Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // 28 // 28 // G4PAIySection.cc -- class implementation fi 29 // G4PAIySection.cc -- class implementation file 29 // 30 // 30 // GEANT 4 class implementation file 31 // GEANT 4 class implementation file 31 // 32 // 32 // For information related to this code, pleas 33 // For information related to this code, please, contact 33 // the Geant4 Collaboration. 34 // the Geant4 Collaboration. 34 // 35 // 35 // R&D: Vladimir.Grichine@cern.ch 36 // R&D: Vladimir.Grichine@cern.ch 36 // 37 // 37 // History: 38 // History: 38 // 39 // 39 // 01.10.07, V.Ivanchenko create using V.Grich 40 // 01.10.07, V.Ivanchenko create using V.Grichine G4PAIxSection class 40 // 26.07.09, V.Ivanchenko added protection for 41 // 26.07.09, V.Ivanchenko added protection for mumerical exceptions for 41 // low-density materials 42 // low-density materials 42 // 21.11.10 V. Grichine bug fixed in Initialis 43 // 21.11.10 V. Grichine bug fixed in Initialise for reading sandia table from 43 // material. Warning: the table is 44 // material. Warning: the table is tuned for photo-effect not PAI model. 44 // 23.06.13 V.Grichine arrays->G4DataVectors << 45 // 45 // 46 46 47 #include "G4PAIySection.hh" 47 #include "G4PAIySection.hh" 48 48 49 #include "globals.hh" 49 #include "globals.hh" 50 #include "G4PhysicalConstants.hh" 50 #include "G4PhysicalConstants.hh" 51 #include "G4SystemOfUnits.hh" 51 #include "G4SystemOfUnits.hh" 52 #include "G4ios.hh" 52 #include "G4ios.hh" 53 #include "G4Poisson.hh" 53 #include "G4Poisson.hh" 54 #include "G4Material.hh" 54 #include "G4Material.hh" 55 #include "G4MaterialCutsCouple.hh" 55 #include "G4MaterialCutsCouple.hh" 56 #include "G4SandiaTable.hh" 56 #include "G4SandiaTable.hh" 57 #include "G4Exp.hh" << 58 #include "G4Log.hh" << 59 57 60 using namespace std; 58 using namespace std; 61 59 62 // Local class constants 60 // Local class constants 63 61 64 const G4double G4PAIySection::fDelta = 0.005; 62 const G4double G4PAIySection::fDelta = 0.005; // energy shift from interval border 65 const G4double G4PAIySection::fError = 0.005; 63 const G4double G4PAIySection::fError = 0.005; // error in lin-log approximation 66 64 67 const G4int G4PAIySection::fMaxSplineSize = 50 65 const G4int G4PAIySection::fMaxSplineSize = 500; // Max size of output spline 68 << 66 // arrays 69 67 70 ////////////////////////////////////////////// 68 ////////////////////////////////////////////////////////////////// 71 // 69 // 72 // Constructor 70 // Constructor 73 // 71 // 74 72 75 G4PAIySection::G4PAIySection() 73 G4PAIySection::G4PAIySection() 76 { 74 { 77 fSandia = nullptr; << 75 fSandia = 0; 78 fDensity = fElectronDensity = fNormalization 76 fDensity = fElectronDensity = fNormalizationCof = fLowEnergyCof = 0.0; 79 fIntervalNumber = fSplineNumber = 0; 77 fIntervalNumber = fSplineNumber = 0; 80 fVerbose = 0; 78 fVerbose = 0; 81 << 79 for(G4int i=0; i<500; ++i) { 82 betaBohr = fine_structure_const; << 80 fSplineEnergy[i] = 0.0; 83 G4double cofBetaBohr = 4.0; << 81 fRePartDielectricConst[i] = 0.0; 84 G4double betaBohr2 = fine_structure_const*fi << 82 fImPartDielectricConst[i] = 0.0; 85 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; << 83 fIntegralTerm[i] = 0.0; 86 << 84 fDifPAIySection[i] = 0.0; 87 fSplineEnergy = G4DataVector(fMaxSp << 85 fdNdxCerenkov[i] = 0.0; 88 fRePartDielectricConst = G4DataVector(fMaxSp << 86 fdNdxPlasmon[i] = 0.0; 89 fImPartDielectricConst = G4DataVector(fMaxSp << 87 fIntegralPAIySection[i] = 0.0; 90 fIntegralTerm = G4DataVector(fMaxSp << 88 fIntegralPAIdEdx[i] = 0.0; 91 fDifPAIySection = G4DataVector(fMaxSp << 89 fIntegralCerenkov[i] = 0.0; 92 fdNdxCerenkov = G4DataVector(fMaxSp << 90 fIntegralPlasmon[i] = 0.0; 93 fdNdxPlasmon = G4DataVector(fMaxSp << 91 for(G4int j=0; j<112; ++j) { fPAItable[i][j] = 0.0; } 94 fIntegralPAIySection = G4DataVector(fMaxSp << 95 fIntegralPAIdEdx = G4DataVector(fMaxSp << 96 fIntegralCerenkov = G4DataVector(fMaxSp << 97 fIntegralPlasmon = G4DataVector(fMaxSp << 98 << 99 for( G4int i = 0; i < 500; ++i ) << 100 { << 101 for( G4int j = 0; j < 112; ++j ) { fPAItab << 102 } 92 } 103 } 93 } 104 94 105 ////////////////////////////////////////////// 95 //////////////////////////////////////////////////////////////////////////// 106 // 96 // 107 // << 97 // Destructor 108 98 109 G4double G4PAIySection::GetLorentzFactor(G4int << 99 G4PAIySection::~G4PAIySection() 110 { << 100 {} 111 return fLorentzFactor[j]; << 112 } << 113 101 114 ////////////////////////////////////////////// 102 //////////////////////////////////////////////////////////////////////// 115 // 103 // 116 // Constructor with beta*gamma square value ca << 104 // Test Constructor with beta*gamma square value 117 105 118 void G4PAIySection::Initialize( const G4Materi 106 void G4PAIySection::Initialize( const G4Material* material, 119 G4double maxEn << 107 G4double maxEnergyTransfer, 120 G4double betaG << 108 G4double betaGammaSq) 121 G4SandiaTable* << 122 { 109 { 123 if(fVerbose > 0) << 124 { << 125 G4cout<<G4endl; << 126 G4cout<<"G4PAIySection::Initialize(...,G4S << 127 G4cout<<G4endl; << 128 } << 129 G4int i, j; 110 G4int i, j; 130 << 111 G4double energy; 131 fSandia = sandia; << 112 // fVerbose = 1; 132 fIntervalNumber = sandia->GetMaxInterval(); << 133 fDensity = material->GetDensity(); 113 fDensity = material->GetDensity(); 134 fElectronDensity = material->GetElectronDens 114 fElectronDensity = material->GetElectronDensity(); >> 115 //G4int numberOfElements = material->GetNumberOfElements(); 135 116 136 // fIntervalNumber--; << 117 fSandia = material->GetSandiaTable(); 137 118 138 if( fVerbose > 0 ) << 119 fIntervalNumber = fSandia->GetMaxInterval(); 139 { << 120 140 G4cout<<"fDensity = "<<fDensity<<"\t"<<fEl << 121 fIntervalNumber--; 141 <<fIntervalNumber<< " (beta*gamma)^2 << 142 } << 143 fEnergyInterval = G4DataVector(fIntervalNumb << 144 fA1 = G4DataVector(fIntervalNumb << 145 fA2 = G4DataVector(fIntervalNumb << 146 fA3 = G4DataVector(fIntervalNumb << 147 fA4 = G4DataVector(fIntervalNumb << 148 122 149 for( i = 1; i <= fIntervalNumber; ++i ) << 123 for( i = 1; i <= fIntervalNumber; i++ ) 150 { 124 { 151 if ( sandia->GetSandiaMatTablePAI(i-1,0) < << 125 energy = fSandia->GetSandiaMatTablePAI(i-1,0); //vmg 20.11.10 152 { << 126 153 fIntervalNumber--; << 127 if( energy >= maxEnergyTransfer || i > fIntervalNumber ) 154 continue; << 155 } << 156 if( ( sandia->GetSandiaMatTablePAI(i-1,0) << 157 || i >= fIntervalNumber ) << 158 { 128 { 159 fEnergyInterval[i] = maxEnergyTransfer; 129 fEnergyInterval[i] = maxEnergyTransfer; 160 fIntervalNumber = i; 130 fIntervalNumber = i; 161 break; 131 break; 162 } 132 } 163 fEnergyInterval[i] = sandia->GetSandiaMatT << 133 fEnergyInterval[i] = energy; 164 fA1[i] = sandia->GetSandiaMatT << 134 fA1[i] = fSandia->GetSandiaMatTablePAI(i-1,1); 165 fA2[i] = sandia->GetSandiaMatT << 135 fA2[i] = fSandia->GetSandiaMatTablePAI(i-1,2); 166 fA3[i] = sandia->GetSandiaMatT << 136 fA3[i] = fSandia->GetSandiaMatTablePAI(i-1,3); 167 fA4[i] = sandia->GetSandiaMatT << 137 fA4[i] = fSandia->GetSandiaMatTablePAI(i-1,4); 168 << 138 169 if( fVerbose > 0 ) { << 139 if( fVerbose > 0 && std::fabs( betaGammaSq - 8. ) < 0.4 ) 170 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 140 { 171 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4en << 141 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<" keV \t"<<fA1[i]<<"\t"<<fA2[i] <<"\t"<<fA3[i] <<"\t"<<fA4[i]<<G4endl; 172 } 142 } 173 } << 143 } 174 if( fVerbose > 0 ) { << 144 175 G4cout<<"last i = "<<i<<"; "<<"fIntervalNu << 145 176 <<fIntervalNumber<<G4endl; << 177 } << 178 if( fEnergyInterval[fIntervalNumber] != maxE 146 if( fEnergyInterval[fIntervalNumber] != maxEnergyTransfer ) 179 { 147 { 180 fIntervalNumber++; << 148 fIntervalNumber++; 181 fEnergyInterval[fIntervalNumber] = maxEn << 149 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; 182 } << 150 fA1[fIntervalNumber] = fA1[fIntervalNumber-1]; 183 if( fVerbose > 0 ) << 151 fA2[fIntervalNumber] = fA2[fIntervalNumber-1]; 184 { << 152 fA3[fIntervalNumber] = fA3[fIntervalNumber-1]; 185 for( i = 1; i <= fIntervalNumber; ++i ) << 153 fA4[fIntervalNumber] = fA4[fIntervalNumber-1]; 186 { << 187 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 188 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; << 189 } << 190 } << 191 if( fVerbose > 0 ) { << 192 G4cout<<"Now checking, if two borders are << 193 } 154 } 194 for( i = 1; i < fIntervalNumber; ++i ) << 155 >> 156 // Now checking, if two borders are too close together >> 157 for( i = 1; i < fIntervalNumber; i++ ) 195 { 158 { 196 if( fEnergyInterval[i+1]-fEnergyInterval[i << 159 // G4cout<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 197 1.5*fDelta*(fEnergyInterval[i+1]+fEne << 160 // <<fA3[i]<<"\t"<<fA4[i]<<G4endl; 198 else << 161 if(fEnergyInterval[i+1]-fEnergyInterval[i] < >> 162 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i])) 199 { 163 { 200 for( j = i; j < fIntervalNumber; j++ ) 164 for( j = i; j < fIntervalNumber; j++ ) 201 { 165 { 202 fEnergyInterval[j] = fEnergyInte << 166 fEnergyInterval[j] = fEnergyInterval[j+1]; 203 fA1[j] = fA1[j+1]; << 167 fA1[j] = fA1[j+1]; 204 fA2[j] = fA2[j+1]; << 168 fA2[j] = fA2[j+1]; 205 fA3[j] = fA3[j+1]; << 169 fA3[j] = fA3[j+1]; 206 fA4[j] = fA4[j+1]; << 170 fA4[j] = fA4[j+1]; 207 } 171 } 208 fIntervalNumber--; 172 fIntervalNumber--; >> 173 i--; 209 } 174 } 210 } 175 } 211 if( fVerbose > 0 ) << 176 if( fVerbose > 0 && std::fabs( betaGammaSq - 8. ) < 0.4 ) 212 { 177 { 213 for( i = 1; i <= fIntervalNumber; ++i ) << 178 G4cout<<"Sandia cofs in G4PAIySection::Initialize(), mat = "<<material->GetName()<<G4endl; 214 { << 179 G4cout<<"for bg2 = "<<betaGammaSq<<", Tmax = "<< maxEnergyTransfer/keV<<" keV"<<G4endl; 215 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 180 G4cout<<"energy \t"<<"a1 \t"<<"a2 \t"<<"a3 \t"<<"a4 \t"<<G4endl; 216 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; << 181 217 } << 182 for( j = 1; j < fIntervalNumber; j++ ) >> 183 { >> 184 G4cout<<j<<"\t"<<fEnergyInterval[j]/keV<<" keV \t"<<fA1[j]<<"\t"<<fA2[j] <<"\t"<<fA3[j] <<"\t"<<fA4[j]<<G4endl; >> 185 } 218 } 186 } 219 // Preparation of fSplineEnergy array corres << 220 187 221 ComputeLowEnergyCof(material); << 188 // Preparation of fSplineEnergy array corresponding to min ionisation, G~4 222 << 189 223 G4double betaGammaSqRef = 190 G4double betaGammaSqRef = 224 fLorentzFactor[fRefGammaNumber]*fLorentzFa << 191 fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1; 225 << 192 >> 193 ComputeLowEnergyCof(material); 226 NormShift(betaGammaSqRef); 194 NormShift(betaGammaSqRef); 227 SplainPAI(betaGammaSqRef); 195 SplainPAI(betaGammaSqRef); 228 196 229 // Preparation of integral PAI cross section << 197 // Preparation of integral PAI cross section for input betaGammaSq 230 198 231 for( i = 1; i <= fSplineNumber; ++i ) << 199 for( i = 1; i <= fSplineNumber; i++ ) 232 { 200 { 233 fDifPAIySection[i] = DifPAIySection(i,bet << 201 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq); 234 << 202 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 235 if( fVerbose > 0 ) G4cout<<i<<"; dNdxPAI << 203 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 236 } 204 } 237 IntegralPAIySection(); << 205 IntegralPAIySection(); >> 206 IntegralCerenkov(); >> 207 IntegralPlasmon(); 238 } 208 } 239 209 240 ////////////////////////////////////////////// 210 ///////////////////////////////////////////////////////////////////////// 241 // 211 // 242 // Compute low energy cof. It reduces PAI xsc 212 // Compute low energy cof. It reduces PAI xsc for Lorentz factors less than 4. 243 // 213 // 244 214 245 void G4PAIySection::ComputeLowEnergyCof(const 215 void G4PAIySection::ComputeLowEnergyCof(const G4Material* material) 246 { 216 { 247 G4int i, numberOfElements = (G4int)material- << 217 G4int i, numberOfElements = material->GetNumberOfElements(); 248 G4double sumZ = 0., sumCof = 0.; 218 G4double sumZ = 0., sumCof = 0.; 249 219 250 static const G4double p0 = 1.20923e+00; << 220 const G4double p0 = 1.20923e+00; 251 static const G4double p1 = 3.53256e-01; << 221 const G4double p1 = 3.53256e-01; 252 static const G4double p2 = -1.45052e-03; << 222 const G4double p2 = -1.45052e-03; 253 223 254 G4double* thisMaterialZ = new G4double[num 224 G4double* thisMaterialZ = new G4double[numberOfElements]; 255 G4double* thisMaterialCof = new G4double[num 225 G4double* thisMaterialCof = new G4double[numberOfElements]; 256 226 257 for( i = 0; i < numberOfElements; ++i ) << 227 for( i = 0; i < numberOfElements; i++ ) 258 { 228 { 259 thisMaterialZ[i] = material->GetElement(i) 229 thisMaterialZ[i] = material->GetElement(i)->GetZ(); 260 sumZ += thisMaterialZ[i]; 230 sumZ += thisMaterialZ[i]; 261 thisMaterialCof[i] = p0+p1*thisMaterialZ[i 231 thisMaterialCof[i] = p0+p1*thisMaterialZ[i]+p2*thisMaterialZ[i]*thisMaterialZ[i]; 262 } 232 } 263 for( i = 0; i < numberOfElements; ++i ) << 233 for( i = 0; i < numberOfElements; i++ ) 264 { 234 { 265 sumCof += thisMaterialCof[i]*thisMaterialZ 235 sumCof += thisMaterialCof[i]*thisMaterialZ[i]/sumZ; 266 } 236 } 267 fLowEnergyCof = sumCof; 237 fLowEnergyCof = sumCof; 268 delete [] thisMaterialZ; 238 delete [] thisMaterialZ; 269 delete [] thisMaterialCof; 239 delete [] thisMaterialCof; 270 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof 240 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof<<G4endl; 271 } 241 } 272 242 >> 243 >> 244 >> 245 273 ////////////////////////////////////////////// 246 ///////////////////////////////////////////////////////////////////////// 274 // 247 // 275 // General control function for class G4PAIySe 248 // General control function for class G4PAIySection 276 // 249 // 277 250 278 void G4PAIySection::InitPAI() 251 void G4PAIySection::InitPAI() 279 { 252 { 280 G4int i; 253 G4int i; 281 G4double betaGammaSq = fLorentzFactor[fRefG 254 G4double betaGammaSq = fLorentzFactor[fRefGammaNumber]* 282 fLorentzFactor[fRefG 255 fLorentzFactor[fRefGammaNumber] - 1; 283 256 284 // Preparation of integral PAI cross sectio 257 // Preparation of integral PAI cross section for reference gamma 285 258 286 NormShift(betaGammaSq); 259 NormShift(betaGammaSq); 287 SplainPAI(betaGammaSq); 260 SplainPAI(betaGammaSq); 288 261 289 IntegralPAIySection(); 262 IntegralPAIySection(); 290 IntegralCerenkov(); 263 IntegralCerenkov(); 291 IntegralPlasmon(); 264 IntegralPlasmon(); 292 265 293 for( i = 0; i<= fSplineNumber; ++i) << 266 for(i = 0; i<=fSplineNumber; i++) 294 { 267 { 295 fPAItable[i][fRefGammaNumber] = fIntegral << 268 fPAItable[i][fRefGammaNumber] = fIntegralPAIySection[i]; 296 << 269 if(i != 0) 297 if(i != 0) fPAItable[i][0] = fSplineEner << 270 { >> 271 fPAItable[i][0] = fSplineEnergy[i]; >> 272 } 298 } 273 } 299 fPAItable[0][0] = fSplineNumber; 274 fPAItable[0][0] = fSplineNumber; 300 275 301 for( G4int j = 1; j < 112; ++j) // fo << 276 for(G4int j = 1; j < 112; j++) // for other gammas 302 { 277 { 303 if( j == fRefGammaNumber ) continue; 278 if( j == fRefGammaNumber ) continue; 304 279 305 betaGammaSq = fLorentzFactor[j]*fLorentz 280 betaGammaSq = fLorentzFactor[j]*fLorentzFactor[j] - 1; 306 281 307 for(i = 1; i <= fSplineNumber; ++i) << 282 for(i = 1; i <= fSplineNumber; i++) 308 { 283 { 309 fDifPAIySection[i] = DifPAIySection(i 284 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq); 310 fdNdxCerenkov[i] = PAIdNdxCerenkov( 285 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 311 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 286 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 312 } 287 } 313 IntegralPAIySection(); 288 IntegralPAIySection(); 314 IntegralCerenkov(); 289 IntegralCerenkov(); 315 IntegralPlasmon(); 290 IntegralPlasmon(); 316 291 317 for(i = 0; i <= fSplineNumber; ++i) << 292 for(i = 0; i <= fSplineNumber; i++) 318 { 293 { 319 fPAItable[i][j] = fIntegralPAIySection << 294 fPAItable[i][j] = fIntegralPAIySection[i]; 320 } 295 } 321 } 296 } >> 297 322 } 298 } 323 299 324 ////////////////////////////////////////////// 300 /////////////////////////////////////////////////////////////////////// 325 // 301 // 326 // Shifting from borders to intervals Creation 302 // Shifting from borders to intervals Creation of first energy points 327 // 303 // 328 304 329 void G4PAIySection::NormShift(G4double betaGam 305 void G4PAIySection::NormShift(G4double betaGammaSq) 330 { 306 { 331 G4int i, j; 307 G4int i, j; 332 308 333 for( i = 1; i <= fIntervalNumber-1; ++i) << 309 for( i = 1; i <= fIntervalNumber-1; i++ ) 334 { 310 { 335 for( j = 1; j <= 2; ++j) << 311 for( j = 1; j <= 2; j++ ) 336 { 312 { 337 fSplineNumber = (i-1)*2 + j; 313 fSplineNumber = (i-1)*2 + j; 338 314 339 if( j == 1 ) fSplineEnergy[fSplineNumber 315 if( j == 1 ) fSplineEnergy[fSplineNumber] = fEnergyInterval[i ]*(1+fDelta); 340 else fSplineEnergy[fSplineNumber 316 else fSplineEnergy[fSplineNumber] = fEnergyInterval[i+1]*(1-fDelta); 341 // G4cout<<"cn = "<<fSplineNumber<<"; 317 // G4cout<<"cn = "<<fSplineNumber<<"; "<<"energy = " 342 // <<fSplineEnergy[fSplineNumber]<<G4en 318 // <<fSplineEnergy[fSplineNumber]<<G4endl; 343 } 319 } 344 } 320 } 345 fIntegralTerm[1]=RutherfordIntegral(1,fEnerg 321 fIntegralTerm[1]=RutherfordIntegral(1,fEnergyInterval[1],fSplineEnergy[1]); 346 322 347 j = 1; 323 j = 1; 348 324 349 for(i=2;i<=fSplineNumber;++i) << 325 for(i=2;i<=fSplineNumber;i++) 350 { 326 { 351 if(fSplineEnergy[i]<fEnergyInterval[j+1]) 327 if(fSplineEnergy[i]<fEnergyInterval[j+1]) 352 { 328 { 353 fIntegralTerm[i] = fIntegralTerm[i-1] 329 fIntegralTerm[i] = fIntegralTerm[i-1] + 354 RutherfordIntegral << 330 RutherfordIntegral(j,fSplineEnergy[i-1], 355 331 fSplineEnergy[i] ); 356 } 332 } 357 else 333 else 358 { 334 { 359 G4double x = RutherfordIntegral(j,fSpli 335 G4double x = RutherfordIntegral(j,fSplineEnergy[i-1], 360 fEn 336 fEnergyInterval[j+1] ); 361 j++; 337 j++; 362 fIntegralTerm[i] = fIntegralTerm[i-1] 338 fIntegralTerm[i] = fIntegralTerm[i-1] + x + 363 RutherfordIntegral << 339 RutherfordIntegral(j,fEnergyInterval[j], 364 340 fSplineEnergy[i] ); 365 } 341 } 366 // G4cout<<i<<"\t"<<fSplineEnergy[i]<<"\t" 342 // G4cout<<i<<"\t"<<fSplineEnergy[i]<<"\t"<<fIntegralTerm[i]<<"\n"<<G4endl; 367 } 343 } 368 static const G4double nfactor = << 344 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine_structure_const/electron_mass_c2; 369 2*pi*pi*hbarc*hbarc*fine_structure_const/e << 345 fNormalizationCof *= fElectronDensity/fIntegralTerm[fSplineNumber]; 370 fNormalizationCof = nfactor*fElectronDensity << 371 346 372 // G4cout<<"fNormalizationCof = "<<fNormaliz 347 // G4cout<<"fNormalizationCof = "<<fNormalizationCof<<G4endl; 373 348 374 // Calculation of PAI differrential cross-se << 349 // Calculation of PAI differrential cross-section (1/(keV*cm)) 375 // in the energy points near borders of ener << 350 // in the energy points near borders of energy intervals 376 351 377 for(G4int k=1; k<=fIntervalNumber-1; ++k) << 352 for(G4int k=1;k<=fIntervalNumber-1;k++) 378 { 353 { 379 for(j=1; j<=2; ++j) << 354 for(j=1;j<=2;j++) 380 { 355 { 381 i = (k-1)*2 + j; 356 i = (k-1)*2 + j; 382 fImPartDielectricConst[i] = fNormaliz 357 fImPartDielectricConst[i] = fNormalizationCof* 383 ImPartDie << 358 ImPartDielectricConst(k,fSplineEnergy[i]); 384 fRePartDielectricConst[i] = fNormaliz 359 fRePartDielectricConst[i] = fNormalizationCof* 385 RePartDie << 360 RePartDielectricConst(fSplineEnergy[i]); 386 fIntegralTerm[i] *= fNormalizationCof 361 fIntegralTerm[i] *= fNormalizationCof; 387 362 388 fDifPAIySection[i] = DifPAIySection(i 363 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq); 389 fdNdxCerenkov[i] = PAIdNdxCerenkov( 364 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 390 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 365 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 391 } 366 } 392 } 367 } 393 368 394 } // end of NormShift 369 } // end of NormShift 395 370 396 ////////////////////////////////////////////// 371 ///////////////////////////////////////////////////////////////////////// 397 // 372 // 398 // Creation of new energy points as geometrica 373 // Creation of new energy points as geometrical mean of existing 399 // one, calculation PAI_cs for them, while the 374 // one, calculation PAI_cs for them, while the error of logarithmic 400 // linear approximation would be smaller than 375 // linear approximation would be smaller than 'fError' 401 376 402 void G4PAIySection::SplainPAI(G4double betaGam 377 void G4PAIySection::SplainPAI(G4double betaGammaSq) 403 { 378 { 404 G4int k = 1; 379 G4int k = 1; 405 G4int i = 1; 380 G4int i = 1; 406 381 407 while ( (i < fSplineNumber) && (fSplineNumb 382 while ( (i < fSplineNumber) && (fSplineNumber < fMaxSplineSize-1) ) 408 { 383 { 409 if(fSplineEnergy[i+1] > fEnergyInterval[ 384 if(fSplineEnergy[i+1] > fEnergyInterval[k+1]) 410 { 385 { 411 k++; // Here next energy point is 386 k++; // Here next energy point is in next energy interval 412 ++i; << 387 i++; 413 continue; 388 continue; 414 } 389 } 415 // Shifting of arrayes for inserting the << 390 // Shifting of arrayes for inserting the geometrical 416 // average of 'i' and 'i+1' energy point << 391 // average of 'i' and 'i+1' energy points to 'i+1' place 417 fSplineNumber++; 392 fSplineNumber++; 418 393 419 for(G4int j = fSplineNumber; j >= i+2; j 394 for(G4int j = fSplineNumber; j >= i+2; j-- ) 420 { 395 { 421 fSplineEnergy[j] = fSplineEn 396 fSplineEnergy[j] = fSplineEnergy[j-1]; 422 fImPartDielectricConst[j] = fImPartDi 397 fImPartDielectricConst[j] = fImPartDielectricConst[j-1]; 423 fRePartDielectricConst[j] = fRePartDi << 398 fRePartDielectricConst[j] = fRePartDielectricConst[j-1]; 424 fIntegralTerm[j] = fIntegral << 399 fIntegralTerm[j] = fIntegralTerm[j-1]; 425 400 426 fDifPAIySection[j] = fDifPAIySection[ << 401 fDifPAIySection[j] = fDifPAIySection[j-1]; 427 fdNdxCerenkov[j] = fdNdxCerenkov[j- 402 fdNdxCerenkov[j] = fdNdxCerenkov[j-1]; 428 fdNdxPlasmon[j] = fdNdxPlasmon[j-1 403 fdNdxPlasmon[j] = fdNdxPlasmon[j-1]; 429 } 404 } 430 G4double x1 = fSplineEnergy[i]; 405 G4double x1 = fSplineEnergy[i]; 431 G4double x2 = fSplineEnergy[i+1]; 406 G4double x2 = fSplineEnergy[i+1]; 432 G4double yy1 = fDifPAIySection[i]; 407 G4double yy1 = fDifPAIySection[i]; 433 G4double y2 = fDifPAIySection[i+1]; 408 G4double y2 = fDifPAIySection[i+1]; 434 409 435 G4double en1 = sqrt(x1*x2); 410 G4double en1 = sqrt(x1*x2); 436 fSplineEnergy[i+1] = en1; 411 fSplineEnergy[i+1] = en1; 437 412 438 // Calculation of logarithmic linear app << 413 // Calculation of logarithmic linear approximation 439 // in this (enr) energy point, which num << 414 // in this (enr) energy point, which number is 'i+1' now 440 415 441 G4double a = log10(y2/yy1)/log10(x2/x1); 416 G4double a = log10(y2/yy1)/log10(x2/x1); 442 G4double b = log10(yy1) - a*log10(x1); 417 G4double b = log10(yy1) - a*log10(x1); 443 G4double y = a*log10(en1) + b; 418 G4double y = a*log10(en1) + b; 444 y = pow(10.,y); 419 y = pow(10.,y); 445 420 446 // Calculation of the PAI dif. cross-sec << 421 // Calculation of the PAI dif. cross-section at this point 447 422 448 fImPartDielectricConst[i+1] = fNormaliza 423 fImPartDielectricConst[i+1] = fNormalizationCof* 449 ImPartDiel << 424 ImPartDielectricConst(k,fSplineEnergy[i+1]); 450 fRePartDielectricConst[i+1] = fNormaliza 425 fRePartDielectricConst[i+1] = fNormalizationCof* 451 RePartDiel << 426 RePartDielectricConst(fSplineEnergy[i+1]); 452 fIntegralTerm[i+1] = fIntegralTerm[i] + 427 fIntegralTerm[i+1] = fIntegralTerm[i] + fNormalizationCof* 453 RutherfordIntegral( << 428 RutherfordIntegral(k,fSplineEnergy[i], 454 429 fSplineEnergy[i+1]); 455 430 456 fDifPAIySection[i+1] = DifPAIySection(i+ 431 fDifPAIySection[i+1] = DifPAIySection(i+1,betaGammaSq); 457 fdNdxCerenkov[i+1] = PAIdNdxCerenkov(i 432 fdNdxCerenkov[i+1] = PAIdNdxCerenkov(i+1,betaGammaSq); 458 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i+ 433 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i+1,betaGammaSq); 459 434 460 // Condition for next divisi << 435 // Condition for next division of this segment or to pass 461 // to higher energies << 436 // to higher energies 462 437 463 G4double x = 2*(fDifPAIySection[i+1] - y 438 G4double x = 2*(fDifPAIySection[i+1] - y)/(fDifPAIySection[i+1] + y); 464 439 465 G4double delta = 2.*(fSplineEnergy[i+1]- << 466 /(fSplineEnergy[i+1]+fSplineEnergy[i]) << 467 << 468 if( x < 0 ) 440 if( x < 0 ) 469 { 441 { 470 x = -x; << 442 x = -x; 471 } 443 } 472 if( x > fError && fSplineNumber < fMaxSp << 444 if( x > fError && fSplineNumber < fMaxSplineSize-1 ) 473 { 445 { 474 continue; // next division << 446 continue; // next division 475 } 447 } 476 i += 2; // pass to next segment 448 i += 2; // pass to next segment 477 449 478 // Loop checking, 03-Aug-2015, Vladimir << 479 } // close 'while' 450 } // close 'while' 480 451 481 } // end of SplainPAI 452 } // end of SplainPAI 482 453 483 454 484 ////////////////////////////////////////////// 455 //////////////////////////////////////////////////////////////////// 485 // 456 // 486 // Integration over electrons that could be co 457 // Integration over electrons that could be considered 487 // quasi-free at energy transfer of interest 458 // quasi-free at energy transfer of interest 488 459 489 G4double G4PAIySection::RutherfordIntegral( G4 460 G4double G4PAIySection::RutherfordIntegral( G4int k, 490 G4 << 461 G4double x1, 491 << 462 G4double x2 ) 492 { 463 { 493 G4double c1, c2, c3; 464 G4double c1, c2, c3; 494 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<< << 465 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl; 495 G4double x12 = x1*x2; << 466 c1 = (x2 - x1)/x1/x2; 496 c1 = (x2 - x1)/x12; << 467 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2; 497 c2 = (x2 - x1)*(x2 + x1)/(x12*x12); << 468 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 498 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/(x12 << 499 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "< 469 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "<<c2<<"; "<<"c3 = "<<c3<<G4endl; 500 470 501 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3 471 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3[k]*c2/2 + fA4[k]*c3/3; 502 472 503 } // end of RutherfordIntegral 473 } // end of RutherfordIntegral 504 474 505 475 506 ////////////////////////////////////////////// 476 ///////////////////////////////////////////////////////////////// 507 // 477 // 508 // Imaginary part of dielectric constant 478 // Imaginary part of dielectric constant 509 // (G4int k - interval number, G4double en1 - 479 // (G4int k - interval number, G4double en1 - energy point) 510 480 511 G4double G4PAIySection::ImPartDielectricConst( << 481 G4double G4PAIySection::ImPartDielectricConst( G4int k , >> 482 G4double energy1 ) 512 { 483 { 513 G4double energy2,energy3,energy4,result; 484 G4double energy2,energy3,energy4,result; 514 485 515 energy2 = energy1*energy1; 486 energy2 = energy1*energy1; 516 energy3 = energy2*energy1; 487 energy3 = energy2*energy1; 517 energy4 = energy3*energy1; 488 energy4 = energy3*energy1; 518 489 519 result = fA1[k]/energy1+fA2[k]/energy2+fA3[ 490 result = fA1[k]/energy1+fA2[k]/energy2+fA3[k]/energy3+fA4[k]/energy4; 520 result *=hbarc/energy1; 491 result *=hbarc/energy1; 521 492 522 return result; 493 return result; 523 494 524 } // end of ImPartDielectricConst 495 } // end of ImPartDielectricConst 525 496 526 497 527 ////////////////////////////////////////////// 498 ////////////////////////////////////////////////////////////////////////////// 528 // 499 // 529 // Real part of dielectric constant minus unit 500 // Real part of dielectric constant minus unit: epsilon_1 - 1 530 // (G4double enb - energy point) 501 // (G4double enb - energy point) 531 // 502 // 532 503 533 G4double G4PAIySection::RePartDielectricConst( 504 G4double G4PAIySection::RePartDielectricConst(G4double enb) 534 { 505 { 535 G4double x0, x02, x03, x04, x05, x1, x2, xx 506 G4double x0, x02, x03, x04, x05, x1, x2, xx1 ,xx2 , xx12, 536 c1, c2, c3, cof1, cof2, xln1, xln2 507 c1, c2, c3, cof1, cof2, xln1, xln2, xln3, result; 537 508 538 x0 = enb; 509 x0 = enb; 539 result = 0; 510 result = 0; 540 511 541 for(G4int i=1;i<=fIntervalNumber-1;++i) << 512 for(G4int i=1;i<=fIntervalNumber-1;i++) 542 { 513 { 543 x1 = fEnergyInterval[i]; 514 x1 = fEnergyInterval[i]; 544 x2 = fEnergyInterval[i+1]; 515 x2 = fEnergyInterval[i+1]; 545 xx1 = x1 - x0; 516 xx1 = x1 - x0; 546 xx2 = x2 - x0; 517 xx2 = x2 - x0; 547 xx12 = xx2/xx1; 518 xx12 = xx2/xx1; 548 519 549 if(xx12<0.) << 520 if(xx12<0) 550 { 521 { 551 xx12 = -xx12; << 522 xx12 = -xx12; 552 } 523 } 553 xln1 = log(x2/x1); 524 xln1 = log(x2/x1); 554 xln2 = log(xx12); 525 xln2 = log(xx12); 555 xln3 = log((x2 + x0)/(x1 + x0)); 526 xln3 = log((x2 + x0)/(x1 + x0)); 556 x02 = x0*x0; 527 x02 = x0*x0; 557 x03 = x02*x0; 528 x03 = x02*x0; 558 x04 = x03*x0; 529 x04 = x03*x0; 559 x05 = x04*x0; 530 x05 = x04*x0; 560 G4double x12 = x1*x2; << 531 c1 = (x2 - x1)/x1/x2; 561 c1 = (x2 - x1)/x12; << 532 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2; 562 c2 = (x2 - x1)*(x2 +x1)/(x12*x12); << 533 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 563 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/( << 564 534 565 result -= (fA1[i]/x02 + fA3[i]/x04)*xln1 535 result -= (fA1[i]/x02 + fA3[i]/x04)*xln1; 566 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 536 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 567 result -= fA3[i]*c2/2/x02; 537 result -= fA3[i]*c2/2/x02; 568 result -= fA4[i]*c3/3/x02; 538 result -= fA4[i]*c3/3/x02; 569 539 570 cof1 = fA1[i]/x02 + fA3[i]/x04; 540 cof1 = fA1[i]/x02 + fA3[i]/x04; 571 cof2 = fA2[i]/x03 + fA4[i]/x05; 541 cof2 = fA2[i]/x03 + fA4[i]/x05; 572 542 573 result += 0.5*(cof1 +cof2)*xln2; 543 result += 0.5*(cof1 +cof2)*xln2; 574 result += 0.5*(cof1 - cof2)*xln3; 544 result += 0.5*(cof1 - cof2)*xln3; 575 } 545 } 576 result *= 2*hbarc/pi; 546 result *= 2*hbarc/pi; 577 547 578 return result; 548 return result; 579 549 580 } // end of RePartDielectricConst 550 } // end of RePartDielectricConst 581 551 582 ////////////////////////////////////////////// 552 ////////////////////////////////////////////////////////////////////// 583 // 553 // 584 // PAI differential cross-section in terms of 554 // PAI differential cross-section in terms of 585 // simplified Allison's equation 555 // simplified Allison's equation 586 // 556 // 587 557 588 G4double G4PAIySection::DifPAIySection( G4int 558 G4double G4PAIySection::DifPAIySection( G4int i , 589 G4doub 559 G4double betaGammaSq ) 590 { 560 { 591 G4double beta, be2,cof,x1,x2,x3,x4,x5,x6,x7 << 561 G4double beta, be2,cof,x1,x2,x3,x4,x5,x6,x7,x8,result; >> 562 //G4double beta, be4; >> 563 //G4double be4; >> 564 G4double betaBohr = fine_structure_const; >> 565 // G4double betaBohr2 = fine_structure_const*fine_structure_const; >> 566 // G4double betaBohr4 = betaBohr2*betaBohr2*4.0; 592 be2 = betaGammaSq/(1 + betaGammaSq); 567 be2 = betaGammaSq/(1 + betaGammaSq); 593 beta = std::sqrt(be2); << 568 //be4 = be2*be2; >> 569 beta = sqrt(be2); 594 cof = 1; 570 cof = 1; 595 x1 = log(2*electron_mass_c2/fSplineEnergy[i 571 x1 = log(2*electron_mass_c2/fSplineEnergy[i]); 596 572 597 if( betaGammaSq < 0.01 ) x2 = log(be2); 573 if( betaGammaSq < 0.01 ) x2 = log(be2); 598 else 574 else 599 { 575 { 600 x2 = -log( (1/betaGammaSq - fRePartDielec 576 x2 = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 601 (1/betaGammaSq - fRePartDielec << 577 (1/betaGammaSq - fRePartDielectricConst[i]) + 602 fImPartDielectricConst[i]*fImP << 578 fImPartDielectricConst[i]*fImPartDielectricConst[i] )/2; 603 } 579 } 604 if( fImPartDielectricConst[i] == 0.0 ||beta 580 if( fImPartDielectricConst[i] == 0.0 ||betaGammaSq < 0.01 ) 605 { 581 { 606 x6=0; 582 x6=0; 607 } 583 } 608 else 584 else 609 { 585 { 610 x3 = -fRePartDielectricConst[i] + 1/betaG 586 x3 = -fRePartDielectricConst[i] + 1/betaGammaSq; 611 x5 = -1 - fRePartDielectricConst[i] + 587 x5 = -1 - fRePartDielectricConst[i] + 612 be2*((1 +fRePartDielectricConst[i])* 588 be2*((1 +fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 613 fImPartDielectricConst[i]*fImPartDie << 589 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 614 590 615 x7 = std::atan2(fImPartDielectricConst[i] << 591 x7 = atan2(fImPartDielectricConst[i],x3); 616 x6 = x5 * x7; 592 x6 = x5 * x7; 617 } 593 } >> 594 // if(fImPartDielectricConst[i] == 0) x6 = 0; >> 595 618 x4 = ((x1 + x2)*fImPartDielectricConst[i] + 596 x4 = ((x1 + x2)*fImPartDielectricConst[i] + x6)/hbarc; >> 597 // if( x4 < 0.0 ) x4 = 0.0; 619 x8 = (1 + fRePartDielectricConst[i])*(1 + f 598 x8 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 620 fImPartDielectricConst[i]*fImPartDiele 599 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 621 600 622 result = (x4 + cof*fIntegralTerm[i]/fSpline 601 result = (x4 + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i]); 623 result = std::max(result, 1.0e-8); << 602 if(result < 1.0e-8) result = 1.0e-8; 624 result *= fine_structure_const/(be2*pi); << 603 result *= fine_structure_const/be2/pi; 625 // low energy correction 604 // low energy correction 626 605 627 G4double lowCof = fLowEnergyCof; // 6.0 ; / 606 G4double lowCof = fLowEnergyCof; // 6.0 ; // Ar ~ 4.; -> fLowCof as f(Z1,Z2)? 628 607 629 result *= (1 - std::exp(-beta/(betaBohr*low << 608 result *= (1 - exp(-beta/betaBohr/lowCof)); >> 609 >> 610 // result *= (1-exp(-beta/betaBohr))*(1-exp(-beta/betaBohr)); >> 611 // result *= (1-exp(-be2/betaBohr2)); >> 612 // result *= (1-exp(-be4/betaBohr4)); >> 613 // if(fDensity >= 0.1) 630 if(x8 > 0.) 614 if(x8 > 0.) 631 { 615 { 632 result /= x8; << 616 result /= x8; 633 } 617 } 634 return result; 618 return result; 635 619 636 } // end of DifPAIySection 620 } // end of DifPAIySection 637 621 638 ////////////////////////////////////////////// 622 ////////////////////////////////////////////////////////////////////////// 639 // 623 // 640 // Calculation od dN/dx of collisions with cre 624 // Calculation od dN/dx of collisions with creation of Cerenkov pseudo-photons 641 625 642 G4double G4PAIySection::PAIdNdxCerenkov( G4int << 626 G4double G4PAIySection::PAIdNdxCerenkov( G4int i , >> 627 G4double betaGammaSq ) 643 { 628 { 644 G4double logarithm, x3, x5, argument, modul 629 G4double logarithm, x3, x5, argument, modul2, dNdxC; 645 G4double be2, be4; << 630 G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr; >> 631 >> 632 //G4double cof = 1.0; >> 633 cofBetaBohr = 4.0; >> 634 betaBohr2 = fine_structure_const*fine_structure_const; >> 635 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 646 636 647 be2 = betaGammaSq/(1 + betaGammaSq); 637 be2 = betaGammaSq/(1 + betaGammaSq); 648 be4 = be2*be2; 638 be4 = be2*be2; 649 639 650 if( betaGammaSq < 0.01 ) logarithm = log(1. 640 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq); // 0.0; 651 else 641 else 652 { 642 { 653 logarithm = -std::log( (1/betaGammaSq - f << 643 logarithm = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 654 (1/betaGammaSq - fRePa << 644 (1/betaGammaSq - fRePartDielectricConst[i]) + 655 fImPartDielectricConst << 645 fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5; 656 logarithm += std::log(1+1.0/betaGammaSq); << 646 logarithm += log(1+1.0/betaGammaSq); 657 } 647 } 658 648 659 if( fImPartDielectricConst[i] == 0.0 || bet 649 if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 ) 660 { 650 { 661 argument = 0.0; 651 argument = 0.0; 662 } 652 } 663 else 653 else 664 { 654 { 665 x3 = -fRePartDielectricConst[i] + 1.0/bet 655 x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq; 666 x5 = -1.0 - fRePartDielectricConst[i] + 656 x5 = -1.0 - fRePartDielectricConst[i] + 667 be2*((1.0 +fRePartDielectricConst[i] 657 be2*((1.0 +fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + 668 fImPartDielectricConst[i]*fImPartDie << 658 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 669 if( x3 == 0.0 ) argument = 0.5*pi; 659 if( x3 == 0.0 ) argument = 0.5*pi; 670 else argument = std::atan2(fIm << 660 else argument = atan2(fImPartDielectricConst[i],x3); 671 argument *= x5 ; 661 argument *= x5 ; 672 } 662 } 673 dNdxC = ( logarithm*fImPartDielectricConst[ 663 dNdxC = ( logarithm*fImPartDielectricConst[i] + argument )/hbarc; 674 664 675 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 665 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 676 666 677 dNdxC *= fine_structure_const/be2/pi; 667 dNdxC *= fine_structure_const/be2/pi; 678 668 679 dNdxC *= (1 - std::exp(-be4/betaBohr4)); << 669 dNdxC *= (1-exp(-be4/betaBohr4)); 680 670 >> 671 // if(fDensity >= 0.1) >> 672 // { 681 modul2 = (1.0 + fRePartDielectricConst[i])* 673 modul2 = (1.0 + fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + 682 fImPartDielectricConst[i]* 674 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 683 if(modul2 > 0.) 675 if(modul2 > 0.) 684 { 676 { 685 dNdxC /= modul2; 677 dNdxC /= modul2; 686 } 678 } 687 return dNdxC; 679 return dNdxC; 688 680 689 } // end of PAIdNdxCerenkov 681 } // end of PAIdNdxCerenkov 690 682 691 ////////////////////////////////////////////// 683 ////////////////////////////////////////////////////////////////////////// 692 // 684 // 693 // Calculation od dN/dx of collisions with cre 685 // Calculation od dN/dx of collisions with creation of longitudinal EM 694 // excitations (plasmons, delta-electrons) 686 // excitations (plasmons, delta-electrons) 695 687 696 G4double G4PAIySection::PAIdNdxPlasmon( G4int << 688 G4double G4PAIySection::PAIdNdxPlasmon( G4int i , >> 689 G4double betaGammaSq ) 697 { 690 { 698 G4double cof, resonance, modul2, dNdxP; 691 G4double cof, resonance, modul2, dNdxP; 699 G4double be2, be4; << 692 G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr; 700 693 701 cof = 1; 694 cof = 1; >> 695 cofBetaBohr = 4.0; >> 696 betaBohr2 = fine_structure_const*fine_structure_const; >> 697 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 702 698 703 be2 = betaGammaSq/(1 + betaGammaSq); 699 be2 = betaGammaSq/(1 + betaGammaSq); 704 be4 = be2*be2; 700 be4 = be2*be2; 705 701 706 resonance = std::log(2*electron_mass_c2*be2 << 702 resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]); 707 resonance *= fImPartDielectricConst[i]/hbar 703 resonance *= fImPartDielectricConst[i]/hbarc; 708 704 >> 705 709 dNdxP = ( resonance + cof*fIntegralTerm[i]/ 706 dNdxP = ( resonance + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i] ); 710 707 711 dNdxP = std::max(dNdxP, 1.0e-8); << 708 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 712 709 713 dNdxP *= fine_structure_const/be2/pi; 710 dNdxP *= fine_structure_const/be2/pi; 714 dNdxP *= (1 - std::exp(-be4/betaBohr4)); << 711 dNdxP *= (1-exp(-be4/betaBohr4)); 715 712 >> 713 // if( fDensity >= 0.1 ) >> 714 // { 716 modul2 = (1 + fRePartDielectricConst[i])*(1 715 modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 717 fImPartDielectricConst[i]*fImPartDielectr 716 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 718 if(modul2 > 0.) 717 if(modul2 > 0.) 719 { 718 { 720 dNdxP /= modul2; 719 dNdxP /= modul2; 721 } 720 } 722 return dNdxP; 721 return dNdxP; 723 722 724 } // end of PAIdNdxPlasmon 723 } // end of PAIdNdxPlasmon 725 724 726 ////////////////////////////////////////////// 725 //////////////////////////////////////////////////////////////////////// 727 // 726 // 728 // Calculation of the PAI integral cross-secti 727 // Calculation of the PAI integral cross-section 729 // fIntegralPAIySection[1] = specific primary 728 // fIntegralPAIySection[1] = specific primary ionisation, 1/cm 730 // and fIntegralPAIySection[0] = mean energy l 729 // and fIntegralPAIySection[0] = mean energy loss per cm in keV/cm 731 730 732 void G4PAIySection::IntegralPAIySection() 731 void G4PAIySection::IntegralPAIySection() 733 { 732 { 734 fIntegralPAIySection[fSplineNumber] = 0; 733 fIntegralPAIySection[fSplineNumber] = 0; 735 fIntegralPAIdEdx[fSplineNumber] = 0; 734 fIntegralPAIdEdx[fSplineNumber] = 0; 736 fIntegralPAIySection[0] = 0; 735 fIntegralPAIySection[0] = 0; 737 G4int k = fIntervalNumber -1; 736 G4int k = fIntervalNumber -1; 738 737 739 for(G4int i = fSplineNumber-1; i >= 1; i--) 738 for(G4int i = fSplineNumber-1; i >= 1; i--) 740 { 739 { 741 if(fSplineEnergy[i] >= fEnergyInterval[k]) 740 if(fSplineEnergy[i] >= fEnergyInterval[k]) 742 { 741 { 743 fIntegralPAIySection[i] = fIntegralPAIyS 742 fIntegralPAIySection[i] = fIntegralPAIySection[i+1] + SumOverInterval(i); 744 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i 743 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + SumOverIntervaldEdx(i); 745 } 744 } 746 else 745 else 747 { 746 { 748 fIntegralPAIySection[i] = fIntegralPAIyS 747 fIntegralPAIySection[i] = fIntegralPAIySection[i+1] + 749 SumOverBord << 748 SumOverBorder(i+1,fEnergyInterval[k]); 750 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i 749 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + 751 SumOverBord << 750 SumOverBorderdEdx(i+1,fEnergyInterval[k]); 752 k--; 751 k--; 753 } 752 } 754 } 753 } 755 } // end of IntegralPAIySection 754 } // end of IntegralPAIySection 756 755 757 ////////////////////////////////////////////// 756 //////////////////////////////////////////////////////////////////////// 758 // 757 // 759 // Calculation of the PAI Cerenkov integral cr 758 // Calculation of the PAI Cerenkov integral cross-section 760 // fIntegralCrenkov[1] = specific Crenkov ioni 759 // fIntegralCrenkov[1] = specific Crenkov ionisation, 1/cm 761 // and fIntegralCerenkov[0] = mean Cerenkov lo 760 // and fIntegralCerenkov[0] = mean Cerenkov loss per cm in keV/cm 762 761 763 void G4PAIySection::IntegralCerenkov() 762 void G4PAIySection::IntegralCerenkov() 764 { 763 { 765 G4int i, k; 764 G4int i, k; 766 fIntegralCerenkov[fSplineNumber] = 0; 765 fIntegralCerenkov[fSplineNumber] = 0; 767 fIntegralCerenkov[0] = 0; 766 fIntegralCerenkov[0] = 0; 768 k = fIntervalNumber -1; 767 k = fIntervalNumber -1; 769 768 770 for( i = fSplineNumber-1; i >= 1; i-- ) 769 for( i = fSplineNumber-1; i >= 1; i-- ) 771 { 770 { 772 if(fSplineEnergy[i] >= fEnergyInterval[k 771 if(fSplineEnergy[i] >= fEnergyInterval[k]) 773 { 772 { 774 fIntegralCerenkov[i] = fIntegralCerenk 773 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + SumOverInterCerenkov(i); 775 // G4cout<<"int: i = "<<i<<"; sumC = " << 774 // G4cout<<"int: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 776 } 775 } 777 else 776 else 778 { 777 { 779 fIntegralCerenkov[i] = fIntegralCerenk 778 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + 780 SumOverBord << 779 SumOverBordCerenkov(i+1,fEnergyInterval[k]); 781 k--; << 780 k--; 782 // G4cout<<"bord: i = "<<i<<"; sumC = << 781 // G4cout<<"bord: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 783 } 782 } 784 } 783 } 785 784 786 } // end of IntegralCerenkov 785 } // end of IntegralCerenkov 787 786 788 ////////////////////////////////////////////// 787 //////////////////////////////////////////////////////////////////////// 789 // 788 // 790 // Calculation of the PAI Plasmon integral cro 789 // Calculation of the PAI Plasmon integral cross-section 791 // fIntegralPlasmon[1] = splasmon primary ioni 790 // fIntegralPlasmon[1] = splasmon primary ionisation, 1/cm 792 // and fIntegralPlasmon[0] = mean plasmon loss 791 // and fIntegralPlasmon[0] = mean plasmon loss per cm in keV/cm 793 792 794 void G4PAIySection::IntegralPlasmon() 793 void G4PAIySection::IntegralPlasmon() 795 { 794 { 796 fIntegralPlasmon[fSplineNumber] = 0; 795 fIntegralPlasmon[fSplineNumber] = 0; 797 fIntegralPlasmon[0] = 0; 796 fIntegralPlasmon[0] = 0; 798 G4int k = fIntervalNumber -1; 797 G4int k = fIntervalNumber -1; 799 for(G4int i=fSplineNumber-1;i>=1;i--) 798 for(G4int i=fSplineNumber-1;i>=1;i--) 800 { 799 { 801 if(fSplineEnergy[i] >= fEnergyInterval[k 800 if(fSplineEnergy[i] >= fEnergyInterval[k]) 802 { 801 { 803 fIntegralPlasmon[i] = fIntegralPlasmon 802 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + SumOverInterPlasmon(i); 804 } 803 } 805 else 804 else 806 { 805 { 807 fIntegralPlasmon[i] = fIntegralPlasmon 806 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + 808 SumOverBord << 807 SumOverBordPlasmon(i+1,fEnergyInterval[k]); 809 k--; << 808 k--; 810 } 809 } 811 } 810 } >> 811 812 } // end of IntegralPlasmon 812 } // end of IntegralPlasmon 813 813 814 ////////////////////////////////////////////// 814 ////////////////////////////////////////////////////////////////////// 815 // 815 // 816 // Calculation the PAI integral cross-section 816 // Calculation the PAI integral cross-section inside 817 // of interval of continuous values of photo-i 817 // of interval of continuous values of photo-ionisation 818 // cross-section. Parameter 'i' is the number 818 // cross-section. Parameter 'i' is the number of interval. 819 819 820 G4double G4PAIySection::SumOverInterval( G4int 820 G4double G4PAIySection::SumOverInterval( G4int i ) 821 { 821 { 822 G4double x0,x1,y0,yy1,a,b,c,result; 822 G4double x0,x1,y0,yy1,a,b,c,result; 823 823 824 x0 = fSplineEnergy[i]; 824 x0 = fSplineEnergy[i]; 825 x1 = fSplineEnergy[i+1]; 825 x1 = fSplineEnergy[i+1]; 826 << 827 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 828 << 829 y0 = fDifPAIySection[i]; 826 y0 = fDifPAIySection[i]; 830 yy1 = fDifPAIySection[i+1]; 827 yy1 = fDifPAIySection[i+1]; 831 //G4cout << "## x0= " << x0 << " x1= " << x << 832 c = x1/x0; 828 c = x1/x0; 833 //G4cout << "c= " << c << " y0= " << y0 << << 834 a = log10(yy1/y0)/log10(c); 829 a = log10(yy1/y0)/log10(c); 835 //G4cout << "a= " << a << G4endl; << 830 // b = log10(y0) - a*log10(x0); 836 << 831 b = y0/pow(x0,a); 837 b = 0.0; << 838 if(a < 20.) b = y0/pow(x0,a); << 839 << 840 a += 1; 832 a += 1; 841 if(a == 0) 833 if(a == 0) 842 { 834 { 843 result = b*log(x1/x0); 835 result = b*log(x1/x0); 844 } 836 } 845 else 837 else 846 { 838 { 847 result = y0*(x1*pow(c,a-1) - x0)/a; 839 result = y0*(x1*pow(c,a-1) - x0)/a; 848 } 840 } 849 a++; 841 a++; 850 if(a == 0) 842 if(a == 0) 851 { 843 { 852 fIntegralPAIySection[0] += b*log(x1/x0); 844 fIntegralPAIySection[0] += b*log(x1/x0); 853 } 845 } 854 else 846 else 855 { 847 { 856 fIntegralPAIySection[0] += y0*(x1*x1*pow 848 fIntegralPAIySection[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 857 } 849 } 858 return result; 850 return result; 859 851 860 } // end of SumOverInterval 852 } // end of SumOverInterval 861 853 862 ///////////////////////////////// 854 ///////////////////////////////// 863 855 864 G4double G4PAIySection::SumOverIntervaldEdx( G 856 G4double G4PAIySection::SumOverIntervaldEdx( G4int i ) 865 { 857 { 866 G4double x0,x1,y0,yy1,a,b,c,result; 858 G4double x0,x1,y0,yy1,a,b,c,result; 867 859 868 x0 = fSplineEnergy[i]; 860 x0 = fSplineEnergy[i]; 869 x1 = fSplineEnergy[i+1]; 861 x1 = fSplineEnergy[i+1]; 870 << 871 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 872 << 873 y0 = fDifPAIySection[i]; 862 y0 = fDifPAIySection[i]; 874 yy1 = fDifPAIySection[i+1]; 863 yy1 = fDifPAIySection[i+1]; 875 c = x1/x0; 864 c = x1/x0; 876 a = log10(yy1/y0)/log10(c); 865 a = log10(yy1/y0)/log10(c); 877 << 866 // b = log10(y0) - a*log10(x0); 878 b = 0.0; << 867 b = y0/pow(x0,a); 879 if(a < 20.) b = y0/pow(x0,a); << 880 << 881 a += 2; 868 a += 2; 882 if(a == 0) 869 if(a == 0) 883 { 870 { 884 result = b*log(x1/x0); 871 result = b*log(x1/x0); 885 } 872 } 886 else 873 else 887 { 874 { 888 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 875 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 889 } 876 } 890 return result; 877 return result; 891 878 892 } // end of SumOverInterval 879 } // end of SumOverInterval 893 880 894 ////////////////////////////////////////////// 881 ////////////////////////////////////////////////////////////////////// 895 // 882 // 896 // Calculation the PAI Cerenkov integral cross 883 // Calculation the PAI Cerenkov integral cross-section inside 897 // of interval of continuous values of photo-i 884 // of interval of continuous values of photo-ionisation Cerenkov 898 // cross-section. Parameter 'i' is the number 885 // cross-section. Parameter 'i' is the number of interval. 899 886 900 G4double G4PAIySection::SumOverInterCerenkov( 887 G4double G4PAIySection::SumOverInterCerenkov( G4int i ) 901 { 888 { 902 G4double x0,x1,y0,yy1,a,c,result; 889 G4double x0,x1,y0,yy1,a,c,result; 903 890 904 x0 = fSplineEnergy[i]; 891 x0 = fSplineEnergy[i]; 905 x1 = fSplineEnergy[i+1]; 892 x1 = fSplineEnergy[i+1]; 906 << 907 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 908 << 909 y0 = fdNdxCerenkov[i]; 893 y0 = fdNdxCerenkov[i]; 910 yy1 = fdNdxCerenkov[i+1]; 894 yy1 = fdNdxCerenkov[i+1]; 911 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<" 895 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<"; x1 = "<<x1 912 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4en 896 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 913 897 914 c = x1/x0; 898 c = x1/x0; 915 a = log10(yy1/y0)/log10(c); 899 a = log10(yy1/y0)/log10(c); 916 G4double b = 0.0; 900 G4double b = 0.0; 917 if(a < 20.) b = y0/pow(x0,a); 901 if(a < 20.) b = y0/pow(x0,a); 918 902 919 a += 1.0; 903 a += 1.0; 920 if(a == 0) result = b*log(c); 904 if(a == 0) result = b*log(c); 921 else result = y0*(x1*pow(c,a-1) - x0) 905 else result = y0*(x1*pow(c,a-1) - x0)/a; 922 a += 1.0; 906 a += 1.0; 923 907 924 if( a == 0 ) fIntegralCerenkov[0] += b*log( 908 if( a == 0 ) fIntegralCerenkov[0] += b*log(x1/x0); 925 else fIntegralCerenkov[0] += y0*(x1 909 else fIntegralCerenkov[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 926 // G4cout<<"a = "<<a<<"; b = "<<b<<"; resu 910 // G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 927 return result; 911 return result; 928 912 929 } // end of SumOverInterCerenkov 913 } // end of SumOverInterCerenkov 930 914 931 ////////////////////////////////////////////// 915 ////////////////////////////////////////////////////////////////////// 932 // 916 // 933 // Calculation the PAI Plasmon integral cross- 917 // Calculation the PAI Plasmon integral cross-section inside 934 // of interval of continuous values of photo-i 918 // of interval of continuous values of photo-ionisation Plasmon 935 // cross-section. Parameter 'i' is the number 919 // cross-section. Parameter 'i' is the number of interval. 936 920 937 G4double G4PAIySection::SumOverInterPlasmon( G 921 G4double G4PAIySection::SumOverInterPlasmon( G4int i ) 938 { 922 { 939 G4double x0,x1,y0,yy1,a,c,result; 923 G4double x0,x1,y0,yy1,a,c,result; 940 924 941 x0 = fSplineEnergy[i]; 925 x0 = fSplineEnergy[i]; 942 x1 = fSplineEnergy[i+1]; 926 x1 = fSplineEnergy[i+1]; 943 << 944 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 945 << 946 y0 = fdNdxPlasmon[i]; 927 y0 = fdNdxPlasmon[i]; 947 yy1 = fdNdxPlasmon[i+1]; 928 yy1 = fdNdxPlasmon[i+1]; 948 c = x1/x0; 929 c = x1/x0; 949 a = log10(yy1/y0)/log10(c); 930 a = log10(yy1/y0)/log10(c); 950 931 951 G4double b = 0.0; 932 G4double b = 0.0; 952 if(a < 20.) b = y0/pow(x0,a); 933 if(a < 20.) b = y0/pow(x0,a); 953 934 954 a += 1.0; 935 a += 1.0; 955 if(a == 0) result = b*log(x1/x0); 936 if(a == 0) result = b*log(x1/x0); 956 else result = y0*(x1*pow(c,a-1) - x0) 937 else result = y0*(x1*pow(c,a-1) - x0)/a; 957 a += 1.0; 938 a += 1.0; 958 939 959 if( a == 0 ) fIntegralPlasmon[0] += b*log(x 940 if( a == 0 ) fIntegralPlasmon[0] += b*log(x1/x0); 960 else fIntegralPlasmon[0] += y0*(x1* 941 else fIntegralPlasmon[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 961 942 962 return result; 943 return result; 963 944 964 } // end of SumOverInterPlasmon 945 } // end of SumOverInterPlasmon 965 946 966 ////////////////////////////////////////////// 947 /////////////////////////////////////////////////////////////////////////////// 967 // 948 // 968 // Integration of PAI cross-section for the ca 949 // Integration of PAI cross-section for the case of 969 // passing across border between intervals 950 // passing across border between intervals 970 951 971 G4double G4PAIySection::SumOverBorder( G4int 952 G4double G4PAIySection::SumOverBorder( G4int i , 972 G4doubl 953 G4double en0 ) 973 { 954 { 974 G4double x0,x1,y0,yy1,a,d,e0,result; << 955 G4double x0,x1,y0,yy1,a,/*c,*/d,e0,result; 975 956 976 e0 = en0; 957 e0 = en0; 977 x0 = fSplineEnergy[i]; 958 x0 = fSplineEnergy[i]; 978 x1 = fSplineEnergy[i+1]; 959 x1 = fSplineEnergy[i+1]; 979 y0 = fDifPAIySection[i]; 960 y0 = fDifPAIySection[i]; 980 yy1 = fDifPAIySection[i+1]; 961 yy1 = fDifPAIySection[i+1]; 981 962 >> 963 //c = x1/x0; 982 d = e0/x0; 964 d = e0/x0; 983 a = log10(yy1/y0)/log10(x1/x0); 965 a = log10(yy1/y0)/log10(x1/x0); 984 966 985 G4double b = 0.0; 967 G4double b = 0.0; 986 if(a < 20.) b = y0/pow(x0,a); 968 if(a < 20.) b = y0/pow(x0,a); 987 969 988 a += 1; 970 a += 1; 989 if(a == 0) 971 if(a == 0) 990 { 972 { 991 result = b*log(x0/e0); 973 result = b*log(x0/e0); 992 } 974 } 993 else 975 else 994 { 976 { 995 result = y0*(x0 - e0*pow(d,a-1))/a; 977 result = y0*(x0 - e0*pow(d,a-1))/a; 996 } 978 } 997 a++; 979 a++; 998 if(a == 0) 980 if(a == 0) 999 { 981 { 1000 fIntegralPAIySection[0] += b*log(x0/e0) 982 fIntegralPAIySection[0] += b*log(x0/e0); 1001 } 983 } 1002 else 984 else 1003 { 985 { 1004 fIntegralPAIySection[0] += y0*(x0*x0 - 986 fIntegralPAIySection[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1005 } 987 } 1006 x0 = fSplineEnergy[i - 1]; 988 x0 = fSplineEnergy[i - 1]; 1007 x1 = fSplineEnergy[i - 2]; 989 x1 = fSplineEnergy[i - 2]; 1008 y0 = fDifPAIySection[i - 1]; 990 y0 = fDifPAIySection[i - 1]; 1009 yy1 = fDifPAIySection[i - 2]; 991 yy1 = fDifPAIySection[i - 2]; 1010 992 1011 //c = x1/x0; 993 //c = x1/x0; 1012 d = e0/x0; 994 d = e0/x0; 1013 a = log10(yy1/y0)/log10(x1/x0); 995 a = log10(yy1/y0)/log10(x1/x0); 1014 << 996 // b0 = log10(y0) - a*log10(x0); 1015 b = 0.0; << 997 b = y0/pow(x0,a); 1016 if(a < 20.) b = y0/pow(x0,a); << 1017 << 1018 a += 1; 998 a += 1; 1019 if(a == 0) 999 if(a == 0) 1020 { 1000 { 1021 result += b*log(e0/x0); 1001 result += b*log(e0/x0); 1022 } 1002 } 1023 else 1003 else 1024 { 1004 { 1025 result += y0*(e0*pow(d,a-1) - x0)/a; 1005 result += y0*(e0*pow(d,a-1) - x0)/a; 1026 } 1006 } 1027 a++; 1007 a++; 1028 if(a == 0) 1008 if(a == 0) 1029 { 1009 { 1030 fIntegralPAIySection[0] += b*log(e0/x0) 1010 fIntegralPAIySection[0] += b*log(e0/x0); 1031 } 1011 } 1032 else 1012 else 1033 { 1013 { 1034 fIntegralPAIySection[0] += y0*(e0*e0*po 1014 fIntegralPAIySection[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1035 } 1015 } 1036 return result; 1016 return result; 1037 1017 1038 } 1018 } 1039 1019 1040 ///////////////////////////////////////////// 1020 /////////////////////////////////////////////////////////////////////// 1041 1021 1042 G4double G4PAIySection::SumOverBorderdEdx( G4 1022 G4double G4PAIySection::SumOverBorderdEdx( G4int i , 1043 G4doub 1023 G4double en0 ) 1044 { 1024 { 1045 G4double x0,x1,y0,yy1,a,/*c,*/d,e0,result; 1025 G4double x0,x1,y0,yy1,a,/*c,*/d,e0,result; 1046 1026 1047 e0 = en0; 1027 e0 = en0; 1048 x0 = fSplineEnergy[i]; 1028 x0 = fSplineEnergy[i]; 1049 x1 = fSplineEnergy[i+1]; 1029 x1 = fSplineEnergy[i+1]; 1050 y0 = fDifPAIySection[i]; 1030 y0 = fDifPAIySection[i]; 1051 yy1 = fDifPAIySection[i+1]; 1031 yy1 = fDifPAIySection[i+1]; 1052 1032 >> 1033 //c = x1/x0; 1053 d = e0/x0; 1034 d = e0/x0; 1054 a = log10(yy1/y0)/log10(x1/x0); 1035 a = log10(yy1/y0)/log10(x1/x0); 1055 1036 1056 G4double b = 0.0; 1037 G4double b = 0.0; 1057 if(a < 20.) b = y0/pow(x0,a); 1038 if(a < 20.) b = y0/pow(x0,a); 1058 1039 1059 a += 2; 1040 a += 2; 1060 if(a == 0) 1041 if(a == 0) 1061 { 1042 { 1062 result = b*log(x0/e0); 1043 result = b*log(x0/e0); 1063 } 1044 } 1064 else 1045 else 1065 { 1046 { 1066 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/ 1047 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1067 } 1048 } 1068 x0 = fSplineEnergy[i - 1]; 1049 x0 = fSplineEnergy[i - 1]; 1069 x1 = fSplineEnergy[i - 2]; 1050 x1 = fSplineEnergy[i - 2]; 1070 y0 = fDifPAIySection[i - 1]; 1051 y0 = fDifPAIySection[i - 1]; 1071 yy1 = fDifPAIySection[i - 2]; 1052 yy1 = fDifPAIySection[i - 2]; 1072 1053 >> 1054 //c = x1/x0; 1073 d = e0/x0; 1055 d = e0/x0; 1074 a = log10(yy1/y0)/log10(x1/x0); 1056 a = log10(yy1/y0)/log10(x1/x0); 1075 1057 1076 b = 0.0; << 1077 if(a < 20.) b = y0/pow(x0,a); 1058 if(a < 20.) b = y0/pow(x0,a); 1078 1059 1079 a += 2; 1060 a += 2; 1080 if(a == 0) 1061 if(a == 0) 1081 { 1062 { 1082 result += b*log(e0/x0); 1063 result += b*log(e0/x0); 1083 } 1064 } 1084 else 1065 else 1085 { 1066 { 1086 result += y0*(e0*e0*pow(d,a-2) - x0*x0) 1067 result += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1087 } 1068 } 1088 return result; 1069 return result; >> 1070 1089 } 1071 } 1090 1072 1091 ///////////////////////////////////////////// 1073 /////////////////////////////////////////////////////////////////////////////// 1092 // 1074 // 1093 // Integration of Cerenkov cross-section for 1075 // Integration of Cerenkov cross-section for the case of 1094 // passing across border between intervals 1076 // passing across border between intervals 1095 1077 1096 G4double G4PAIySection::SumOverBordCerenkov( 1078 G4double G4PAIySection::SumOverBordCerenkov( G4int i , 1097 1079 G4double en0 ) 1098 { 1080 { 1099 G4double x0,x1,y0,yy1,a,e0,c,d,result; 1081 G4double x0,x1,y0,yy1,a,e0,c,d,result; 1100 1082 1101 e0 = en0; 1083 e0 = en0; 1102 x0 = fSplineEnergy[i]; 1084 x0 = fSplineEnergy[i]; 1103 x1 = fSplineEnergy[i+1]; 1085 x1 = fSplineEnergy[i+1]; 1104 y0 = fdNdxCerenkov[i]; 1086 y0 = fdNdxCerenkov[i]; 1105 yy1 = fdNdxCerenkov[i+1]; 1087 yy1 = fdNdxCerenkov[i+1]; 1106 1088 1107 // G4cout<<G4endl; 1089 // G4cout<<G4endl; 1108 //G4cout<<"SumBordC, i = "<<i<<"; en0 = "< 1090 //G4cout<<"SumBordC, i = "<<i<<"; en0 = "<<en0<<"; x0 ="<<x0<<"; x1 = "<<x1 1109 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G 1091 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1110 c = x1/x0; 1092 c = x1/x0; 1111 d = e0/x0; 1093 d = e0/x0; 1112 a = log10(yy1/y0)/log10(c); 1094 a = log10(yy1/y0)/log10(c); 1113 1095 1114 G4double b = 0.0; 1096 G4double b = 0.0; 1115 if(a < 20.) b = y0/pow(x0,a); 1097 if(a < 20.) b = y0/pow(x0,a); 1116 1098 1117 a += 1.0; 1099 a += 1.0; 1118 if( a == 0 ) result = b*log(x0/e0); 1100 if( a == 0 ) result = b*log(x0/e0); 1119 else result = y0*(x0 - e0*pow(d,a- 1101 else result = y0*(x0 - e0*pow(d,a-1))/a; 1120 a += 1.0; 1102 a += 1.0; 1121 1103 1122 if( a == 0 ) fIntegralCerenkov[0] += b*log 1104 if( a == 0 ) fIntegralCerenkov[0] += b*log(x0/e0); 1123 else fIntegralCerenkov[0] += y0*(x 1105 else fIntegralCerenkov[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1124 1106 1125 //G4cout<<"a = "<<a<<"; b = "<<b<<"; resul 1107 //G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1126 1108 1127 x0 = fSplineEnergy[i - 1]; 1109 x0 = fSplineEnergy[i - 1]; 1128 x1 = fSplineEnergy[i - 2]; 1110 x1 = fSplineEnergy[i - 2]; 1129 y0 = fdNdxCerenkov[i - 1]; 1111 y0 = fdNdxCerenkov[i - 1]; 1130 yy1 = fdNdxCerenkov[i - 2]; 1112 yy1 = fdNdxCerenkov[i - 2]; 1131 1113 1132 //G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 1114 //G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 1133 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4 1115 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1134 1116 1135 c = x1/x0; 1117 c = x1/x0; 1136 d = e0/x0; 1118 d = e0/x0; 1137 a = log10(yy1/y0)/log10(x1/x0); 1119 a = log10(yy1/y0)/log10(x1/x0); 1138 1120 1139 // G4cout << "a= " << a << G4endl; 1121 // G4cout << "a= " << a << G4endl; >> 1122 if(a < 20.) b = y0/pow(x0,a); >> 1123 1140 if(a > 20.0) b = 0.0; 1124 if(a > 20.0) b = 0.0; 1141 else b = y0/pow(x0,a); << 1125 else b = y0/pow(x0,a); // pow(10.,b0); 1142 1126 1143 //G4cout << "b= " << b << G4endl; 1127 //G4cout << "b= " << b << G4endl; 1144 1128 1145 a += 1.0; 1129 a += 1.0; 1146 if( a == 0 ) result += b*log(e0/x0); 1130 if( a == 0 ) result += b*log(e0/x0); 1147 else result += y0*(e0*pow(d,a-1) - 1131 else result += y0*(e0*pow(d,a-1) - x0 )/a; 1148 a += 1.0; 1132 a += 1.0; 1149 //G4cout << "result= " << result << G4endl 1133 //G4cout << "result= " << result << G4endl; 1150 1134 1151 if( a == 0 ) fIntegralCerenkov[0] += b*l 1135 if( a == 0 ) fIntegralCerenkov[0] += b*log(e0/x0); 1152 else fIntegralCerenkov[0] += y0* 1136 else fIntegralCerenkov[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1153 1137 1154 //G4cout<<"a = "<<a<<"; b = "<<b<<"; resul 1138 //G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1155 1139 1156 return result; 1140 return result; >> 1141 1157 } 1142 } 1158 1143 1159 ///////////////////////////////////////////// 1144 /////////////////////////////////////////////////////////////////////////////// 1160 // 1145 // 1161 // Integration of Plasmon cross-section for t 1146 // Integration of Plasmon cross-section for the case of 1162 // passing across border between intervals 1147 // passing across border between intervals 1163 1148 1164 G4double G4PAIySection::SumOverBordPlasmon( G 1149 G4double G4PAIySection::SumOverBordPlasmon( G4int i , 1165 1150 G4double en0 ) 1166 { 1151 { 1167 G4double x0,x1,y0,yy1,a,c,d,e0,result; 1152 G4double x0,x1,y0,yy1,a,c,d,e0,result; 1168 1153 1169 e0 = en0; 1154 e0 = en0; 1170 x0 = fSplineEnergy[i]; 1155 x0 = fSplineEnergy[i]; 1171 x1 = fSplineEnergy[i+1]; 1156 x1 = fSplineEnergy[i+1]; 1172 y0 = fdNdxPlasmon[i]; 1157 y0 = fdNdxPlasmon[i]; 1173 yy1 = fdNdxPlasmon[i+1]; 1158 yy1 = fdNdxPlasmon[i+1]; 1174 1159 1175 c = x1/x0; 1160 c = x1/x0; 1176 d = e0/x0; 1161 d = e0/x0; 1177 a = log10(yy1/y0)/log10(c); 1162 a = log10(yy1/y0)/log10(c); 1178 1163 1179 G4double b = 0.0; 1164 G4double b = 0.0; 1180 if(a < 20.) b = y0/pow(x0,a); 1165 if(a < 20.) b = y0/pow(x0,a); 1181 1166 1182 a += 1.0; 1167 a += 1.0; 1183 if( a == 0 ) result = b*log(x0/e0); 1168 if( a == 0 ) result = b*log(x0/e0); 1184 else result = y0*(x0 - e0*pow(d,a- 1169 else result = y0*(x0 - e0*pow(d,a-1))/a; 1185 a += 1.0; 1170 a += 1.0; 1186 1171 1187 if( a == 0 ) fIntegralPlasmon[0] += b*log( 1172 if( a == 0 ) fIntegralPlasmon[0] += b*log(x0/e0); 1188 else fIntegralPlasmon[0] += y0*(x0 1173 else fIntegralPlasmon[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1189 1174 1190 x0 = fSplineEnergy[i - 1]; 1175 x0 = fSplineEnergy[i - 1]; 1191 x1 = fSplineEnergy[i - 2]; 1176 x1 = fSplineEnergy[i - 2]; 1192 y0 = fdNdxPlasmon[i - 1]; 1177 y0 = fdNdxPlasmon[i - 1]; 1193 yy1 = fdNdxPlasmon[i - 2]; 1178 yy1 = fdNdxPlasmon[i - 2]; 1194 1179 1195 c = x1/x0; 1180 c = x1/x0; 1196 d = e0/x0; 1181 d = e0/x0; 1197 a = log10(yy1/y0)/log10(c); 1182 a = log10(yy1/y0)/log10(c); 1198 1183 1199 if(a < 20.) b = y0/pow(x0,a); 1184 if(a < 20.) b = y0/pow(x0,a); 1200 1185 1201 a += 1.0; 1186 a += 1.0; 1202 if( a == 0 ) result += b*log(e0/x0); 1187 if( a == 0 ) result += b*log(e0/x0); 1203 else result += y0*(e0*pow(d,a-1) - 1188 else result += y0*(e0*pow(d,a-1) - x0)/a; 1204 a += 1.0; 1189 a += 1.0; 1205 1190 1206 if( a == 0 ) fIntegralPlasmon[0] += b*lo 1191 if( a == 0 ) fIntegralPlasmon[0] += b*log(e0/x0); 1207 else fIntegralPlasmon[0] += y0*( 1192 else fIntegralPlasmon[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1208 1193 1209 return result; 1194 return result; 1210 1195 1211 } 1196 } 1212 1197 1213 ///////////////////////////////////////////// 1198 ///////////////////////////////////////////////////////////////////////// 1214 // 1199 // 1215 // 1200 // 1216 1201 1217 G4double G4PAIySection::GetStepEnergyLoss( G4 1202 G4double G4PAIySection::GetStepEnergyLoss( G4double step ) 1218 { 1203 { 1219 G4int iTransfer ; 1204 G4int iTransfer ; 1220 G4long numOfCollisions; 1205 G4long numOfCollisions; 1221 G4double loss = 0.0; 1206 G4double loss = 0.0; 1222 G4double meanNumber, position; 1207 G4double meanNumber, position; 1223 1208 1224 // G4cout<<" G4PAIySection::GetStepEnergyLo 1209 // G4cout<<" G4PAIySection::GetStepEnergyLoss "<<G4endl; 1225 1210 1226 1211 1227 1212 1228 meanNumber = fIntegralPAIySection[1]*step; 1213 meanNumber = fIntegralPAIySection[1]*step; 1229 numOfCollisions = G4Poisson(meanNumber); 1214 numOfCollisions = G4Poisson(meanNumber); 1230 1215 1231 // G4cout<<"numOfCollisions = "<<numOfCol 1216 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 1232 1217 1233 while(numOfCollisions) 1218 while(numOfCollisions) 1234 { 1219 { 1235 position = fIntegralPAIySection[1]*G4Unif 1220 position = fIntegralPAIySection[1]*G4UniformRand(); 1236 1221 1237 for( iTransfer=1; iTransfer<=fSplineNumbe 1222 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ ) 1238 { 1223 { 1239 if( position >= fIntegralPAIySection[ 1224 if( position >= fIntegralPAIySection[iTransfer] ) break; 1240 } 1225 } 1241 loss += fSplineEnergy[iTransfer] ; 1226 loss += fSplineEnergy[iTransfer] ; 1242 numOfCollisions--; 1227 numOfCollisions--; 1243 // Loop checking, 03-Aug-2015, Vladimir I << 1244 } 1228 } 1245 // G4cout<<"PAI energy loss = "<<loss/keV<< 1229 // G4cout<<"PAI energy loss = "<<loss/keV<<" keV"<<G4endl; 1246 1230 1247 return loss; 1231 return loss; 1248 } 1232 } 1249 1233 1250 ///////////////////////////////////////////// 1234 ///////////////////////////////////////////////////////////////////////// 1251 // 1235 // 1252 // 1236 // 1253 1237 1254 G4double G4PAIySection::GetStepCerenkovLoss( 1238 G4double G4PAIySection::GetStepCerenkovLoss( G4double step ) 1255 { 1239 { 1256 G4int iTransfer ; 1240 G4int iTransfer ; 1257 G4long numOfCollisions; 1241 G4long numOfCollisions; 1258 G4double loss = 0.0; 1242 G4double loss = 0.0; 1259 G4double meanNumber, position; 1243 G4double meanNumber, position; 1260 1244 1261 // G4cout<<" G4PAIySection::GetStepCreLosnk 1245 // G4cout<<" G4PAIySection::GetStepCreLosnkovs "<<G4endl; 1262 1246 1263 1247 1264 1248 1265 meanNumber = fIntegralCerenkov[1]*step; 1249 meanNumber = fIntegralCerenkov[1]*step; 1266 numOfCollisions = G4Poisson(meanNumber); 1250 numOfCollisions = G4Poisson(meanNumber); 1267 1251 1268 // G4cout<<"numOfCollisions = "<<numOfCol 1252 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 1269 1253 1270 while(numOfCollisions) 1254 while(numOfCollisions) 1271 { 1255 { 1272 position = fIntegralCerenkov[1]*G4Uniform 1256 position = fIntegralCerenkov[1]*G4UniformRand(); 1273 1257 1274 for( iTransfer=1; iTransfer<=fSplineNumbe 1258 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ ) 1275 { 1259 { 1276 if( position >= fIntegralCerenkov[iTr 1260 if( position >= fIntegralCerenkov[iTransfer] ) break; 1277 } 1261 } 1278 loss += fSplineEnergy[iTransfer] ; 1262 loss += fSplineEnergy[iTransfer] ; 1279 numOfCollisions--; 1263 numOfCollisions--; 1280 // Loop checking, 03-Aug-2015, Vladimir I << 1281 } 1264 } 1282 // G4cout<<"PAI Cerenkov loss = "<<loss/keV 1265 // G4cout<<"PAI Cerenkov loss = "<<loss/keV<<" keV"<<G4endl; 1283 1266 1284 return loss; 1267 return loss; 1285 } 1268 } 1286 1269 1287 ///////////////////////////////////////////// 1270 ///////////////////////////////////////////////////////////////////////// 1288 // 1271 // 1289 // 1272 // 1290 1273 1291 G4double G4PAIySection::GetStepPlasmonLoss( G 1274 G4double G4PAIySection::GetStepPlasmonLoss( G4double step ) 1292 { 1275 { 1293 G4int iTransfer ; 1276 G4int iTransfer ; 1294 G4long numOfCollisions; 1277 G4long numOfCollisions; 1295 G4double loss = 0.0; 1278 G4double loss = 0.0; 1296 G4double meanNumber, position; 1279 G4double meanNumber, position; 1297 1280 1298 // G4cout<<" G4PAIySection::GetStepCreLosnk 1281 // G4cout<<" G4PAIySection::GetStepCreLosnkovs "<<G4endl; 1299 1282 1300 1283 1301 1284 1302 meanNumber = fIntegralPlasmon[1]*step; 1285 meanNumber = fIntegralPlasmon[1]*step; 1303 numOfCollisions = G4Poisson(meanNumber); 1286 numOfCollisions = G4Poisson(meanNumber); 1304 1287 1305 // G4cout<<"numOfCollisions = "<<numOfCol 1288 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 1306 1289 1307 while(numOfCollisions) 1290 while(numOfCollisions) 1308 { 1291 { 1309 position = fIntegralPlasmon[1]*G4UniformR 1292 position = fIntegralPlasmon[1]*G4UniformRand(); 1310 1293 1311 for( iTransfer=1; iTransfer<=fSplineNumbe 1294 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ ) 1312 { 1295 { 1313 if( position >= fIntegralPlasmon[iTra 1296 if( position >= fIntegralPlasmon[iTransfer] ) break; 1314 } 1297 } 1315 loss += fSplineEnergy[iTransfer] ; 1298 loss += fSplineEnergy[iTransfer] ; 1316 numOfCollisions--; 1299 numOfCollisions--; 1317 // Loop checking, 03-Aug-2015, Vladimir I << 1318 } 1300 } 1319 // G4cout<<"PAI Plasmon loss = "<<loss/keV< 1301 // G4cout<<"PAI Plasmon loss = "<<loss/keV<<" keV"<<G4endl; 1320 1302 1321 return loss; 1303 return loss; 1322 } 1304 } 1323 1305 1324 ///////////////////////////////////////////// 1306 ///////////////////////////////////////////////////////////////////////////// 1325 // 1307 // 1326 1308 1327 void G4PAIySection::CallError(G4int i, const 1309 void G4PAIySection::CallError(G4int i, const G4String& methodName) const 1328 { 1310 { 1329 G4String head = "G4PAIySection::" + methodN 1311 G4String head = "G4PAIySection::" + methodName + "()"; 1330 G4ExceptionDescription ed; 1312 G4ExceptionDescription ed; 1331 ed << "Wrong index " << i << " fSplineNumbe << 1313 ed << "Wrong index " << i << " fSplineNumber= " << fSplineNumber << G4endl; 1332 G4Exception(head,"pai001",FatalException,ed 1314 G4Exception(head,"pai001",FatalException,ed); 1333 } 1315 } 1334 1316 1335 ///////////////////////////////////////////// 1317 ///////////////////////////////////////////////////////////////////////////// 1336 // 1318 // 1337 // Init array of Lorentz factors 1319 // Init array of Lorentz factors 1338 // 1320 // 1339 1321 1340 G4int G4PAIySection::fNumberOfGammas = 111; 1322 G4int G4PAIySection::fNumberOfGammas = 111; 1341 1323 1342 const G4double G4PAIySection::fLorentzFactor[ 1324 const G4double G4PAIySection::fLorentzFactor[112] = // fNumberOfGammas+1 1343 { 1325 { 1344 0.0, 1326 0.0, 1345 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.1 1327 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.138890e+00, 1.157642e+00, 1346 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.2 1328 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.261620e+00, 1.296942e+00, // 10 1347 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.4 1329 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.492800e+00, 1.559334e+00, 1348 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.9 1330 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.928263e+00, 2.053589e+00, // 20 1349 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.7 1331 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.748522e+00, 2.984591e+00, 1350 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.2 1332 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.293602e+00, 4.738274e+00, // 30 1351 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.2 1333 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.203990e+00, 8.041596e+00, 1352 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.2 1334 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.268614e+01, 1.426390e+01, // 40 1353 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.3 1335 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.301259e+01, 2.598453e+01, 1354 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.2 1336 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.246399e+01, 4.806208e+01, // 50 1355 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.9 1337 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.910361e+01, 8.964844e+01, 1356 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.4 1338 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.481198e+02, 1.679826e+02, // 60 1357 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.7 1339 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.781221e+02, 3.155365e+02, 1358 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.2 1340 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.230007e+02, 5.934765e+02, // 70 1359 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.8 1341 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.842662e+02, 1.117018e+03, 1360 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.8 1342 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.853128e+03, 2.103186e+03, // 80 1361 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.4 1343 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.489760e+03, 3.960780e+03, 1362 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.5 1344 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.572600e+03, 7.459837e+03, // 90 1363 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.2 1345 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.237959e+04, 1.405083e+04, 1364 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.3 1346 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.331792e+04, 2.646595e+04, // 100 1365 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.3 1347 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.392189e+04, 4.985168e+04, 1366 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.2 1348 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.273254e+04, 9.390219e+04, // 110 1367 1.065799e+05 1349 1.065799e+05 1368 }; 1350 }; 1369 1351 1370 ///////////////////////////////////////////// 1352 /////////////////////////////////////////////////////////////////////// 1371 // 1353 // 1372 // The number of gamma for creation of splin 1354 // The number of gamma for creation of spline (near ion-min , G ~ 4 ) 1373 // 1355 // 1374 1356 1375 const G4int G4PAIySection::fRefGammaNumber = << 1357 const >> 1358 G4int G4PAIySection::fRefGammaNumber = 29; 1376 1359 >> 1360 1377 // 1361 // 1378 // end of G4PAIySection implementation file 1362 // end of G4PAIySection implementation file 1379 // 1363 // 1380 ///////////////////////////////////////////// 1364 //////////////////////////////////////////////////////////////////////////// 1381 1365 1382 1366