Z= " << iz << " A= " << ia<<G4endl; 277 <<trec << " Z= " << iz << " A= " << ia << 291 278 << " tcut(keV)= " << (*pCuts)[currentMater << 279 */ << 280 G4double tcut = recoilThreshold; 292 G4double tcut = recoilThreshold; 281 if(pCuts) { tcut= std::max(tcut,(*pCuts)[cur 293 if(pCuts) { tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]); } 282 294 283 if(trec > tcut) { 295 if(trec > tcut) { 284 G4ParticleDefinition* ion = theIonTable->G 296 G4ParticleDefinition* ion = theIonTable->GetIon(iz, ia, 0); 285 G4ThreeVector dir = (direction*sqrt(mom2) 297 G4ThreeVector dir = (direction*sqrt(mom2) - 286 newDirection*sqrt(finalT*(2*mass + fina 298 newDirection*sqrt(finalT*(2*mass + finalT))).unit(); 287 auto newdp = new G4DynamicParticle(ion, di << 299 G4DynamicParticle* newdp = new G4DynamicParticle(ion, dir, trec); 288 fvect->push_back(newdp); 300 fvect->push_back(newdp); 289 } else { 301 } else { 290 edep = trec; 302 edep = trec; 291 fParticleChange->ProposeNonIonizingEnergyD 303 fParticleChange->ProposeNonIonizingEnergyDeposit(edep); 292 } 304 } 293 305 294 // finelize primary energy and energy bala << 306 // finelize primary energy and energy balance 295 // this threshold may be applied only beca << 307 // this threshold may be applied only because for low-enegry 296 // e+e- msc model is applied << 308 // e+e- msc model is applied 297 if(finalT < 0.0) { << 309 if(finalT <= lowEnergyThreshold) { 298 edep += finalT; 310 edep += finalT; 299 finalT = 0.0; 311 finalT = 0.0; 300 } 312 } 301 edep = std::max(edep, 0.0); << 302 fParticleChange->SetProposedKineticEnergy(fi 313 fParticleChange->SetProposedKineticEnergy(finalT); 303 fParticleChange->ProposeLocalEnergyDeposit(e 314 fParticleChange->ProposeLocalEnergyDeposit(edep); 304 } 315 } 305 316 306 //....oooOO0OOooo........oooOO0OOooo........oo 317 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 318 >> 319 307 320