Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4PEEffectFluoModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4PEEffectFluoModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4PEEffectFluoModel.cc (Version 9.5.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4PEEffectFluoModel.cc,v 1.4 2010-11-21 16:08:37 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: not supported by cvs2svn $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4PEEffectFluoModel              34 // File name:     G4PEEffectFluoModel
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko on base      36 // Author:        Vladimir Ivanchenko on base of G4PEEffectModel
 35 //                                                 37 //
 36 // Creation date: 13.06.2010                       38 // Creation date: 13.06.2010
 37 //                                                 39 //
 38 // Modifications:                                  40 // Modifications:
 39 //                                                 41 //
 40 // Class Description:                              42 // Class Description:
 41 // Implementation of the photo-electric effect     43 // Implementation of the photo-electric effect with deexcitation
 42 //                                                 44 //
 43 // -------------------------------------------     45 // -------------------------------------------------------------------
 44 //                                                 46 //
 45 //....oooOO0OOooo........oooOO0OOooo........oo     47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 46 //....oooOO0OOooo........oooOO0OOooo........oo     48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 47                                                    49 
 48 #include "G4PEEffectFluoModel.hh"                  50 #include "G4PEEffectFluoModel.hh"
 49 #include "G4PhysicalConstants.hh"              << 
 50 #include "G4SystemOfUnits.hh"                  << 
 51 #include "G4Electron.hh"                           51 #include "G4Electron.hh"
 52 #include "G4Gamma.hh"                              52 #include "G4Gamma.hh"
 53 #include "Randomize.hh"                            53 #include "Randomize.hh"
 54 #include "G4Material.hh"                       << 
 55 #include "G4DataVector.hh"                         54 #include "G4DataVector.hh"
 56 #include "G4ParticleChangeForGamma.hh"             55 #include "G4ParticleChangeForGamma.hh"
 57 #include "G4VAtomDeexcitation.hh"                  56 #include "G4VAtomDeexcitation.hh"
 58 #include "G4LossTableManager.hh"                   57 #include "G4LossTableManager.hh"
 59 #include "G4SauterGavrilaAngularDistribution.h << 
 60                                                    58 
 61 //....oooOO0OOooo........oooOO0OOooo........oo     59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 62                                                    60 
 63 using namespace std;                               61 using namespace std;
 64                                                    62 
 65 G4PEEffectFluoModel::G4PEEffectFluoModel(const     63 G4PEEffectFluoModel::G4PEEffectFluoModel(const G4String& nam)
 66   : G4VEmModel(nam)                            <<  64   : G4VEmModel(nam),isInitialized(false)
 67 {                                                  65 {
 68   theGamma    = G4Gamma::Gamma();                  66   theGamma    = G4Gamma::Gamma();
 69   theElectron = G4Electron::Electron();            67   theElectron = G4Electron::Electron();
 70   fminimalEnergy = 1.0*CLHEP::eV;              <<  68   fminimalEnergy = 1.0*eV;
 71   SetDeexcitationFlag(true);                       69   SetDeexcitationFlag(true);
 72                                                <<  70   fParticleChange = 0;
 73   fSandiaCof.resize(4,0.0);                    <<  71   fAtomDeexcitation = 0;
 74                                                << 
 75   // default generator                         << 
 76   SetAngularDistribution(new G4SauterGavrilaAn << 
 77 }                                                  72 }
 78                                                    73 
 79 //....oooOO0OOooo........oooOO0OOooo........oo     74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 80                                                    75 
 81 G4PEEffectFluoModel::~G4PEEffectFluoModel() =  <<  76 G4PEEffectFluoModel::~G4PEEffectFluoModel()
                                                   >>  77 {}
 82                                                    78 
 83 //....oooOO0OOooo........oooOO0OOooo........oo     79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 84                                                    80 
 85 void G4PEEffectFluoModel::Initialise(const G4P     81 void G4PEEffectFluoModel::Initialise(const G4ParticleDefinition*,
 86              const G4DataVector&)                  82              const G4DataVector&)
 87 {                                                  83 {
 88   fAtomDeexcitation = G4LossTableManager::Inst     84   fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
 89   fPEBelowKShell = G4EmParameters::Instance()- <<  85 
 90   if(nullptr == fParticleChange) {             <<  86   if (isInitialized) { return; }
 91     fParticleChange = GetParticleChangeForGamm <<  87   fParticleChange = GetParticleChangeForGamma();
 92   }                                            <<  88   isInitialized = true;
 93   std::size_t nmat = G4Material::GetNumberOfMa << 
 94   fMatEnergyTh.resize(nmat, 0.0);              << 
 95   for(std::size_t i=0; i<nmat; ++i) {          << 
 96     fMatEnergyTh[i] = (*(G4Material::GetMateri << 
 97       ->GetSandiaTable()->GetSandiaCofForMater << 
 98     //G4cout << "G4PEEffectFluoModel::Initiali << 
 99     //     << fMatEnergyTh[i]/eV << G4endl;    << 
100   }                                            << 
101 }                                                  89 }
102                                                    90 
103 //....oooOO0OOooo........oooOO0OOooo........oo     91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
104                                                    92 
105 G4double                                           93 G4double 
106 G4PEEffectFluoModel::ComputeCrossSectionPerAto     94 G4PEEffectFluoModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
107             G4double energy,                       95             G4double energy,
108             G4double Z, G4double,                  96             G4double Z, G4double,
109             G4double, G4double)                    97             G4double, G4double)
110 {                                                  98 {
111   // This method may be used only if G4Materia <<  99   G4double* SandiaCof = G4SandiaTable::GetSandiaCofPerAtom((G4int)Z, energy);
112   //   has been set properly                   << 
113   CurrentCouple()->GetMaterial()               << 
114     ->GetSandiaTable()->GetSandiaCofPerAtom((G << 
115                                                   100 
116   G4double x1 = 1 / energy;                    << 101   G4double energy2 = energy*energy;
                                                   >> 102   G4double energy3 = energy*energy2;
                                                   >> 103   G4double energy4 = energy2*energy2;
117                                                   104 
118   return x1 * (fSandiaCof[0] + x1 * (fSandiaCo << 105   return SandiaCof[0]/energy  + SandiaCof[1]/energy2 +
119     x1 * (fSandiaCof[2] + x1 * fSandiaCof[3])) << 106     SandiaCof[2]/energy3 + SandiaCof[3]/energy4;
120 }                                                 107 }
121                                                   108 
122 //....oooOO0OOooo........oooOO0OOooo........oo    109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
123                                                   110 
124 G4double                                          111 G4double 
125 G4PEEffectFluoModel::CrossSectionPerVolume(con    112 G4PEEffectFluoModel::CrossSectionPerVolume(const G4Material* material,
126              const G4ParticleDefinition*,         113              const G4ParticleDefinition*,
127              G4double energy,                     114              G4double energy,
128              G4double, G4double)                  115              G4double, G4double)
129 {                                                 116 {
130   // This method may be used only if G4Materia << 117   G4double* SandiaCof = 
131   //   has been set properly                   << 
132   energy = std::max(energy, fMatEnergyTh[mater << 
133   const G4double* SandiaCof =                  << 
134     material->GetSandiaTable()->GetSandiaCofFo    118     material->GetSandiaTable()->GetSandiaCofForMaterial(energy);
135                                                << 119         
136   G4double x1 = 1 / energy;                    << 120   G4double energy2 = energy*energy;
137                                                << 121   G4double energy3 = energy*energy2;
138   return x1 * (SandiaCof[0] + x1 * (SandiaCof[ << 122   G4double energy4 = energy2*energy2;
139     x1 * (SandiaCof[2] + x1 * SandiaCof[3]))); << 123     
                                                   >> 124   return SandiaCof[0]/energy  + SandiaCof[1]/energy2 +
                                                   >> 125     SandiaCof[2]/energy3 + SandiaCof[3]/energy4; 
140 }                                                 126 }
141                                                   127 
142 //....oooOO0OOooo........oooOO0OOooo........oo    128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
143                                                   129 
144 void                                              130 void 
145 G4PEEffectFluoModel::SampleSecondaries(std::ve    131 G4PEEffectFluoModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
146                const G4MaterialCutsCouple* cou    132                const G4MaterialCutsCouple* couple,
147                const G4DynamicParticle* aDynam    133                const G4DynamicParticle* aDynamicPhoton,
148                G4double,                          134                G4double,
149                G4double)                          135                G4double)
150 {                                                 136 {
151   SetCurrentCouple(couple);                    << 
152   const G4Material* aMaterial = couple->GetMat    137   const G4Material* aMaterial = couple->GetMaterial();
153                                                   138 
154   G4double energy = aDynamicPhoton->GetKinetic    139   G4double energy = aDynamicPhoton->GetKineticEnergy();
                                                   >> 140   G4ParticleMomentum PhotonDirection = aDynamicPhoton->GetMomentumDirection();
155                                                   141 
156   // select randomly one element constituing t    142   // select randomly one element constituing the material.
157   const G4Element* anElement = SelectRandomAto    143   const G4Element* anElement = SelectRandomAtom(aMaterial,theGamma,energy);
158                                                   144   
159   //                                              145   //
160   // Photo electron                               146   // Photo electron
161   //                                              147   //
162                                                   148 
163   // Select atomic shell                          149   // Select atomic shell
164   G4int nShells = anElement->GetNbOfAtomicShel    150   G4int nShells = anElement->GetNbOfAtomicShells();
165   G4int i = 0;                                    151   G4int i = 0;  
166   for(; i<nShells; ++i) {                         152   for(; i<nShells; ++i) {
167     /*                                            153     /*
168     G4cout << "i= " << i << " E(eV)= " << ener    154     G4cout << "i= " << i << " E(eV)= " << energy/eV 
169          << " Eb(eV)= " << anElement->GetAtomi    155          << " Eb(eV)= " << anElement->GetAtomicShell(i)/eV
170            << "  " << anElement->GetName()        156            << "  " << anElement->GetName() 
171      << G4endl;                                   157      << G4endl;
172     */                                            158     */
173     if(energy >= anElement->GetAtomicShell(i))    159     if(energy >= anElement->GetAtomicShell(i)) { break; }
174   }                                               160   }
                                                   >> 161   // no shell available
                                                   >> 162   if (i == nShells) { return; }
                                                   >> 163   
                                                   >> 164   G4double bindingEnergy  = anElement->GetAtomicShell(i);
                                                   >> 165   G4double ElecKineEnergy = energy - bindingEnergy;
                                                   >> 166   G4double edep = bindingEnergy;
175                                                   167 
176   G4double edep = energy;                      << 168   // create photo electron
177                                                << 169   //
178   // photo-electron is not sampled if shell is << 170   if (ElecKineEnergy > fminimalEnergy) {
179   // the flag of photoeffect is "false" and sh << 171     G4double cosTeta = ElecCosThetaDistribution(ElecKineEnergy);
180   if ( (fPEBelowKShell || 0 == i) && i < nShel << 172     G4double sinTeta = sqrt(1.-cosTeta*cosTeta);
181                                                << 173     G4double Phi     = twopi * G4UniformRand();
182     G4double bindingEnergy = anElement->GetAto << 174     G4double dirx = sinTeta*cos(Phi),diry = sinTeta*sin(Phi),dirz = cosTeta;
183     edep = bindingEnergy;                      << 175     G4ThreeVector ElecDirection(dirx,diry,dirz);
184     G4double esec = 0.0;                       << 176     ElecDirection.rotateUz(PhotonDirection);
185                                                << 
186     // sample deexcitation cascade             << 
187     //                                            177     //
188     if(nullptr != fAtomDeexcitation) {         << 178     G4DynamicParticle* aParticle = new G4DynamicParticle (
189       G4int index = couple->GetIndex();        << 179                        theElectron,ElecDirection, ElecKineEnergy);
190       if(fAtomDeexcitation->CheckDeexcitationA << 180     fvect->push_back(aParticle);
191   G4int Z = G4lrint(anElement->GetZ());        << 181   } else { edep = energy; }
192   auto as = (G4AtomicShellEnumerator)(i);      << 182 
193   const G4AtomicShell* shell = fAtomDeexcitati << 183   // sample deexcitation
194         G4double eshell = shell->BindingEnergy << 184   //
195         if(eshell > bindingEnergy && eshell <= << 185   if(fAtomDeexcitation) {
196           bindingEnergy = eshell;              << 186     G4int index = couple->GetIndex();
197           edep = eshell;                       << 187     if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
198   }                                            << 188       G4int Z = (G4int)anElement->GetZ();
199   std::size_t nbefore = fvect->size();         << 189       G4AtomicShellEnumerator as = G4AtomicShellEnumerator(i);
200   fAtomDeexcitation->GenerateParticles(fvect,  << 190       const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
201   std::size_t nafter = fvect->size();          << 191       size_t nbefore = fvect->size();
202   for (std::size_t j=nbefore; j<nafter; ++j) { << 192       fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
203     G4double e = ((*fvect)[j])->GetKineticEner << 193       size_t nafter = fvect->size();
204     if(esec + e > edep) {                      << 194       if(nafter > nbefore) {
205       // correct energy in order to have energ << 195   for (size_t i=nbefore; i<nafter; ++i) {
206       e = edep - esec;                         << 196     edep -= ((*fvect)[i])->GetKineticEnergy();
207       ((*fvect)[j])->SetKineticEnergy(e);      << 197   } 
208       esec += e;                               << 
209       /*                                       << 
210         G4cout << "### G4PEffectFluoModel Edep << 
211          << " Esec(eV)= " << esec/eV           << 
212          << " E["<< j << "](eV)= " << e/eV     << 
213          << " N= " << nafter                   << 
214          << " Z= " << Z << " shell= " << i     << 
215          << "  Ebind(keV)= " << bindingEnergy/ << 
216          << "  Eshell(keV)= " << shell->Bindin << 
217          << G4endl;                            << 
218       */                                       << 
219       // delete the rest of secondaries (shoul << 
220       for (std::size_t jj=nafter-1; jj>j; --jj << 
221         delete (*fvect)[jj];                   << 
222         fvect->pop_back();                     << 
223       }                                        << 
224       break;                                   << 
225     }                                          << 
226     esec += e;                                 << 
227   }                                            << 
228         edep -= esec;                          << 
229       }                                           198       }
230     }                                             199     }
231     // create photo electron                   << 
232     //                                         << 
233     G4double elecKineEnergy = energy - binding << 
234     if (elecKineEnergy > fminimalEnergy) {     << 
235       auto aParticle = new G4DynamicParticle(t << 
236   GetAngularDistribution()->SampleDirection(aD << 
237               elecKineEnergy,                  << 
238               i, couple->GetMaterial()),       << 
239                  elecKineEnergy);              << 
240       fvect->push_back(aParticle);             << 
241     } else {                                   << 
242       edep += elecKineEnergy;                  << 
243       elecKineEnergy = 0.0;                    << 
244     }                                          << 
245     if(std::abs(energy - elecKineEnergy - esec << 
246       G4cout << "### G4PEffectFluoModel dE(eV) << 
247        << (energy - elecKineEnergy - esec - ed << 
248        << " shell= " << i                      << 
249        << "  E(keV)= " << energy/keV           << 
250        << "  Ebind(keV)= " << bindingEnergy/ke << 
251        << "  Ee(keV)= " << elecKineEnergy/keV  << 
252        << "  Esec(keV)= " << esec/keV          << 
253        << "  Edep(keV)= " << edep/keV          << 
254        << G4endl;                              << 
255     }                                          << 
256   }                                               200   }
                                                   >> 201   if(edep < 0.0) { edep = 0.0; }
257                                                   202 
258   // kill primary photon                          203   // kill primary photon
259   fParticleChange->SetProposedKineticEnergy(0.    204   fParticleChange->SetProposedKineticEnergy(0.);
260   fParticleChange->ProposeTrackStatus(fStopAnd    205   fParticleChange->ProposeTrackStatus(fStopAndKill);
261   if(edep > 0.0) {                             << 206   fParticleChange->ProposeLocalEnergyDeposit(edep);
262     fParticleChange->ProposeLocalEnergyDeposit << 207 }
263   }                                            << 208 
                                                   >> 209 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 210 
                                                   >> 211 G4double G4PEEffectFluoModel::ElecCosThetaDistribution(G4double kineEnergy)
                                                   >> 212 {
                                                   >> 213   // Compute Theta distribution of the emitted electron, with respect to the
                                                   >> 214   // incident Gamma.
                                                   >> 215   // The Sauter-Gavrila distribution for the K-shell is used.
                                                   >> 216   //
                                                   >> 217   G4double costeta = 1.;
                                                   >> 218   G4double gamma   = 1. + kineEnergy/electron_mass_c2;
                                                   >> 219   if (gamma > 5.) { return costeta; }
                                                   >> 220   G4double beta  = sqrt(gamma*gamma-1.)/gamma;
                                                   >> 221   G4double b     = 0.5*gamma*(gamma-1.)*(gamma-2);
                                                   >> 222 
                                                   >> 223   G4double rndm,term,greject,grejsup;
                                                   >> 224   if (gamma < 2.) { grejsup = gamma*gamma*(1.+b-beta*b); }
                                                   >> 225   else            { grejsup = gamma*gamma*(1.+b+beta*b); }
                                                   >> 226 
                                                   >> 227   do { rndm = 1.-2*G4UniformRand();
                                                   >> 228        costeta = (rndm+beta)/(rndm*beta+1.);
                                                   >> 229        term = 1.-beta*costeta;
                                                   >> 230        greject = (1.-costeta*costeta)*(1.+b*term)/(term*term);
                                                   >> 231   } while(greject < G4UniformRand()*grejsup);
                                                   >> 232 
                                                   >> 233   return costeta;
264 }                                                 234 }
265                                                   235 
266 //....oooOO0OOooo........oooOO0OOooo........oo    236 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
267                                                   237