Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4PEEffectFluoModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4PEEffectFluoModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4PEEffectFluoModel.cc (Version 10.0.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4PEEffectFluoModel.cc 73607 2013-09-02 10:04:03Z gcosmo $
 26 //                                                 27 //
 27 // -------------------------------------------     28 // -------------------------------------------------------------------
 28 //                                                 29 //
 29 // GEANT4 Class file                               30 // GEANT4 Class file
 30 //                                                 31 //
 31 //                                                 32 //
 32 // File name:     G4PEEffectFluoModel              33 // File name:     G4PEEffectFluoModel
 33 //                                                 34 //
 34 // Author:        Vladimir Ivanchenko on base      35 // Author:        Vladimir Ivanchenko on base of G4PEEffectModel
 35 //                                                 36 //
 36 // Creation date: 13.06.2010                       37 // Creation date: 13.06.2010
 37 //                                                 38 //
 38 // Modifications:                                  39 // Modifications:
 39 //                                                 40 //
 40 // Class Description:                              41 // Class Description:
 41 // Implementation of the photo-electric effect     42 // Implementation of the photo-electric effect with deexcitation
 42 //                                                 43 //
 43 // -------------------------------------------     44 // -------------------------------------------------------------------
 44 //                                                 45 //
 45 //....oooOO0OOooo........oooOO0OOooo........oo     46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 46 //....oooOO0OOooo........oooOO0OOooo........oo     47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 47                                                    48 
 48 #include "G4PEEffectFluoModel.hh"                  49 #include "G4PEEffectFluoModel.hh"
 49 #include "G4PhysicalConstants.hh"                  50 #include "G4PhysicalConstants.hh"
 50 #include "G4SystemOfUnits.hh"                      51 #include "G4SystemOfUnits.hh"
 51 #include "G4Electron.hh"                           52 #include "G4Electron.hh"
 52 #include "G4Gamma.hh"                              53 #include "G4Gamma.hh"
 53 #include "Randomize.hh"                            54 #include "Randomize.hh"
 54 #include "G4Material.hh"                           55 #include "G4Material.hh"
 55 #include "G4DataVector.hh"                         56 #include "G4DataVector.hh"
 56 #include "G4ParticleChangeForGamma.hh"             57 #include "G4ParticleChangeForGamma.hh"
 57 #include "G4VAtomDeexcitation.hh"                  58 #include "G4VAtomDeexcitation.hh"
 58 #include "G4LossTableManager.hh"                   59 #include "G4LossTableManager.hh"
 59 #include "G4SauterGavrilaAngularDistribution.h     60 #include "G4SauterGavrilaAngularDistribution.hh"
 60                                                    61 
 61 //....oooOO0OOooo........oooOO0OOooo........oo     62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 62                                                    63 
 63 using namespace std;                               64 using namespace std;
 64                                                    65 
 65 G4PEEffectFluoModel::G4PEEffectFluoModel(const     66 G4PEEffectFluoModel::G4PEEffectFluoModel(const G4String& nam)
 66   : G4VEmModel(nam)                                67   : G4VEmModel(nam)
 67 {                                                  68 {
 68   theGamma    = G4Gamma::Gamma();                  69   theGamma    = G4Gamma::Gamma();
 69   theElectron = G4Electron::Electron();            70   theElectron = G4Electron::Electron();
 70   fminimalEnergy = 1.0*CLHEP::eV;              <<  71   fminimalEnergy = 1.0*eV;
 71   SetDeexcitationFlag(true);                       72   SetDeexcitationFlag(true);
                                                   >>  73   fParticleChange = 0;
                                                   >>  74   fAtomDeexcitation = 0;
 72                                                    75 
 73   fSandiaCof.resize(4,0.0);                        76   fSandiaCof.resize(4,0.0);
 74                                                    77 
 75   // default generator                             78   // default generator
 76   SetAngularDistribution(new G4SauterGavrilaAn     79   SetAngularDistribution(new G4SauterGavrilaAngularDistribution());
 77 }                                                  80 }
 78                                                    81 
 79 //....oooOO0OOooo........oooOO0OOooo........oo     82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 80                                                    83 
 81 G4PEEffectFluoModel::~G4PEEffectFluoModel() =  <<  84 G4PEEffectFluoModel::~G4PEEffectFluoModel()
                                                   >>  85 {}
 82                                                    86 
 83 //....oooOO0OOooo........oooOO0OOooo........oo     87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 84                                                    88 
 85 void G4PEEffectFluoModel::Initialise(const G4P     89 void G4PEEffectFluoModel::Initialise(const G4ParticleDefinition*,
 86              const G4DataVector&)                  90              const G4DataVector&)
 87 {                                                  91 {
 88   fAtomDeexcitation = G4LossTableManager::Inst     92   fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
 89   fPEBelowKShell = G4EmParameters::Instance()- <<  93   if(!fParticleChange) { fParticleChange = GetParticleChangeForGamma(); }
 90   if(nullptr == fParticleChange) {             << 
 91     fParticleChange = GetParticleChangeForGamm << 
 92   }                                            << 
 93   std::size_t nmat = G4Material::GetNumberOfMa << 
 94   fMatEnergyTh.resize(nmat, 0.0);              << 
 95   for(std::size_t i=0; i<nmat; ++i) {          << 
 96     fMatEnergyTh[i] = (*(G4Material::GetMateri << 
 97       ->GetSandiaTable()->GetSandiaCofForMater << 
 98     //G4cout << "G4PEEffectFluoModel::Initiali << 
 99     //     << fMatEnergyTh[i]/eV << G4endl;    << 
100   }                                            << 
101 }                                                  94 }
102                                                    95 
103 //....oooOO0OOooo........oooOO0OOooo........oo     96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
104                                                    97 
105 G4double                                           98 G4double 
106 G4PEEffectFluoModel::ComputeCrossSectionPerAto     99 G4PEEffectFluoModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
107             G4double energy,                      100             G4double energy,
108             G4double Z, G4double,                 101             G4double Z, G4double,
109             G4double, G4double)                   102             G4double, G4double)
110 {                                                 103 {
111   // This method may be used only if G4Materia    104   // This method may be used only if G4MaterialCutsCouple pointer
112   //   has been set properly                      105   //   has been set properly
                                                   >> 106 
113   CurrentCouple()->GetMaterial()                  107   CurrentCouple()->GetMaterial()
114     ->GetSandiaTable()->GetSandiaCofPerAtom((G    108     ->GetSandiaTable()->GetSandiaCofPerAtom((G4int)Z, energy, fSandiaCof);
115                                                   109 
116   G4double x1 = 1 / energy;                    << 110   G4double energy2 = energy*energy;
                                                   >> 111   G4double energy3 = energy*energy2;
                                                   >> 112   G4double energy4 = energy2*energy2;
117                                                   113 
118   return x1 * (fSandiaCof[0] + x1 * (fSandiaCo << 114   return fSandiaCof[0]/energy  + fSandiaCof[1]/energy2 +
119     x1 * (fSandiaCof[2] + x1 * fSandiaCof[3])) << 115     fSandiaCof[2]/energy3 + fSandiaCof[3]/energy4;
120 }                                                 116 }
121                                                   117 
122 //....oooOO0OOooo........oooOO0OOooo........oo    118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
123                                                   119 
124 G4double                                          120 G4double 
125 G4PEEffectFluoModel::CrossSectionPerVolume(con    121 G4PEEffectFluoModel::CrossSectionPerVolume(const G4Material* material,
126              const G4ParticleDefinition*,         122              const G4ParticleDefinition*,
127              G4double energy,                     123              G4double energy,
128              G4double, G4double)                  124              G4double, G4double)
129 {                                                 125 {
130   // This method may be used only if G4Materia << 
131   //   has been set properly                   << 
132   energy = std::max(energy, fMatEnergyTh[mater << 
133   const G4double* SandiaCof =                     126   const G4double* SandiaCof = 
134     material->GetSandiaTable()->GetSandiaCofFo    127     material->GetSandiaTable()->GetSandiaCofForMaterial(energy);
135                                                << 128         
136   G4double x1 = 1 / energy;                    << 129   G4double energy2 = energy*energy;
137                                                << 130   G4double energy3 = energy*energy2;
138   return x1 * (SandiaCof[0] + x1 * (SandiaCof[ << 131   G4double energy4 = energy2*energy2;
139     x1 * (SandiaCof[2] + x1 * SandiaCof[3]))); << 132     
                                                   >> 133   return SandiaCof[0]/energy  + SandiaCof[1]/energy2 +
                                                   >> 134     SandiaCof[2]/energy3 + SandiaCof[3]/energy4; 
140 }                                                 135 }
141                                                   136 
142 //....oooOO0OOooo........oooOO0OOooo........oo    137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
143                                                   138 
144 void                                              139 void 
145 G4PEEffectFluoModel::SampleSecondaries(std::ve    140 G4PEEffectFluoModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
146                const G4MaterialCutsCouple* cou    141                const G4MaterialCutsCouple* couple,
147                const G4DynamicParticle* aDynam    142                const G4DynamicParticle* aDynamicPhoton,
148                G4double,                          143                G4double,
149                G4double)                          144                G4double)
150 {                                                 145 {
151   SetCurrentCouple(couple);                       146   SetCurrentCouple(couple);
152   const G4Material* aMaterial = couple->GetMat    147   const G4Material* aMaterial = couple->GetMaterial();
153                                                   148 
154   G4double energy = aDynamicPhoton->GetKinetic    149   G4double energy = aDynamicPhoton->GetKineticEnergy();
155                                                   150 
156   // select randomly one element constituing t    151   // select randomly one element constituing the material.
157   const G4Element* anElement = SelectRandomAto    152   const G4Element* anElement = SelectRandomAtom(aMaterial,theGamma,energy);
158                                                   153   
159   //                                              154   //
160   // Photo electron                               155   // Photo electron
161   //                                              156   //
162                                                   157 
163   // Select atomic shell                          158   // Select atomic shell
164   G4int nShells = anElement->GetNbOfAtomicShel    159   G4int nShells = anElement->GetNbOfAtomicShells();
165   G4int i = 0;                                    160   G4int i = 0;  
166   for(; i<nShells; ++i) {                         161   for(; i<nShells; ++i) {
167     /*                                            162     /*
168     G4cout << "i= " << i << " E(eV)= " << ener    163     G4cout << "i= " << i << " E(eV)= " << energy/eV 
169          << " Eb(eV)= " << anElement->GetAtomi    164          << " Eb(eV)= " << anElement->GetAtomicShell(i)/eV
170            << "  " << anElement->GetName()        165            << "  " << anElement->GetName() 
171      << G4endl;                                   166      << G4endl;
172     */                                            167     */
173     if(energy >= anElement->GetAtomicShell(i))    168     if(energy >= anElement->GetAtomicShell(i)) { break; }
174   }                                               169   }
175                                                   170 
176   G4double edep = energy;                         171   G4double edep = energy;
177                                                   172 
178   // photo-electron is not sampled if shell is << 173   // Normally one shell is available 
179   // the flag of photoeffect is "false" and sh << 174   if (i < nShells) { 
180   if ( (fPEBelowKShell || 0 == i) && i < nShel << 175   
181                                                << 
182     G4double bindingEnergy = anElement->GetAto    176     G4double bindingEnergy = anElement->GetAtomicShell(i);
183     edep = bindingEnergy;                         177     edep = bindingEnergy;
184     G4double esec = 0.0;                          178     G4double esec = 0.0;
185                                                   179 
186     // sample deexcitation cascade             << 180     // sample deexcitation
187     //                                            181     //
188     if(nullptr != fAtomDeexcitation) {         << 182     if(fAtomDeexcitation) {
189       G4int index = couple->GetIndex();           183       G4int index = couple->GetIndex();
190       if(fAtomDeexcitation->CheckDeexcitationA    184       if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
191   G4int Z = G4lrint(anElement->GetZ());           185   G4int Z = G4lrint(anElement->GetZ());
192   auto as = (G4AtomicShellEnumerator)(i);      << 186   G4AtomicShellEnumerator as = G4AtomicShellEnumerator(i);
193   const G4AtomicShell* shell = fAtomDeexcitati    187   const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
194         G4double eshell = shell->BindingEnergy    188         G4double eshell = shell->BindingEnergy();
195         if(eshell > bindingEnergy && eshell <=    189         if(eshell > bindingEnergy && eshell <= energy) {
196           bindingEnergy = eshell;                 190           bindingEnergy = eshell;
197           edep = eshell;                          191           edep = eshell;
198   }                                               192   }
199   std::size_t nbefore = fvect->size();         << 193   size_t nbefore = fvect->size();
200   fAtomDeexcitation->GenerateParticles(fvect,     194   fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
201   std::size_t nafter = fvect->size();          << 195   size_t nafter = fvect->size();
202   for (std::size_t j=nbefore; j<nafter; ++j) { << 196   if(nafter > nbefore) {
203     G4double e = ((*fvect)[j])->GetKineticEner << 197     for (size_t j=nbefore; j<nafter; ++j) {
204     if(esec + e > edep) {                      << 198             G4double e = ((*fvect)[j])->GetKineticEnergy();
205       // correct energy in order to have energ << 199             if(esec + e > edep) {
206       e = edep - esec;                         << 200         /*
207       ((*fvect)[j])->SetKineticEnergy(e);      << 
208       esec += e;                               << 
209       /*                                       << 
210         G4cout << "### G4PEffectFluoModel Edep    201         G4cout << "### G4PEffectFluoModel Edep(eV)= " << edep/eV 
211          << " Esec(eV)= " << esec/eV              202          << " Esec(eV)= " << esec/eV 
212          << " E["<< j << "](eV)= " << e/eV        203          << " E["<< j << "](eV)= " << e/eV
213          << " N= " << nafter                      204          << " N= " << nafter
214          << " Z= " << Z << " shell= " << i        205          << " Z= " << Z << " shell= " << i 
215          << "  Ebind(keV)= " << bindingEnergy/    206          << "  Ebind(keV)= " << bindingEnergy/keV 
216          << "  Eshell(keV)= " << shell->Bindin    207          << "  Eshell(keV)= " << shell->BindingEnergy()/keV 
217          << G4endl;                               208          << G4endl;
218       */                                       << 209         */
219       // delete the rest of secondaries (shoul << 210               for (size_t jj=j; jj<nafter; ++jj) { delete (*fvect)[jj]; }
220       for (std::size_t jj=nafter-1; jj>j; --jj << 211               for (size_t jj=j; jj<nafter; ++jj) { fvect->pop_back(); }
221         delete (*fvect)[jj];                   << 212         break;        
222         fvect->pop_back();                     << 
223       }                                           213       }
224       break;                                   << 214       esec += e;
225     }                                          << 215     } 
226     esec += e;                                 << 
227   }                                               216   }
228         edep -= esec;                             217         edep -= esec;
229       }                                           218       }
230     }                                             219     }
231     // create photo electron                      220     // create photo electron
232     //                                            221     //
233     G4double elecKineEnergy = energy - binding    222     G4double elecKineEnergy = energy - bindingEnergy;
234     if (elecKineEnergy > fminimalEnergy) {        223     if (elecKineEnergy > fminimalEnergy) {
235       auto aParticle = new G4DynamicParticle(t << 224       G4DynamicParticle* aParticle = new G4DynamicParticle(theElectron, 
236   GetAngularDistribution()->SampleDirection(aD    225   GetAngularDistribution()->SampleDirection(aDynamicPhoton, 
237               elecKineEnergy,                     226               elecKineEnergy,
238               i, couple->GetMaterial()),          227               i, couple->GetMaterial()), 
239                  elecKineEnergy);                 228                  elecKineEnergy);
240       fvect->push_back(aParticle);                229       fvect->push_back(aParticle);
241     } else {                                      230     } else {
242       edep += elecKineEnergy;                     231       edep += elecKineEnergy;
243       elecKineEnergy = 0.0;                       232       elecKineEnergy = 0.0;
244     }                                             233     }
245     if(std::abs(energy - elecKineEnergy - esec << 234     if(fabs(energy - elecKineEnergy - esec - edep) > eV) {
246       G4cout << "### G4PEffectFluoModel dE(eV)    235       G4cout << "### G4PEffectFluoModel dE(eV)= " 
247        << (energy - elecKineEnergy - esec - ed    236        << (energy - elecKineEnergy - esec - edep)/eV 
248        << " shell= " << i                         237        << " shell= " << i 
249        << "  E(keV)= " << energy/keV              238        << "  E(keV)= " << energy/keV 
250        << "  Ebind(keV)= " << bindingEnergy/ke    239        << "  Ebind(keV)= " << bindingEnergy/keV 
251        << "  Ee(keV)= " << elecKineEnergy/keV     240        << "  Ee(keV)= " << elecKineEnergy/keV 
252        << "  Esec(keV)= " << esec/keV             241        << "  Esec(keV)= " << esec/keV 
253        << "  Edep(keV)= " << edep/keV             242        << "  Edep(keV)= " << edep/keV 
254        << G4endl;                                 243        << G4endl;
255     }                                             244     }
256   }                                               245   }
257                                                   246 
258   // kill primary photon                          247   // kill primary photon
259   fParticleChange->SetProposedKineticEnergy(0.    248   fParticleChange->SetProposedKineticEnergy(0.);
260   fParticleChange->ProposeTrackStatus(fStopAnd    249   fParticleChange->ProposeTrackStatus(fStopAndKill);
261   if(edep > 0.0) {                                250   if(edep > 0.0) {
262     fParticleChange->ProposeLocalEnergyDeposit    251     fParticleChange->ProposeLocalEnergyDeposit(edep);
263   }                                               252   }
264 }                                                 253 }
265                                                   254 
266 //....oooOO0OOooo........oooOO0OOooo........oo    255 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
267                                                   256