Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PAIySection.cc,v 1.8 2010-11-23 15:31:10 grichine Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // 29 // 28 // G4PAIySection.cc -- class implementation fi 30 // G4PAIySection.cc -- class implementation file 29 // 31 // 30 // GEANT 4 class implementation file 32 // GEANT 4 class implementation file 31 // 33 // 32 // For information related to this code, pleas 34 // For information related to this code, please, contact 33 // the Geant4 Collaboration. 35 // the Geant4 Collaboration. 34 // 36 // 35 // R&D: Vladimir.Grichine@cern.ch 37 // R&D: Vladimir.Grichine@cern.ch 36 // 38 // 37 // History: 39 // History: 38 // 40 // 39 // 01.10.07, V.Ivanchenko create using V.Grich 41 // 01.10.07, V.Ivanchenko create using V.Grichine G4PAIxSection class 40 // 26.07.09, V.Ivanchenko added protection for 42 // 26.07.09, V.Ivanchenko added protection for mumerical exceptions for 41 // low-density materials 43 // low-density materials 42 // 21.11.10 V. Grichine bug fixed in Initialis 44 // 21.11.10 V. Grichine bug fixed in Initialise for reading sandia table from 43 // material. Warning: the table is 45 // material. Warning: the table is tuned for photo-effect not PAI model. 44 // 23.06.13 V.Grichine arrays->G4DataVectors << 45 // 46 // 46 47 47 #include "G4PAIySection.hh" 48 #include "G4PAIySection.hh" 48 49 49 #include "globals.hh" 50 #include "globals.hh" 50 #include "G4PhysicalConstants.hh" << 51 #include "G4SystemOfUnits.hh" << 52 #include "G4ios.hh" 51 #include "G4ios.hh" 53 #include "G4Poisson.hh" 52 #include "G4Poisson.hh" 54 #include "G4Material.hh" 53 #include "G4Material.hh" 55 #include "G4MaterialCutsCouple.hh" 54 #include "G4MaterialCutsCouple.hh" 56 #include "G4SandiaTable.hh" 55 #include "G4SandiaTable.hh" 57 #include "G4Exp.hh" << 58 #include "G4Log.hh" << 59 56 60 using namespace std; 57 using namespace std; 61 58 62 // Local class constants 59 // Local class constants 63 60 64 const G4double G4PAIySection::fDelta = 0.005; 61 const G4double G4PAIySection::fDelta = 0.005; // energy shift from interval border 65 const G4double G4PAIySection::fError = 0.005; 62 const G4double G4PAIySection::fError = 0.005; // error in lin-log approximation 66 63 67 const G4int G4PAIySection::fMaxSplineSize = 50 64 const G4int G4PAIySection::fMaxSplineSize = 500; // Max size of output spline 68 << 65 // arrays 69 66 70 ////////////////////////////////////////////// 67 ////////////////////////////////////////////////////////////////// 71 // 68 // 72 // Constructor 69 // Constructor 73 // 70 // 74 71 75 G4PAIySection::G4PAIySection() 72 G4PAIySection::G4PAIySection() 76 { 73 { 77 fSandia = nullptr; << 74 fSandia = 0; 78 fDensity = fElectronDensity = fNormalization 75 fDensity = fElectronDensity = fNormalizationCof = fLowEnergyCof = 0.0; 79 fIntervalNumber = fSplineNumber = 0; 76 fIntervalNumber = fSplineNumber = 0; 80 fVerbose = 0; 77 fVerbose = 0; 81 << 78 for(G4int i=0; i<500; ++i) { 82 betaBohr = fine_structure_const; << 79 fSplineEnergy[i] = 0.0; 83 G4double cofBetaBohr = 4.0; << 80 fRePartDielectricConst[i] = 0.0; 84 G4double betaBohr2 = fine_structure_const*fi << 81 fImPartDielectricConst[i] = 0.0; 85 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; << 82 fIntegralTerm[i] = 0.0; 86 << 83 fDifPAIySection[i] = 0.0; 87 fSplineEnergy = G4DataVector(fMaxSp << 84 fdNdxCerenkov[i] = 0.0; 88 fRePartDielectricConst = G4DataVector(fMaxSp << 85 fdNdxPlasmon[i] = 0.0; 89 fImPartDielectricConst = G4DataVector(fMaxSp << 86 fIntegralPAIySection[i] = 0.0; 90 fIntegralTerm = G4DataVector(fMaxSp << 87 fIntegralPAIdEdx[i] = 0.0; 91 fDifPAIySection = G4DataVector(fMaxSp << 88 fIntegralCerenkov[i] = 0.0; 92 fdNdxCerenkov = G4DataVector(fMaxSp << 89 fIntegralPlasmon[i] = 0.0; 93 fdNdxPlasmon = G4DataVector(fMaxSp << 90 for(G4int j=0; j<112; ++j) { fPAItable[i][j] = 0.0; } 94 fIntegralPAIySection = G4DataVector(fMaxSp << 95 fIntegralPAIdEdx = G4DataVector(fMaxSp << 96 fIntegralCerenkov = G4DataVector(fMaxSp << 97 fIntegralPlasmon = G4DataVector(fMaxSp << 98 << 99 for( G4int i = 0; i < 500; ++i ) << 100 { << 101 for( G4int j = 0; j < 112; ++j ) { fPAItab << 102 } 91 } 103 } 92 } 104 93 105 ////////////////////////////////////////////// 94 //////////////////////////////////////////////////////////////////////////// 106 // 95 // 107 // << 96 // Destructor 108 97 109 G4double G4PAIySection::GetLorentzFactor(G4int << 98 G4PAIySection::~G4PAIySection() 110 { << 99 {} 111 return fLorentzFactor[j]; << 112 } << 113 100 114 ////////////////////////////////////////////// 101 //////////////////////////////////////////////////////////////////////// 115 // 102 // 116 // Constructor with beta*gamma square value ca << 103 // Test Constructor with beta*gamma square value 117 104 118 void G4PAIySection::Initialize( const G4Materi 105 void G4PAIySection::Initialize( const G4Material* material, 119 G4double maxEn << 106 G4double maxEnergyTransfer, 120 G4double betaG << 107 G4double betaGammaSq) 121 G4SandiaTable* << 122 { 108 { 123 if(fVerbose > 0) << 124 { << 125 G4cout<<G4endl; << 126 G4cout<<"G4PAIySection::Initialize(...,G4S << 127 G4cout<<G4endl; << 128 } << 129 G4int i, j; 109 G4int i, j; 130 << 110 G4double energy; 131 fSandia = sandia; << 111 // fVerbose = 1; 132 fIntervalNumber = sandia->GetMaxInterval(); << 133 fDensity = material->GetDensity(); 112 fDensity = material->GetDensity(); 134 fElectronDensity = material->GetElectronDens 113 fElectronDensity = material->GetElectronDensity(); >> 114 //G4int numberOfElements = material->GetNumberOfElements(); 135 115 136 // fIntervalNumber--; << 116 fSandia = material->GetSandiaTable(); 137 117 138 if( fVerbose > 0 ) << 118 fIntervalNumber = fSandia->GetMaxInterval(); 139 { << 119 140 G4cout<<"fDensity = "<<fDensity<<"\t"<<fEl << 120 fIntervalNumber--; 141 <<fIntervalNumber<< " (beta*gamma)^2 << 142 } << 143 fEnergyInterval = G4DataVector(fIntervalNumb << 144 fA1 = G4DataVector(fIntervalNumb << 145 fA2 = G4DataVector(fIntervalNumb << 146 fA3 = G4DataVector(fIntervalNumb << 147 fA4 = G4DataVector(fIntervalNumb << 148 121 149 for( i = 1; i <= fIntervalNumber; ++i ) << 122 for( i = 1; i <= fIntervalNumber; i++ ) 150 { 123 { 151 if ( sandia->GetSandiaMatTablePAI(i-1,0) < << 124 energy = fSandia->GetSandiaMatTablePAI(i-1,0); //vmg 20.11.10 152 { << 125 153 fIntervalNumber--; << 126 if( energy >= maxEnergyTransfer || i > fIntervalNumber ) 154 continue; << 155 } << 156 if( ( sandia->GetSandiaMatTablePAI(i-1,0) << 157 || i >= fIntervalNumber ) << 158 { 127 { 159 fEnergyInterval[i] = maxEnergyTransfer; 128 fEnergyInterval[i] = maxEnergyTransfer; 160 fIntervalNumber = i; 129 fIntervalNumber = i; 161 break; 130 break; 162 } 131 } 163 fEnergyInterval[i] = sandia->GetSandiaMatT << 132 fEnergyInterval[i] = energy; 164 fA1[i] = sandia->GetSandiaMatT << 133 fA1[i] = fSandia->GetSandiaMatTablePAI(i-1,1); 165 fA2[i] = sandia->GetSandiaMatT << 134 fA2[i] = fSandia->GetSandiaMatTablePAI(i-1,2); 166 fA3[i] = sandia->GetSandiaMatT << 135 fA3[i] = fSandia->GetSandiaMatTablePAI(i-1,3); 167 fA4[i] = sandia->GetSandiaMatT << 136 fA4[i] = fSandia->GetSandiaMatTablePAI(i-1,4); 168 << 137 169 if( fVerbose > 0 ) { << 138 if( fVerbose > 0 && std::fabs( betaGammaSq - 8. ) < 0.4 ) 170 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 139 { 171 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4en << 140 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<" keV \t"<<fA1[i]<<"\t"<<fA2[i] <<"\t"<<fA3[i] <<"\t"<<fA4[i]<<G4endl; 172 } 141 } 173 } << 142 } 174 if( fVerbose > 0 ) { << 143 175 G4cout<<"last i = "<<i<<"; "<<"fIntervalNu << 144 176 <<fIntervalNumber<<G4endl; << 177 } << 178 if( fEnergyInterval[fIntervalNumber] != maxE 145 if( fEnergyInterval[fIntervalNumber] != maxEnergyTransfer ) 179 { 146 { 180 fIntervalNumber++; << 147 fIntervalNumber++; 181 fEnergyInterval[fIntervalNumber] = maxEn << 148 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; 182 } << 149 fA1[fIntervalNumber] = fA1[fIntervalNumber-1]; 183 if( fVerbose > 0 ) << 150 fA2[fIntervalNumber] = fA2[fIntervalNumber-1]; 184 { << 151 fA3[fIntervalNumber] = fA3[fIntervalNumber-1]; 185 for( i = 1; i <= fIntervalNumber; ++i ) << 152 fA4[fIntervalNumber] = fA4[fIntervalNumber-1]; 186 { << 187 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 188 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; << 189 } << 190 } << 191 if( fVerbose > 0 ) { << 192 G4cout<<"Now checking, if two borders are << 193 } 153 } 194 for( i = 1; i < fIntervalNumber; ++i ) << 154 >> 155 // Now checking, if two borders are too close together >> 156 for( i = 1; i < fIntervalNumber; i++ ) 195 { 157 { 196 if( fEnergyInterval[i+1]-fEnergyInterval[i << 158 // G4cout<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 197 1.5*fDelta*(fEnergyInterval[i+1]+fEne << 159 // <<fA3[i]<<"\t"<<fA4[i]<<G4endl; 198 else << 160 if(fEnergyInterval[i+1]-fEnergyInterval[i] < >> 161 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i])) 199 { 162 { 200 for( j = i; j < fIntervalNumber; j++ ) 163 for( j = i; j < fIntervalNumber; j++ ) 201 { 164 { 202 fEnergyInterval[j] = fEnergyInte << 165 fEnergyInterval[j] = fEnergyInterval[j+1]; 203 fA1[j] = fA1[j+1]; << 166 fA1[j] = fA1[j+1]; 204 fA2[j] = fA2[j+1]; << 167 fA2[j] = fA2[j+1]; 205 fA3[j] = fA3[j+1]; << 168 fA3[j] = fA3[j+1]; 206 fA4[j] = fA4[j+1]; << 169 fA4[j] = fA4[j+1]; 207 } 170 } 208 fIntervalNumber--; 171 fIntervalNumber--; >> 172 i--; 209 } 173 } 210 } 174 } 211 if( fVerbose > 0 ) << 175 if( fVerbose > 0 && std::fabs( betaGammaSq - 8. ) < 0.4 ) 212 { 176 { 213 for( i = 1; i <= fIntervalNumber; ++i ) << 177 G4cout<<"Sandia cofs in G4PAIySection::Initialize(), mat = "<<material->GetName()<<G4endl; 214 { << 178 G4cout<<"for bg2 = "<<betaGammaSq<<", Tmax = "<< maxEnergyTransfer/keV<<" keV"<<G4endl; 215 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 179 G4cout<<"energy \t"<<"a1 \t"<<"a2 \t"<<"a3 \t"<<"a4 \t"<<G4endl; 216 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; << 180 217 } << 181 for( j = 1; j < fIntervalNumber; j++ ) >> 182 { >> 183 G4cout<<j<<"\t"<<fEnergyInterval[j]/keV<<" keV \t"<<fA1[j]<<"\t"<<fA2[j] <<"\t"<<fA3[j] <<"\t"<<fA4[j]<<G4endl; >> 184 } 218 } 185 } 219 // Preparation of fSplineEnergy array corres << 220 186 221 ComputeLowEnergyCof(material); << 187 // Preparation of fSplineEnergy array corresponding to min ionisation, G~4 222 << 188 223 G4double betaGammaSqRef = 189 G4double betaGammaSqRef = 224 fLorentzFactor[fRefGammaNumber]*fLorentzFa << 190 fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1; 225 << 191 >> 192 ComputeLowEnergyCof(material); 226 NormShift(betaGammaSqRef); 193 NormShift(betaGammaSqRef); 227 SplainPAI(betaGammaSqRef); 194 SplainPAI(betaGammaSqRef); 228 195 229 // Preparation of integral PAI cross section << 196 // Preparation of integral PAI cross section for input betaGammaSq 230 197 231 for( i = 1; i <= fSplineNumber; ++i ) << 198 for( i = 1; i <= fSplineNumber; i++ ) 232 { 199 { 233 fDifPAIySection[i] = DifPAIySection(i,bet << 200 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq); 234 << 201 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 235 if( fVerbose > 0 ) G4cout<<i<<"; dNdxPAI << 202 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 236 } 203 } 237 IntegralPAIySection(); << 204 IntegralPAIySection(); >> 205 IntegralCerenkov(); >> 206 IntegralPlasmon(); 238 } 207 } 239 208 240 ////////////////////////////////////////////// 209 ///////////////////////////////////////////////////////////////////////// 241 // 210 // 242 // Compute low energy cof. It reduces PAI xsc 211 // Compute low energy cof. It reduces PAI xsc for Lorentz factors less than 4. 243 // 212 // 244 213 245 void G4PAIySection::ComputeLowEnergyCof(const 214 void G4PAIySection::ComputeLowEnergyCof(const G4Material* material) 246 { 215 { 247 G4int i, numberOfElements = (G4int)material- << 216 G4int i, numberOfElements = material->GetNumberOfElements(); 248 G4double sumZ = 0., sumCof = 0.; 217 G4double sumZ = 0., sumCof = 0.; 249 218 250 static const G4double p0 = 1.20923e+00; << 219 const G4double p0 = 1.20923e+00; 251 static const G4double p1 = 3.53256e-01; << 220 const G4double p1 = 3.53256e-01; 252 static const G4double p2 = -1.45052e-03; << 221 const G4double p2 = -1.45052e-03; 253 222 254 G4double* thisMaterialZ = new G4double[num 223 G4double* thisMaterialZ = new G4double[numberOfElements]; 255 G4double* thisMaterialCof = new G4double[num 224 G4double* thisMaterialCof = new G4double[numberOfElements]; 256 225 257 for( i = 0; i < numberOfElements; ++i ) << 226 for( i = 0; i < numberOfElements; i++ ) 258 { 227 { 259 thisMaterialZ[i] = material->GetElement(i) 228 thisMaterialZ[i] = material->GetElement(i)->GetZ(); 260 sumZ += thisMaterialZ[i]; 229 sumZ += thisMaterialZ[i]; 261 thisMaterialCof[i] = p0+p1*thisMaterialZ[i 230 thisMaterialCof[i] = p0+p1*thisMaterialZ[i]+p2*thisMaterialZ[i]*thisMaterialZ[i]; 262 } 231 } 263 for( i = 0; i < numberOfElements; ++i ) << 232 for( i = 0; i < numberOfElements; i++ ) 264 { 233 { 265 sumCof += thisMaterialCof[i]*thisMaterialZ 234 sumCof += thisMaterialCof[i]*thisMaterialZ[i]/sumZ; 266 } 235 } 267 fLowEnergyCof = sumCof; 236 fLowEnergyCof = sumCof; 268 delete [] thisMaterialZ; 237 delete [] thisMaterialZ; 269 delete [] thisMaterialCof; 238 delete [] thisMaterialCof; 270 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof 239 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof<<G4endl; 271 } 240 } 272 241 >> 242 >> 243 >> 244 273 ////////////////////////////////////////////// 245 ///////////////////////////////////////////////////////////////////////// 274 // 246 // 275 // General control function for class G4PAIySe 247 // General control function for class G4PAIySection 276 // 248 // 277 249 278 void G4PAIySection::InitPAI() 250 void G4PAIySection::InitPAI() 279 { 251 { 280 G4int i; 252 G4int i; 281 G4double betaGammaSq = fLorentzFactor[fRefG 253 G4double betaGammaSq = fLorentzFactor[fRefGammaNumber]* 282 fLorentzFactor[fRefG 254 fLorentzFactor[fRefGammaNumber] - 1; 283 255 284 // Preparation of integral PAI cross sectio 256 // Preparation of integral PAI cross section for reference gamma 285 257 286 NormShift(betaGammaSq); 258 NormShift(betaGammaSq); 287 SplainPAI(betaGammaSq); 259 SplainPAI(betaGammaSq); 288 260 289 IntegralPAIySection(); 261 IntegralPAIySection(); 290 IntegralCerenkov(); 262 IntegralCerenkov(); 291 IntegralPlasmon(); 263 IntegralPlasmon(); 292 264 293 for( i = 0; i<= fSplineNumber; ++i) << 265 for(i = 0; i<=fSplineNumber; i++) 294 { 266 { 295 fPAItable[i][fRefGammaNumber] = fIntegral << 267 fPAItable[i][fRefGammaNumber] = fIntegralPAIySection[i]; 296 << 268 if(i != 0) 297 if(i != 0) fPAItable[i][0] = fSplineEner << 269 { >> 270 fPAItable[i][0] = fSplineEnergy[i]; >> 271 } 298 } 272 } 299 fPAItable[0][0] = fSplineNumber; 273 fPAItable[0][0] = fSplineNumber; 300 274 301 for( G4int j = 1; j < 112; ++j) // fo << 275 for(G4int j = 1; j < 112; j++) // for other gammas 302 { 276 { 303 if( j == fRefGammaNumber ) continue; 277 if( j == fRefGammaNumber ) continue; 304 278 305 betaGammaSq = fLorentzFactor[j]*fLorentz 279 betaGammaSq = fLorentzFactor[j]*fLorentzFactor[j] - 1; 306 280 307 for(i = 1; i <= fSplineNumber; ++i) << 281 for(i = 1; i <= fSplineNumber; i++) 308 { 282 { 309 fDifPAIySection[i] = DifPAIySection(i 283 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq); 310 fdNdxCerenkov[i] = PAIdNdxCerenkov( 284 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 311 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 285 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 312 } 286 } 313 IntegralPAIySection(); 287 IntegralPAIySection(); 314 IntegralCerenkov(); 288 IntegralCerenkov(); 315 IntegralPlasmon(); 289 IntegralPlasmon(); 316 290 317 for(i = 0; i <= fSplineNumber; ++i) << 291 for(i = 0; i <= fSplineNumber; i++) 318 { 292 { 319 fPAItable[i][j] = fIntegralPAIySection << 293 fPAItable[i][j] = fIntegralPAIySection[i]; 320 } 294 } 321 } 295 } >> 296 322 } 297 } 323 298 324 ////////////////////////////////////////////// 299 /////////////////////////////////////////////////////////////////////// 325 // 300 // 326 // Shifting from borders to intervals Creation 301 // Shifting from borders to intervals Creation of first energy points 327 // 302 // 328 303 329 void G4PAIySection::NormShift(G4double betaGam 304 void G4PAIySection::NormShift(G4double betaGammaSq) 330 { 305 { 331 G4int i, j; 306 G4int i, j; 332 307 333 for( i = 1; i <= fIntervalNumber-1; ++i) << 308 for( i = 1; i <= fIntervalNumber-1; i++ ) 334 { 309 { 335 for( j = 1; j <= 2; ++j) << 310 for( j = 1; j <= 2; j++ ) 336 { 311 { 337 fSplineNumber = (i-1)*2 + j; 312 fSplineNumber = (i-1)*2 + j; 338 313 339 if( j == 1 ) fSplineEnergy[fSplineNumber 314 if( j == 1 ) fSplineEnergy[fSplineNumber] = fEnergyInterval[i ]*(1+fDelta); 340 else fSplineEnergy[fSplineNumber 315 else fSplineEnergy[fSplineNumber] = fEnergyInterval[i+1]*(1-fDelta); 341 // G4cout<<"cn = "<<fSplineNumber<<"; 316 // G4cout<<"cn = "<<fSplineNumber<<"; "<<"energy = " 342 // <<fSplineEnergy[fSplineNumber]<<G4en 317 // <<fSplineEnergy[fSplineNumber]<<G4endl; 343 } 318 } 344 } 319 } 345 fIntegralTerm[1]=RutherfordIntegral(1,fEnerg 320 fIntegralTerm[1]=RutherfordIntegral(1,fEnergyInterval[1],fSplineEnergy[1]); 346 321 347 j = 1; 322 j = 1; 348 323 349 for(i=2;i<=fSplineNumber;++i) << 324 for(i=2;i<=fSplineNumber;i++) 350 { 325 { 351 if(fSplineEnergy[i]<fEnergyInterval[j+1]) 326 if(fSplineEnergy[i]<fEnergyInterval[j+1]) 352 { 327 { 353 fIntegralTerm[i] = fIntegralTerm[i-1] 328 fIntegralTerm[i] = fIntegralTerm[i-1] + 354 RutherfordIntegral << 329 RutherfordIntegral(j,fSplineEnergy[i-1], 355 330 fSplineEnergy[i] ); 356 } 331 } 357 else 332 else 358 { 333 { 359 G4double x = RutherfordIntegral(j,fSpli 334 G4double x = RutherfordIntegral(j,fSplineEnergy[i-1], 360 fEn 335 fEnergyInterval[j+1] ); 361 j++; 336 j++; 362 fIntegralTerm[i] = fIntegralTerm[i-1] 337 fIntegralTerm[i] = fIntegralTerm[i-1] + x + 363 RutherfordIntegral << 338 RutherfordIntegral(j,fEnergyInterval[j], 364 339 fSplineEnergy[i] ); 365 } 340 } 366 // G4cout<<i<<"\t"<<fSplineEnergy[i]<<"\t" 341 // G4cout<<i<<"\t"<<fSplineEnergy[i]<<"\t"<<fIntegralTerm[i]<<"\n"<<G4endl; 367 } 342 } 368 static const G4double nfactor = << 343 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine_structure_const/electron_mass_c2; 369 2*pi*pi*hbarc*hbarc*fine_structure_const/e << 344 fNormalizationCof *= fElectronDensity/fIntegralTerm[fSplineNumber]; 370 fNormalizationCof = nfactor*fElectronDensity << 371 345 372 // G4cout<<"fNormalizationCof = "<<fNormaliz 346 // G4cout<<"fNormalizationCof = "<<fNormalizationCof<<G4endl; 373 347 374 // Calculation of PAI differrential cross-se << 348 // Calculation of PAI differrential cross-section (1/(keV*cm)) 375 // in the energy points near borders of ener << 349 // in the energy points near borders of energy intervals 376 350 377 for(G4int k=1; k<=fIntervalNumber-1; ++k) << 351 for(G4int k=1;k<=fIntervalNumber-1;k++) 378 { 352 { 379 for(j=1; j<=2; ++j) << 353 for(j=1;j<=2;j++) 380 { 354 { 381 i = (k-1)*2 + j; 355 i = (k-1)*2 + j; 382 fImPartDielectricConst[i] = fNormaliz 356 fImPartDielectricConst[i] = fNormalizationCof* 383 ImPartDie << 357 ImPartDielectricConst(k,fSplineEnergy[i]); 384 fRePartDielectricConst[i] = fNormaliz 358 fRePartDielectricConst[i] = fNormalizationCof* 385 RePartDie << 359 RePartDielectricConst(fSplineEnergy[i]); 386 fIntegralTerm[i] *= fNormalizationCof 360 fIntegralTerm[i] *= fNormalizationCof; 387 361 388 fDifPAIySection[i] = DifPAIySection(i 362 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq); 389 fdNdxCerenkov[i] = PAIdNdxCerenkov( 363 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 390 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 364 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 391 } 365 } 392 } 366 } 393 367 394 } // end of NormShift 368 } // end of NormShift 395 369 396 ////////////////////////////////////////////// 370 ///////////////////////////////////////////////////////////////////////// 397 // 371 // 398 // Creation of new energy points as geometrica 372 // Creation of new energy points as geometrical mean of existing 399 // one, calculation PAI_cs for them, while the 373 // one, calculation PAI_cs for them, while the error of logarithmic 400 // linear approximation would be smaller than 374 // linear approximation would be smaller than 'fError' 401 375 402 void G4PAIySection::SplainPAI(G4double betaGam 376 void G4PAIySection::SplainPAI(G4double betaGammaSq) 403 { 377 { 404 G4int k = 1; 378 G4int k = 1; 405 G4int i = 1; 379 G4int i = 1; 406 380 407 while ( (i < fSplineNumber) && (fSplineNumb 381 while ( (i < fSplineNumber) && (fSplineNumber < fMaxSplineSize-1) ) 408 { 382 { 409 if(fSplineEnergy[i+1] > fEnergyInterval[ 383 if(fSplineEnergy[i+1] > fEnergyInterval[k+1]) 410 { 384 { 411 k++; // Here next energy point is 385 k++; // Here next energy point is in next energy interval 412 ++i; << 386 i++; 413 continue; 387 continue; 414 } 388 } 415 // Shifting of arrayes for inserting the << 389 // Shifting of arrayes for inserting the geometrical 416 // average of 'i' and 'i+1' energy point << 390 // average of 'i' and 'i+1' energy points to 'i+1' place 417 fSplineNumber++; 391 fSplineNumber++; 418 392 419 for(G4int j = fSplineNumber; j >= i+2; j 393 for(G4int j = fSplineNumber; j >= i+2; j-- ) 420 { 394 { 421 fSplineEnergy[j] = fSplineEn 395 fSplineEnergy[j] = fSplineEnergy[j-1]; 422 fImPartDielectricConst[j] = fImPartDi 396 fImPartDielectricConst[j] = fImPartDielectricConst[j-1]; 423 fRePartDielectricConst[j] = fRePartDi << 397 fRePartDielectricConst[j] = fRePartDielectricConst[j-1]; 424 fIntegralTerm[j] = fIntegral << 398 fIntegralTerm[j] = fIntegralTerm[j-1]; 425 399 426 fDifPAIySection[j] = fDifPAIySection[ << 400 fDifPAIySection[j] = fDifPAIySection[j-1]; 427 fdNdxCerenkov[j] = fdNdxCerenkov[j- 401 fdNdxCerenkov[j] = fdNdxCerenkov[j-1]; 428 fdNdxPlasmon[j] = fdNdxPlasmon[j-1 402 fdNdxPlasmon[j] = fdNdxPlasmon[j-1]; 429 } 403 } 430 G4double x1 = fSplineEnergy[i]; 404 G4double x1 = fSplineEnergy[i]; 431 G4double x2 = fSplineEnergy[i+1]; 405 G4double x2 = fSplineEnergy[i+1]; 432 G4double yy1 = fDifPAIySection[i]; 406 G4double yy1 = fDifPAIySection[i]; 433 G4double y2 = fDifPAIySection[i+1]; 407 G4double y2 = fDifPAIySection[i+1]; 434 408 435 G4double en1 = sqrt(x1*x2); 409 G4double en1 = sqrt(x1*x2); 436 fSplineEnergy[i+1] = en1; 410 fSplineEnergy[i+1] = en1; 437 411 438 // Calculation of logarithmic linear app << 412 // Calculation of logarithmic linear approximation 439 // in this (enr) energy point, which num << 413 // in this (enr) energy point, which number is 'i+1' now 440 414 441 G4double a = log10(y2/yy1)/log10(x2/x1); 415 G4double a = log10(y2/yy1)/log10(x2/x1); 442 G4double b = log10(yy1) - a*log10(x1); 416 G4double b = log10(yy1) - a*log10(x1); 443 G4double y = a*log10(en1) + b; 417 G4double y = a*log10(en1) + b; 444 y = pow(10.,y); 418 y = pow(10.,y); 445 419 446 // Calculation of the PAI dif. cross-sec << 420 // Calculation of the PAI dif. cross-section at this point 447 421 448 fImPartDielectricConst[i+1] = fNormaliza 422 fImPartDielectricConst[i+1] = fNormalizationCof* 449 ImPartDiel << 423 ImPartDielectricConst(k,fSplineEnergy[i+1]); 450 fRePartDielectricConst[i+1] = fNormaliza 424 fRePartDielectricConst[i+1] = fNormalizationCof* 451 RePartDiel << 425 RePartDielectricConst(fSplineEnergy[i+1]); 452 fIntegralTerm[i+1] = fIntegralTerm[i] + 426 fIntegralTerm[i+1] = fIntegralTerm[i] + fNormalizationCof* 453 RutherfordIntegral( << 427 RutherfordIntegral(k,fSplineEnergy[i], 454 428 fSplineEnergy[i+1]); 455 429 456 fDifPAIySection[i+1] = DifPAIySection(i+ 430 fDifPAIySection[i+1] = DifPAIySection(i+1,betaGammaSq); 457 fdNdxCerenkov[i+1] = PAIdNdxCerenkov(i 431 fdNdxCerenkov[i+1] = PAIdNdxCerenkov(i+1,betaGammaSq); 458 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i+ 432 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i+1,betaGammaSq); 459 433 460 // Condition for next divisi << 434 // Condition for next division of this segment or to pass 461 // to higher energies << 435 // to higher energies 462 436 463 G4double x = 2*(fDifPAIySection[i+1] - y 437 G4double x = 2*(fDifPAIySection[i+1] - y)/(fDifPAIySection[i+1] + y); 464 438 465 G4double delta = 2.*(fSplineEnergy[i+1]- << 466 /(fSplineEnergy[i+1]+fSplineEnergy[i]) << 467 << 468 if( x < 0 ) 439 if( x < 0 ) 469 { 440 { 470 x = -x; << 441 x = -x; 471 } 442 } 472 if( x > fError && fSplineNumber < fMaxSp << 443 if( x > fError && fSplineNumber < fMaxSplineSize-1 ) 473 { 444 { 474 continue; // next division << 445 continue; // next division 475 } 446 } 476 i += 2; // pass to next segment 447 i += 2; // pass to next segment 477 448 478 // Loop checking, 03-Aug-2015, Vladimir << 479 } // close 'while' 449 } // close 'while' 480 450 481 } // end of SplainPAI 451 } // end of SplainPAI 482 452 483 453 484 ////////////////////////////////////////////// 454 //////////////////////////////////////////////////////////////////// 485 // 455 // 486 // Integration over electrons that could be co 456 // Integration over electrons that could be considered 487 // quasi-free at energy transfer of interest 457 // quasi-free at energy transfer of interest 488 458 489 G4double G4PAIySection::RutherfordIntegral( G4 459 G4double G4PAIySection::RutherfordIntegral( G4int k, 490 G4 << 460 G4double x1, 491 << 461 G4double x2 ) 492 { 462 { 493 G4double c1, c2, c3; 463 G4double c1, c2, c3; 494 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<< << 464 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl; 495 G4double x12 = x1*x2; << 465 c1 = (x2 - x1)/x1/x2; 496 c1 = (x2 - x1)/x12; << 466 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2; 497 c2 = (x2 - x1)*(x2 + x1)/(x12*x12); << 467 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 498 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/(x12 << 499 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "< 468 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "<<c2<<"; "<<"c3 = "<<c3<<G4endl; 500 469 501 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3 470 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3[k]*c2/2 + fA4[k]*c3/3; 502 471 503 } // end of RutherfordIntegral 472 } // end of RutherfordIntegral 504 473 505 474 506 ////////////////////////////////////////////// 475 ///////////////////////////////////////////////////////////////// 507 // 476 // 508 // Imaginary part of dielectric constant 477 // Imaginary part of dielectric constant 509 // (G4int k - interval number, G4double en1 - 478 // (G4int k - interval number, G4double en1 - energy point) 510 479 511 G4double G4PAIySection::ImPartDielectricConst( << 480 G4double G4PAIySection::ImPartDielectricConst( G4int k , >> 481 G4double energy1 ) 512 { 482 { 513 G4double energy2,energy3,energy4,result; 483 G4double energy2,energy3,energy4,result; 514 484 515 energy2 = energy1*energy1; 485 energy2 = energy1*energy1; 516 energy3 = energy2*energy1; 486 energy3 = energy2*energy1; 517 energy4 = energy3*energy1; 487 energy4 = energy3*energy1; 518 488 519 result = fA1[k]/energy1+fA2[k]/energy2+fA3[ 489 result = fA1[k]/energy1+fA2[k]/energy2+fA3[k]/energy3+fA4[k]/energy4; 520 result *=hbarc/energy1; 490 result *=hbarc/energy1; 521 491 522 return result; 492 return result; 523 493 524 } // end of ImPartDielectricConst 494 } // end of ImPartDielectricConst 525 495 526 496 527 ////////////////////////////////////////////// 497 ////////////////////////////////////////////////////////////////////////////// 528 // 498 // 529 // Real part of dielectric constant minus unit 499 // Real part of dielectric constant minus unit: epsilon_1 - 1 530 // (G4double enb - energy point) 500 // (G4double enb - energy point) 531 // 501 // 532 502 533 G4double G4PAIySection::RePartDielectricConst( 503 G4double G4PAIySection::RePartDielectricConst(G4double enb) 534 { 504 { 535 G4double x0, x02, x03, x04, x05, x1, x2, xx 505 G4double x0, x02, x03, x04, x05, x1, x2, xx1 ,xx2 , xx12, 536 c1, c2, c3, cof1, cof2, xln1, xln2 506 c1, c2, c3, cof1, cof2, xln1, xln2, xln3, result; 537 507 538 x0 = enb; 508 x0 = enb; 539 result = 0; 509 result = 0; 540 510 541 for(G4int i=1;i<=fIntervalNumber-1;++i) << 511 for(G4int i=1;i<=fIntervalNumber-1;i++) 542 { 512 { 543 x1 = fEnergyInterval[i]; 513 x1 = fEnergyInterval[i]; 544 x2 = fEnergyInterval[i+1]; 514 x2 = fEnergyInterval[i+1]; 545 xx1 = x1 - x0; 515 xx1 = x1 - x0; 546 xx2 = x2 - x0; 516 xx2 = x2 - x0; 547 xx12 = xx2/xx1; 517 xx12 = xx2/xx1; 548 518 549 if(xx12<0.) << 519 if(xx12<0) 550 { 520 { 551 xx12 = -xx12; << 521 xx12 = -xx12; 552 } 522 } 553 xln1 = log(x2/x1); 523 xln1 = log(x2/x1); 554 xln2 = log(xx12); 524 xln2 = log(xx12); 555 xln3 = log((x2 + x0)/(x1 + x0)); 525 xln3 = log((x2 + x0)/(x1 + x0)); 556 x02 = x0*x0; 526 x02 = x0*x0; 557 x03 = x02*x0; 527 x03 = x02*x0; 558 x04 = x03*x0; 528 x04 = x03*x0; 559 x05 = x04*x0; 529 x05 = x04*x0; 560 G4double x12 = x1*x2; << 530 c1 = (x2 - x1)/x1/x2; 561 c1 = (x2 - x1)/x12; << 531 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2; 562 c2 = (x2 - x1)*(x2 +x1)/(x12*x12); << 532 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 563 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/( << 564 533 565 result -= (fA1[i]/x02 + fA3[i]/x04)*xln1 534 result -= (fA1[i]/x02 + fA3[i]/x04)*xln1; 566 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 535 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 567 result -= fA3[i]*c2/2/x02; 536 result -= fA3[i]*c2/2/x02; 568 result -= fA4[i]*c3/3/x02; 537 result -= fA4[i]*c3/3/x02; 569 538 570 cof1 = fA1[i]/x02 + fA3[i]/x04; 539 cof1 = fA1[i]/x02 + fA3[i]/x04; 571 cof2 = fA2[i]/x03 + fA4[i]/x05; 540 cof2 = fA2[i]/x03 + fA4[i]/x05; 572 541 573 result += 0.5*(cof1 +cof2)*xln2; 542 result += 0.5*(cof1 +cof2)*xln2; 574 result += 0.5*(cof1 - cof2)*xln3; 543 result += 0.5*(cof1 - cof2)*xln3; 575 } 544 } 576 result *= 2*hbarc/pi; 545 result *= 2*hbarc/pi; 577 546 578 return result; 547 return result; 579 548 580 } // end of RePartDielectricConst 549 } // end of RePartDielectricConst 581 550 582 ////////////////////////////////////////////// 551 ////////////////////////////////////////////////////////////////////// 583 // 552 // 584 // PAI differential cross-section in terms of 553 // PAI differential cross-section in terms of 585 // simplified Allison's equation 554 // simplified Allison's equation 586 // 555 // 587 556 588 G4double G4PAIySection::DifPAIySection( G4int 557 G4double G4PAIySection::DifPAIySection( G4int i , 589 G4doub 558 G4double betaGammaSq ) 590 { 559 { 591 G4double beta, be2,cof,x1,x2,x3,x4,x5,x6,x7 << 560 G4double beta, be2,cof,x1,x2,x3,x4,x5,x6,x7,x8,result; >> 561 //G4double beta, be4; >> 562 //G4double be4; >> 563 G4double betaBohr = fine_structure_const; >> 564 // G4double betaBohr2 = fine_structure_const*fine_structure_const; >> 565 // G4double betaBohr4 = betaBohr2*betaBohr2*4.0; 592 be2 = betaGammaSq/(1 + betaGammaSq); 566 be2 = betaGammaSq/(1 + betaGammaSq); 593 beta = std::sqrt(be2); << 567 //be4 = be2*be2; >> 568 beta = sqrt(be2); 594 cof = 1; 569 cof = 1; 595 x1 = log(2*electron_mass_c2/fSplineEnergy[i 570 x1 = log(2*electron_mass_c2/fSplineEnergy[i]); 596 571 597 if( betaGammaSq < 0.01 ) x2 = log(be2); 572 if( betaGammaSq < 0.01 ) x2 = log(be2); 598 else 573 else 599 { 574 { 600 x2 = -log( (1/betaGammaSq - fRePartDielec 575 x2 = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 601 (1/betaGammaSq - fRePartDielec << 576 (1/betaGammaSq - fRePartDielectricConst[i]) + 602 fImPartDielectricConst[i]*fImP << 577 fImPartDielectricConst[i]*fImPartDielectricConst[i] )/2; 603 } 578 } 604 if( fImPartDielectricConst[i] == 0.0 ||beta 579 if( fImPartDielectricConst[i] == 0.0 ||betaGammaSq < 0.01 ) 605 { 580 { 606 x6=0; 581 x6=0; 607 } 582 } 608 else 583 else 609 { 584 { 610 x3 = -fRePartDielectricConst[i] + 1/betaG 585 x3 = -fRePartDielectricConst[i] + 1/betaGammaSq; 611 x5 = -1 - fRePartDielectricConst[i] + 586 x5 = -1 - fRePartDielectricConst[i] + 612 be2*((1 +fRePartDielectricConst[i])* 587 be2*((1 +fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 613 fImPartDielectricConst[i]*fImPartDie << 588 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 614 589 615 x7 = std::atan2(fImPartDielectricConst[i] << 590 x7 = atan2(fImPartDielectricConst[i],x3); 616 x6 = x5 * x7; 591 x6 = x5 * x7; 617 } 592 } >> 593 // if(fImPartDielectricConst[i] == 0) x6 = 0; >> 594 618 x4 = ((x1 + x2)*fImPartDielectricConst[i] + 595 x4 = ((x1 + x2)*fImPartDielectricConst[i] + x6)/hbarc; >> 596 // if( x4 < 0.0 ) x4 = 0.0; 619 x8 = (1 + fRePartDielectricConst[i])*(1 + f 597 x8 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 620 fImPartDielectricConst[i]*fImPartDiele 598 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 621 599 622 result = (x4 + cof*fIntegralTerm[i]/fSpline 600 result = (x4 + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i]); 623 result = std::max(result, 1.0e-8); << 601 if(result < 1.0e-8) result = 1.0e-8; 624 result *= fine_structure_const/(be2*pi); << 602 result *= fine_structure_const/be2/pi; 625 // low energy correction 603 // low energy correction 626 604 627 G4double lowCof = fLowEnergyCof; // 6.0 ; / 605 G4double lowCof = fLowEnergyCof; // 6.0 ; // Ar ~ 4.; -> fLowCof as f(Z1,Z2)? 628 606 629 result *= (1 - std::exp(-beta/(betaBohr*low << 607 result *= (1 - exp(-beta/betaBohr/lowCof)); >> 608 >> 609 // result *= (1-exp(-beta/betaBohr))*(1-exp(-beta/betaBohr)); >> 610 // result *= (1-exp(-be2/betaBohr2)); >> 611 // result *= (1-exp(-be4/betaBohr4)); >> 612 // if(fDensity >= 0.1) 630 if(x8 > 0.) 613 if(x8 > 0.) 631 { 614 { 632 result /= x8; << 615 result /= x8; 633 } 616 } 634 return result; 617 return result; 635 618 636 } // end of DifPAIySection 619 } // end of DifPAIySection 637 620 638 ////////////////////////////////////////////// 621 ////////////////////////////////////////////////////////////////////////// 639 // 622 // 640 // Calculation od dN/dx of collisions with cre 623 // Calculation od dN/dx of collisions with creation of Cerenkov pseudo-photons 641 624 642 G4double G4PAIySection::PAIdNdxCerenkov( G4int << 625 G4double G4PAIySection::PAIdNdxCerenkov( G4int i , >> 626 G4double betaGammaSq ) 643 { 627 { 644 G4double logarithm, x3, x5, argument, modul 628 G4double logarithm, x3, x5, argument, modul2, dNdxC; 645 G4double be2, be4; << 629 G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr; >> 630 >> 631 //G4double cof = 1.0; >> 632 cofBetaBohr = 4.0; >> 633 betaBohr2 = fine_structure_const*fine_structure_const; >> 634 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 646 635 647 be2 = betaGammaSq/(1 + betaGammaSq); 636 be2 = betaGammaSq/(1 + betaGammaSq); 648 be4 = be2*be2; 637 be4 = be2*be2; 649 638 650 if( betaGammaSq < 0.01 ) logarithm = log(1. 639 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq); // 0.0; 651 else 640 else 652 { 641 { 653 logarithm = -std::log( (1/betaGammaSq - f << 642 logarithm = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 654 (1/betaGammaSq - fRePa << 643 (1/betaGammaSq - fRePartDielectricConst[i]) + 655 fImPartDielectricConst << 644 fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5; 656 logarithm += std::log(1+1.0/betaGammaSq); << 645 logarithm += log(1+1.0/betaGammaSq); 657 } 646 } 658 647 659 if( fImPartDielectricConst[i] == 0.0 || bet 648 if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 ) 660 { 649 { 661 argument = 0.0; 650 argument = 0.0; 662 } 651 } 663 else 652 else 664 { 653 { 665 x3 = -fRePartDielectricConst[i] + 1.0/bet 654 x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq; 666 x5 = -1.0 - fRePartDielectricConst[i] + 655 x5 = -1.0 - fRePartDielectricConst[i] + 667 be2*((1.0 +fRePartDielectricConst[i] 656 be2*((1.0 +fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + 668 fImPartDielectricConst[i]*fImPartDie << 657 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 669 if( x3 == 0.0 ) argument = 0.5*pi; 658 if( x3 == 0.0 ) argument = 0.5*pi; 670 else argument = std::atan2(fIm << 659 else argument = atan2(fImPartDielectricConst[i],x3); 671 argument *= x5 ; 660 argument *= x5 ; 672 } 661 } 673 dNdxC = ( logarithm*fImPartDielectricConst[ 662 dNdxC = ( logarithm*fImPartDielectricConst[i] + argument )/hbarc; 674 663 675 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 664 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 676 665 677 dNdxC *= fine_structure_const/be2/pi; 666 dNdxC *= fine_structure_const/be2/pi; 678 667 679 dNdxC *= (1 - std::exp(-be4/betaBohr4)); << 668 dNdxC *= (1-exp(-be4/betaBohr4)); 680 669 >> 670 // if(fDensity >= 0.1) >> 671 // { 681 modul2 = (1.0 + fRePartDielectricConst[i])* 672 modul2 = (1.0 + fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + 682 fImPartDielectricConst[i]* 673 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 683 if(modul2 > 0.) 674 if(modul2 > 0.) 684 { 675 { 685 dNdxC /= modul2; 676 dNdxC /= modul2; 686 } 677 } 687 return dNdxC; 678 return dNdxC; 688 679 689 } // end of PAIdNdxCerenkov 680 } // end of PAIdNdxCerenkov 690 681 691 ////////////////////////////////////////////// 682 ////////////////////////////////////////////////////////////////////////// 692 // 683 // 693 // Calculation od dN/dx of collisions with cre 684 // Calculation od dN/dx of collisions with creation of longitudinal EM 694 // excitations (plasmons, delta-electrons) 685 // excitations (plasmons, delta-electrons) 695 686 696 G4double G4PAIySection::PAIdNdxPlasmon( G4int << 687 G4double G4PAIySection::PAIdNdxPlasmon( G4int i , >> 688 G4double betaGammaSq ) 697 { 689 { 698 G4double cof, resonance, modul2, dNdxP; 690 G4double cof, resonance, modul2, dNdxP; 699 G4double be2, be4; << 691 G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr; 700 692 701 cof = 1; 693 cof = 1; >> 694 cofBetaBohr = 4.0; >> 695 betaBohr2 = fine_structure_const*fine_structure_const; >> 696 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 702 697 703 be2 = betaGammaSq/(1 + betaGammaSq); 698 be2 = betaGammaSq/(1 + betaGammaSq); 704 be4 = be2*be2; 699 be4 = be2*be2; 705 700 706 resonance = std::log(2*electron_mass_c2*be2 << 701 resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]); 707 resonance *= fImPartDielectricConst[i]/hbar 702 resonance *= fImPartDielectricConst[i]/hbarc; 708 703 >> 704 709 dNdxP = ( resonance + cof*fIntegralTerm[i]/ 705 dNdxP = ( resonance + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i] ); 710 706 711 dNdxP = std::max(dNdxP, 1.0e-8); << 707 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 712 708 713 dNdxP *= fine_structure_const/be2/pi; 709 dNdxP *= fine_structure_const/be2/pi; 714 dNdxP *= (1 - std::exp(-be4/betaBohr4)); << 710 dNdxP *= (1-exp(-be4/betaBohr4)); 715 711 >> 712 // if( fDensity >= 0.1 ) >> 713 // { 716 modul2 = (1 + fRePartDielectricConst[i])*(1 714 modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 717 fImPartDielectricConst[i]*fImPartDielectr 715 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 718 if(modul2 > 0.) 716 if(modul2 > 0.) 719 { 717 { 720 dNdxP /= modul2; 718 dNdxP /= modul2; 721 } 719 } 722 return dNdxP; 720 return dNdxP; 723 721 724 } // end of PAIdNdxPlasmon 722 } // end of PAIdNdxPlasmon 725 723 726 ////////////////////////////////////////////// 724 //////////////////////////////////////////////////////////////////////// 727 // 725 // 728 // Calculation of the PAI integral cross-secti 726 // Calculation of the PAI integral cross-section 729 // fIntegralPAIySection[1] = specific primary 727 // fIntegralPAIySection[1] = specific primary ionisation, 1/cm 730 // and fIntegralPAIySection[0] = mean energy l 728 // and fIntegralPAIySection[0] = mean energy loss per cm in keV/cm 731 729 732 void G4PAIySection::IntegralPAIySection() 730 void G4PAIySection::IntegralPAIySection() 733 { 731 { 734 fIntegralPAIySection[fSplineNumber] = 0; 732 fIntegralPAIySection[fSplineNumber] = 0; 735 fIntegralPAIdEdx[fSplineNumber] = 0; 733 fIntegralPAIdEdx[fSplineNumber] = 0; 736 fIntegralPAIySection[0] = 0; 734 fIntegralPAIySection[0] = 0; 737 G4int k = fIntervalNumber -1; 735 G4int k = fIntervalNumber -1; 738 736 739 for(G4int i = fSplineNumber-1; i >= 1; i--) 737 for(G4int i = fSplineNumber-1; i >= 1; i--) 740 { 738 { 741 if(fSplineEnergy[i] >= fEnergyInterval[k]) 739 if(fSplineEnergy[i] >= fEnergyInterval[k]) 742 { 740 { 743 fIntegralPAIySection[i] = fIntegralPAIyS 741 fIntegralPAIySection[i] = fIntegralPAIySection[i+1] + SumOverInterval(i); 744 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i 742 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + SumOverIntervaldEdx(i); 745 } 743 } 746 else 744 else 747 { 745 { 748 fIntegralPAIySection[i] = fIntegralPAIyS 746 fIntegralPAIySection[i] = fIntegralPAIySection[i+1] + 749 SumOverBord << 747 SumOverBorder(i+1,fEnergyInterval[k]); 750 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i 748 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + 751 SumOverBord << 749 SumOverBorderdEdx(i+1,fEnergyInterval[k]); 752 k--; 750 k--; 753 } 751 } 754 } 752 } 755 } // end of IntegralPAIySection 753 } // end of IntegralPAIySection 756 754 757 ////////////////////////////////////////////// 755 //////////////////////////////////////////////////////////////////////// 758 // 756 // 759 // Calculation of the PAI Cerenkov integral cr 757 // Calculation of the PAI Cerenkov integral cross-section 760 // fIntegralCrenkov[1] = specific Crenkov ioni 758 // fIntegralCrenkov[1] = specific Crenkov ionisation, 1/cm 761 // and fIntegralCerenkov[0] = mean Cerenkov lo 759 // and fIntegralCerenkov[0] = mean Cerenkov loss per cm in keV/cm 762 760 763 void G4PAIySection::IntegralCerenkov() 761 void G4PAIySection::IntegralCerenkov() 764 { 762 { 765 G4int i, k; 763 G4int i, k; 766 fIntegralCerenkov[fSplineNumber] = 0; 764 fIntegralCerenkov[fSplineNumber] = 0; 767 fIntegralCerenkov[0] = 0; 765 fIntegralCerenkov[0] = 0; 768 k = fIntervalNumber -1; 766 k = fIntervalNumber -1; 769 767 770 for( i = fSplineNumber-1; i >= 1; i-- ) 768 for( i = fSplineNumber-1; i >= 1; i-- ) 771 { 769 { 772 if(fSplineEnergy[i] >= fEnergyInterval[k 770 if(fSplineEnergy[i] >= fEnergyInterval[k]) 773 { 771 { 774 fIntegralCerenkov[i] = fIntegralCerenk 772 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + SumOverInterCerenkov(i); 775 // G4cout<<"int: i = "<<i<<"; sumC = " << 773 // G4cout<<"int: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 776 } 774 } 777 else 775 else 778 { 776 { 779 fIntegralCerenkov[i] = fIntegralCerenk 777 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + 780 SumOverBord << 778 SumOverBordCerenkov(i+1,fEnergyInterval[k]); 781 k--; << 779 k--; 782 // G4cout<<"bord: i = "<<i<<"; sumC = << 780 // G4cout<<"bord: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 783 } 781 } 784 } 782 } 785 783 786 } // end of IntegralCerenkov 784 } // end of IntegralCerenkov 787 785 788 ////////////////////////////////////////////// 786 //////////////////////////////////////////////////////////////////////// 789 // 787 // 790 // Calculation of the PAI Plasmon integral cro 788 // Calculation of the PAI Plasmon integral cross-section 791 // fIntegralPlasmon[1] = splasmon primary ioni 789 // fIntegralPlasmon[1] = splasmon primary ionisation, 1/cm 792 // and fIntegralPlasmon[0] = mean plasmon loss 790 // and fIntegralPlasmon[0] = mean plasmon loss per cm in keV/cm 793 791 794 void G4PAIySection::IntegralPlasmon() 792 void G4PAIySection::IntegralPlasmon() 795 { 793 { 796 fIntegralPlasmon[fSplineNumber] = 0; 794 fIntegralPlasmon[fSplineNumber] = 0; 797 fIntegralPlasmon[0] = 0; 795 fIntegralPlasmon[0] = 0; 798 G4int k = fIntervalNumber -1; 796 G4int k = fIntervalNumber -1; 799 for(G4int i=fSplineNumber-1;i>=1;i--) 797 for(G4int i=fSplineNumber-1;i>=1;i--) 800 { 798 { 801 if(fSplineEnergy[i] >= fEnergyInterval[k 799 if(fSplineEnergy[i] >= fEnergyInterval[k]) 802 { 800 { 803 fIntegralPlasmon[i] = fIntegralPlasmon 801 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + SumOverInterPlasmon(i); 804 } 802 } 805 else 803 else 806 { 804 { 807 fIntegralPlasmon[i] = fIntegralPlasmon 805 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + 808 SumOverBord << 806 SumOverBordPlasmon(i+1,fEnergyInterval[k]); 809 k--; << 807 k--; 810 } 808 } 811 } 809 } >> 810 812 } // end of IntegralPlasmon 811 } // end of IntegralPlasmon 813 812 814 ////////////////////////////////////////////// 813 ////////////////////////////////////////////////////////////////////// 815 // 814 // 816 // Calculation the PAI integral cross-section 815 // Calculation the PAI integral cross-section inside 817 // of interval of continuous values of photo-i 816 // of interval of continuous values of photo-ionisation 818 // cross-section. Parameter 'i' is the number 817 // cross-section. Parameter 'i' is the number of interval. 819 818 820 G4double G4PAIySection::SumOverInterval( G4int 819 G4double G4PAIySection::SumOverInterval( G4int i ) 821 { 820 { 822 G4double x0,x1,y0,yy1,a,b,c,result; 821 G4double x0,x1,y0,yy1,a,b,c,result; 823 822 824 x0 = fSplineEnergy[i]; 823 x0 = fSplineEnergy[i]; 825 x1 = fSplineEnergy[i+1]; 824 x1 = fSplineEnergy[i+1]; 826 << 827 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 828 << 829 y0 = fDifPAIySection[i]; 825 y0 = fDifPAIySection[i]; 830 yy1 = fDifPAIySection[i+1]; 826 yy1 = fDifPAIySection[i+1]; 831 //G4cout << "## x0= " << x0 << " x1= " << x << 832 c = x1/x0; 827 c = x1/x0; 833 //G4cout << "c= " << c << " y0= " << y0 << << 834 a = log10(yy1/y0)/log10(c); 828 a = log10(yy1/y0)/log10(c); 835 //G4cout << "a= " << a << G4endl; << 829 // b = log10(y0) - a*log10(x0); 836 << 830 b = y0/pow(x0,a); 837 b = 0.0; << 838 if(a < 20.) b = y0/pow(x0,a); << 839 << 840 a += 1; 831 a += 1; 841 if(a == 0) 832 if(a == 0) 842 { 833 { 843 result = b*log(x1/x0); 834 result = b*log(x1/x0); 844 } 835 } 845 else 836 else 846 { 837 { 847 result = y0*(x1*pow(c,a-1) - x0)/a; 838 result = y0*(x1*pow(c,a-1) - x0)/a; 848 } 839 } 849 a++; 840 a++; 850 if(a == 0) 841 if(a == 0) 851 { 842 { 852 fIntegralPAIySection[0] += b*log(x1/x0); 843 fIntegralPAIySection[0] += b*log(x1/x0); 853 } 844 } 854 else 845 else 855 { 846 { 856 fIntegralPAIySection[0] += y0*(x1*x1*pow 847 fIntegralPAIySection[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 857 } 848 } 858 return result; 849 return result; 859 850 860 } // end of SumOverInterval 851 } // end of SumOverInterval 861 852 862 ///////////////////////////////// 853 ///////////////////////////////// 863 854 864 G4double G4PAIySection::SumOverIntervaldEdx( G 855 G4double G4PAIySection::SumOverIntervaldEdx( G4int i ) 865 { 856 { 866 G4double x0,x1,y0,yy1,a,b,c,result; 857 G4double x0,x1,y0,yy1,a,b,c,result; 867 858 868 x0 = fSplineEnergy[i]; 859 x0 = fSplineEnergy[i]; 869 x1 = fSplineEnergy[i+1]; 860 x1 = fSplineEnergy[i+1]; 870 << 871 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 872 << 873 y0 = fDifPAIySection[i]; 861 y0 = fDifPAIySection[i]; 874 yy1 = fDifPAIySection[i+1]; 862 yy1 = fDifPAIySection[i+1]; 875 c = x1/x0; 863 c = x1/x0; 876 a = log10(yy1/y0)/log10(c); 864 a = log10(yy1/y0)/log10(c); 877 << 865 // b = log10(y0) - a*log10(x0); 878 b = 0.0; << 866 b = y0/pow(x0,a); 879 if(a < 20.) b = y0/pow(x0,a); << 880 << 881 a += 2; 867 a += 2; 882 if(a == 0) 868 if(a == 0) 883 { 869 { 884 result = b*log(x1/x0); 870 result = b*log(x1/x0); 885 } 871 } 886 else 872 else 887 { 873 { 888 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 874 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 889 } 875 } 890 return result; 876 return result; 891 877 892 } // end of SumOverInterval 878 } // end of SumOverInterval 893 879 894 ////////////////////////////////////////////// 880 ////////////////////////////////////////////////////////////////////// 895 // 881 // 896 // Calculation the PAI Cerenkov integral cross 882 // Calculation the PAI Cerenkov integral cross-section inside 897 // of interval of continuous values of photo-i 883 // of interval of continuous values of photo-ionisation Cerenkov 898 // cross-section. Parameter 'i' is the number 884 // cross-section. Parameter 'i' is the number of interval. 899 885 900 G4double G4PAIySection::SumOverInterCerenkov( 886 G4double G4PAIySection::SumOverInterCerenkov( G4int i ) 901 { 887 { 902 G4double x0,x1,y0,yy1,a,c,result; 888 G4double x0,x1,y0,yy1,a,c,result; 903 889 904 x0 = fSplineEnergy[i]; 890 x0 = fSplineEnergy[i]; 905 x1 = fSplineEnergy[i+1]; 891 x1 = fSplineEnergy[i+1]; 906 << 907 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 908 << 909 y0 = fdNdxCerenkov[i]; 892 y0 = fdNdxCerenkov[i]; 910 yy1 = fdNdxCerenkov[i+1]; 893 yy1 = fdNdxCerenkov[i+1]; 911 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<" 894 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<"; x1 = "<<x1 912 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4en 895 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 913 896 914 c = x1/x0; 897 c = x1/x0; 915 a = log10(yy1/y0)/log10(c); 898 a = log10(yy1/y0)/log10(c); 916 G4double b = 0.0; 899 G4double b = 0.0; 917 if(a < 20.) b = y0/pow(x0,a); 900 if(a < 20.) b = y0/pow(x0,a); 918 901 919 a += 1.0; 902 a += 1.0; 920 if(a == 0) result = b*log(c); 903 if(a == 0) result = b*log(c); 921 else result = y0*(x1*pow(c,a-1) - x0) 904 else result = y0*(x1*pow(c,a-1) - x0)/a; 922 a += 1.0; 905 a += 1.0; 923 906 924 if( a == 0 ) fIntegralCerenkov[0] += b*log( 907 if( a == 0 ) fIntegralCerenkov[0] += b*log(x1/x0); 925 else fIntegralCerenkov[0] += y0*(x1 908 else fIntegralCerenkov[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 926 // G4cout<<"a = "<<a<<"; b = "<<b<<"; resu 909 // G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 927 return result; 910 return result; 928 911 929 } // end of SumOverInterCerenkov 912 } // end of SumOverInterCerenkov 930 913 931 ////////////////////////////////////////////// 914 ////////////////////////////////////////////////////////////////////// 932 // 915 // 933 // Calculation the PAI Plasmon integral cross- 916 // Calculation the PAI Plasmon integral cross-section inside 934 // of interval of continuous values of photo-i 917 // of interval of continuous values of photo-ionisation Plasmon 935 // cross-section. Parameter 'i' is the number 918 // cross-section. Parameter 'i' is the number of interval. 936 919 937 G4double G4PAIySection::SumOverInterPlasmon( G 920 G4double G4PAIySection::SumOverInterPlasmon( G4int i ) 938 { 921 { 939 G4double x0,x1,y0,yy1,a,c,result; 922 G4double x0,x1,y0,yy1,a,c,result; 940 923 941 x0 = fSplineEnergy[i]; 924 x0 = fSplineEnergy[i]; 942 x1 = fSplineEnergy[i+1]; 925 x1 = fSplineEnergy[i+1]; 943 << 944 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 945 << 946 y0 = fdNdxPlasmon[i]; 926 y0 = fdNdxPlasmon[i]; 947 yy1 = fdNdxPlasmon[i+1]; 927 yy1 = fdNdxPlasmon[i+1]; 948 c = x1/x0; 928 c = x1/x0; 949 a = log10(yy1/y0)/log10(c); 929 a = log10(yy1/y0)/log10(c); 950 930 951 G4double b = 0.0; 931 G4double b = 0.0; 952 if(a < 20.) b = y0/pow(x0,a); 932 if(a < 20.) b = y0/pow(x0,a); 953 933 954 a += 1.0; 934 a += 1.0; 955 if(a == 0) result = b*log(x1/x0); 935 if(a == 0) result = b*log(x1/x0); 956 else result = y0*(x1*pow(c,a-1) - x0) 936 else result = y0*(x1*pow(c,a-1) - x0)/a; 957 a += 1.0; 937 a += 1.0; 958 938 959 if( a == 0 ) fIntegralPlasmon[0] += b*log(x 939 if( a == 0 ) fIntegralPlasmon[0] += b*log(x1/x0); 960 else fIntegralPlasmon[0] += y0*(x1* 940 else fIntegralPlasmon[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 961 941 962 return result; 942 return result; 963 943 964 } // end of SumOverInterPlasmon 944 } // end of SumOverInterPlasmon 965 945 966 ////////////////////////////////////////////// 946 /////////////////////////////////////////////////////////////////////////////// 967 // 947 // 968 // Integration of PAI cross-section for the ca 948 // Integration of PAI cross-section for the case of 969 // passing across border between intervals 949 // passing across border between intervals 970 950 971 G4double G4PAIySection::SumOverBorder( G4int 951 G4double G4PAIySection::SumOverBorder( G4int i , 972 G4doubl 952 G4double en0 ) 973 { 953 { 974 G4double x0,x1,y0,yy1,a,d,e0,result; << 954 G4double x0,x1,y0,yy1,a,/*c,*/d,e0,result; 975 955 976 e0 = en0; 956 e0 = en0; 977 x0 = fSplineEnergy[i]; 957 x0 = fSplineEnergy[i]; 978 x1 = fSplineEnergy[i+1]; 958 x1 = fSplineEnergy[i+1]; 979 y0 = fDifPAIySection[i]; 959 y0 = fDifPAIySection[i]; 980 yy1 = fDifPAIySection[i+1]; 960 yy1 = fDifPAIySection[i+1]; 981 961 >> 962 //c = x1/x0; 982 d = e0/x0; 963 d = e0/x0; 983 a = log10(yy1/y0)/log10(x1/x0); 964 a = log10(yy1/y0)/log10(x1/x0); 984 965 985 G4double b = 0.0; 966 G4double b = 0.0; 986 if(a < 20.) b = y0/pow(x0,a); 967 if(a < 20.) b = y0/pow(x0,a); 987 968 988 a += 1; 969 a += 1; 989 if(a == 0) 970 if(a == 0) 990 { 971 { 991 result = b*log(x0/e0); 972 result = b*log(x0/e0); 992 } 973 } 993 else 974 else 994 { 975 { 995 result = y0*(x0 - e0*pow(d,a-1))/a; 976 result = y0*(x0 - e0*pow(d,a-1))/a; 996 } 977 } 997 a++; 978 a++; 998 if(a == 0) 979 if(a == 0) 999 { 980 { 1000 fIntegralPAIySection[0] += b*log(x0/e0) 981 fIntegralPAIySection[0] += b*log(x0/e0); 1001 } 982 } 1002 else 983 else 1003 { 984 { 1004 fIntegralPAIySection[0] += y0*(x0*x0 - 985 fIntegralPAIySection[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1005 } 986 } 1006 x0 = fSplineEnergy[i - 1]; 987 x0 = fSplineEnergy[i - 1]; 1007 x1 = fSplineEnergy[i - 2]; 988 x1 = fSplineEnergy[i - 2]; 1008 y0 = fDifPAIySection[i - 1]; 989 y0 = fDifPAIySection[i - 1]; 1009 yy1 = fDifPAIySection[i - 2]; 990 yy1 = fDifPAIySection[i - 2]; 1010 991 1011 //c = x1/x0; 992 //c = x1/x0; 1012 d = e0/x0; 993 d = e0/x0; 1013 a = log10(yy1/y0)/log10(x1/x0); 994 a = log10(yy1/y0)/log10(x1/x0); 1014 << 995 // b0 = log10(y0) - a*log10(x0); 1015 b = 0.0; << 996 b = y0/pow(x0,a); 1016 if(a < 20.) b = y0/pow(x0,a); << 1017 << 1018 a += 1; 997 a += 1; 1019 if(a == 0) 998 if(a == 0) 1020 { 999 { 1021 result += b*log(e0/x0); 1000 result += b*log(e0/x0); 1022 } 1001 } 1023 else 1002 else 1024 { 1003 { 1025 result += y0*(e0*pow(d,a-1) - x0)/a; 1004 result += y0*(e0*pow(d,a-1) - x0)/a; 1026 } 1005 } 1027 a++; 1006 a++; 1028 if(a == 0) 1007 if(a == 0) 1029 { 1008 { 1030 fIntegralPAIySection[0] += b*log(e0/x0) 1009 fIntegralPAIySection[0] += b*log(e0/x0); 1031 } 1010 } 1032 else 1011 else 1033 { 1012 { 1034 fIntegralPAIySection[0] += y0*(e0*e0*po 1013 fIntegralPAIySection[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1035 } 1014 } 1036 return result; 1015 return result; 1037 1016 1038 } 1017 } 1039 1018 1040 ///////////////////////////////////////////// 1019 /////////////////////////////////////////////////////////////////////// 1041 1020 1042 G4double G4PAIySection::SumOverBorderdEdx( G4 1021 G4double G4PAIySection::SumOverBorderdEdx( G4int i , 1043 G4doub 1022 G4double en0 ) 1044 { 1023 { 1045 G4double x0,x1,y0,yy1,a,/*c,*/d,e0,result; 1024 G4double x0,x1,y0,yy1,a,/*c,*/d,e0,result; 1046 1025 1047 e0 = en0; 1026 e0 = en0; 1048 x0 = fSplineEnergy[i]; 1027 x0 = fSplineEnergy[i]; 1049 x1 = fSplineEnergy[i+1]; 1028 x1 = fSplineEnergy[i+1]; 1050 y0 = fDifPAIySection[i]; 1029 y0 = fDifPAIySection[i]; 1051 yy1 = fDifPAIySection[i+1]; 1030 yy1 = fDifPAIySection[i+1]; 1052 1031 >> 1032 //c = x1/x0; 1053 d = e0/x0; 1033 d = e0/x0; 1054 a = log10(yy1/y0)/log10(x1/x0); 1034 a = log10(yy1/y0)/log10(x1/x0); 1055 1035 1056 G4double b = 0.0; 1036 G4double b = 0.0; 1057 if(a < 20.) b = y0/pow(x0,a); 1037 if(a < 20.) b = y0/pow(x0,a); 1058 1038 1059 a += 2; 1039 a += 2; 1060 if(a == 0) 1040 if(a == 0) 1061 { 1041 { 1062 result = b*log(x0/e0); 1042 result = b*log(x0/e0); 1063 } 1043 } 1064 else 1044 else 1065 { 1045 { 1066 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/ 1046 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1067 } 1047 } 1068 x0 = fSplineEnergy[i - 1]; 1048 x0 = fSplineEnergy[i - 1]; 1069 x1 = fSplineEnergy[i - 2]; 1049 x1 = fSplineEnergy[i - 2]; 1070 y0 = fDifPAIySection[i - 1]; 1050 y0 = fDifPAIySection[i - 1]; 1071 yy1 = fDifPAIySection[i - 2]; 1051 yy1 = fDifPAIySection[i - 2]; 1072 1052 >> 1053 //c = x1/x0; 1073 d = e0/x0; 1054 d = e0/x0; 1074 a = log10(yy1/y0)/log10(x1/x0); 1055 a = log10(yy1/y0)/log10(x1/x0); 1075 1056 1076 b = 0.0; << 1077 if(a < 20.) b = y0/pow(x0,a); 1057 if(a < 20.) b = y0/pow(x0,a); 1078 1058 1079 a += 2; 1059 a += 2; 1080 if(a == 0) 1060 if(a == 0) 1081 { 1061 { 1082 result += b*log(e0/x0); 1062 result += b*log(e0/x0); 1083 } 1063 } 1084 else 1064 else 1085 { 1065 { 1086 result += y0*(e0*e0*pow(d,a-2) - x0*x0) 1066 result += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1087 } 1067 } 1088 return result; 1068 return result; >> 1069 1089 } 1070 } 1090 1071 1091 ///////////////////////////////////////////// 1072 /////////////////////////////////////////////////////////////////////////////// 1092 // 1073 // 1093 // Integration of Cerenkov cross-section for 1074 // Integration of Cerenkov cross-section for the case of 1094 // passing across border between intervals 1075 // passing across border between intervals 1095 1076 1096 G4double G4PAIySection::SumOverBordCerenkov( 1077 G4double G4PAIySection::SumOverBordCerenkov( G4int i , 1097 1078 G4double en0 ) 1098 { 1079 { 1099 G4double x0,x1,y0,yy1,a,e0,c,d,result; 1080 G4double x0,x1,y0,yy1,a,e0,c,d,result; 1100 1081 1101 e0 = en0; 1082 e0 = en0; 1102 x0 = fSplineEnergy[i]; 1083 x0 = fSplineEnergy[i]; 1103 x1 = fSplineEnergy[i+1]; 1084 x1 = fSplineEnergy[i+1]; 1104 y0 = fdNdxCerenkov[i]; 1085 y0 = fdNdxCerenkov[i]; 1105 yy1 = fdNdxCerenkov[i+1]; 1086 yy1 = fdNdxCerenkov[i+1]; 1106 1087 1107 // G4cout<<G4endl; 1088 // G4cout<<G4endl; 1108 //G4cout<<"SumBordC, i = "<<i<<"; en0 = "< 1089 //G4cout<<"SumBordC, i = "<<i<<"; en0 = "<<en0<<"; x0 ="<<x0<<"; x1 = "<<x1 1109 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G 1090 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1110 c = x1/x0; 1091 c = x1/x0; 1111 d = e0/x0; 1092 d = e0/x0; 1112 a = log10(yy1/y0)/log10(c); 1093 a = log10(yy1/y0)/log10(c); 1113 1094 1114 G4double b = 0.0; 1095 G4double b = 0.0; 1115 if(a < 20.) b = y0/pow(x0,a); 1096 if(a < 20.) b = y0/pow(x0,a); 1116 1097 1117 a += 1.0; 1098 a += 1.0; 1118 if( a == 0 ) result = b*log(x0/e0); 1099 if( a == 0 ) result = b*log(x0/e0); 1119 else result = y0*(x0 - e0*pow(d,a- 1100 else result = y0*(x0 - e0*pow(d,a-1))/a; 1120 a += 1.0; 1101 a += 1.0; 1121 1102 1122 if( a == 0 ) fIntegralCerenkov[0] += b*log 1103 if( a == 0 ) fIntegralCerenkov[0] += b*log(x0/e0); 1123 else fIntegralCerenkov[0] += y0*(x 1104 else fIntegralCerenkov[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1124 1105 1125 //G4cout<<"a = "<<a<<"; b = "<<b<<"; resul 1106 //G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1126 1107 1127 x0 = fSplineEnergy[i - 1]; 1108 x0 = fSplineEnergy[i - 1]; 1128 x1 = fSplineEnergy[i - 2]; 1109 x1 = fSplineEnergy[i - 2]; 1129 y0 = fdNdxCerenkov[i - 1]; 1110 y0 = fdNdxCerenkov[i - 1]; 1130 yy1 = fdNdxCerenkov[i - 2]; 1111 yy1 = fdNdxCerenkov[i - 2]; 1131 1112 1132 //G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 1113 //G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 1133 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4 1114 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1134 1115 1135 c = x1/x0; 1116 c = x1/x0; 1136 d = e0/x0; 1117 d = e0/x0; 1137 a = log10(yy1/y0)/log10(x1/x0); 1118 a = log10(yy1/y0)/log10(x1/x0); 1138 1119 1139 // G4cout << "a= " << a << G4endl; 1120 // G4cout << "a= " << a << G4endl; >> 1121 if(a < 20.) b = y0/pow(x0,a); >> 1122 1140 if(a > 20.0) b = 0.0; 1123 if(a > 20.0) b = 0.0; 1141 else b = y0/pow(x0,a); << 1124 else b = y0/pow(x0,a); // pow(10.,b0); 1142 1125 1143 //G4cout << "b= " << b << G4endl; 1126 //G4cout << "b= " << b << G4endl; 1144 1127 1145 a += 1.0; 1128 a += 1.0; 1146 if( a == 0 ) result += b*log(e0/x0); 1129 if( a == 0 ) result += b*log(e0/x0); 1147 else result += y0*(e0*pow(d,a-1) - 1130 else result += y0*(e0*pow(d,a-1) - x0 )/a; 1148 a += 1.0; 1131 a += 1.0; 1149 //G4cout << "result= " << result << G4endl 1132 //G4cout << "result= " << result << G4endl; 1150 1133 1151 if( a == 0 ) fIntegralCerenkov[0] += b*l 1134 if( a == 0 ) fIntegralCerenkov[0] += b*log(e0/x0); 1152 else fIntegralCerenkov[0] += y0* 1135 else fIntegralCerenkov[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1153 1136 1154 //G4cout<<"a = "<<a<<"; b = "<<b<<"; resul 1137 //G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1155 1138 1156 return result; 1139 return result; >> 1140 1157 } 1141 } 1158 1142 1159 ///////////////////////////////////////////// 1143 /////////////////////////////////////////////////////////////////////////////// 1160 // 1144 // 1161 // Integration of Plasmon cross-section for t 1145 // Integration of Plasmon cross-section for the case of 1162 // passing across border between intervals 1146 // passing across border between intervals 1163 1147 1164 G4double G4PAIySection::SumOverBordPlasmon( G 1148 G4double G4PAIySection::SumOverBordPlasmon( G4int i , 1165 1149 G4double en0 ) 1166 { 1150 { 1167 G4double x0,x1,y0,yy1,a,c,d,e0,result; 1151 G4double x0,x1,y0,yy1,a,c,d,e0,result; 1168 1152 1169 e0 = en0; 1153 e0 = en0; 1170 x0 = fSplineEnergy[i]; 1154 x0 = fSplineEnergy[i]; 1171 x1 = fSplineEnergy[i+1]; 1155 x1 = fSplineEnergy[i+1]; 1172 y0 = fdNdxPlasmon[i]; 1156 y0 = fdNdxPlasmon[i]; 1173 yy1 = fdNdxPlasmon[i+1]; 1157 yy1 = fdNdxPlasmon[i+1]; 1174 1158 1175 c = x1/x0; 1159 c = x1/x0; 1176 d = e0/x0; 1160 d = e0/x0; 1177 a = log10(yy1/y0)/log10(c); 1161 a = log10(yy1/y0)/log10(c); 1178 1162 1179 G4double b = 0.0; 1163 G4double b = 0.0; 1180 if(a < 20.) b = y0/pow(x0,a); 1164 if(a < 20.) b = y0/pow(x0,a); 1181 1165 1182 a += 1.0; 1166 a += 1.0; 1183 if( a == 0 ) result = b*log(x0/e0); 1167 if( a == 0 ) result = b*log(x0/e0); 1184 else result = y0*(x0 - e0*pow(d,a- 1168 else result = y0*(x0 - e0*pow(d,a-1))/a; 1185 a += 1.0; 1169 a += 1.0; 1186 1170 1187 if( a == 0 ) fIntegralPlasmon[0] += b*log( 1171 if( a == 0 ) fIntegralPlasmon[0] += b*log(x0/e0); 1188 else fIntegralPlasmon[0] += y0*(x0 1172 else fIntegralPlasmon[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1189 1173 1190 x0 = fSplineEnergy[i - 1]; 1174 x0 = fSplineEnergy[i - 1]; 1191 x1 = fSplineEnergy[i - 2]; 1175 x1 = fSplineEnergy[i - 2]; 1192 y0 = fdNdxPlasmon[i - 1]; 1176 y0 = fdNdxPlasmon[i - 1]; 1193 yy1 = fdNdxPlasmon[i - 2]; 1177 yy1 = fdNdxPlasmon[i - 2]; 1194 1178 1195 c = x1/x0; 1179 c = x1/x0; 1196 d = e0/x0; 1180 d = e0/x0; 1197 a = log10(yy1/y0)/log10(c); 1181 a = log10(yy1/y0)/log10(c); 1198 1182 1199 if(a < 20.) b = y0/pow(x0,a); 1183 if(a < 20.) b = y0/pow(x0,a); 1200 1184 1201 a += 1.0; 1185 a += 1.0; 1202 if( a == 0 ) result += b*log(e0/x0); 1186 if( a == 0 ) result += b*log(e0/x0); 1203 else result += y0*(e0*pow(d,a-1) - 1187 else result += y0*(e0*pow(d,a-1) - x0)/a; 1204 a += 1.0; 1188 a += 1.0; 1205 1189 1206 if( a == 0 ) fIntegralPlasmon[0] += b*lo 1190 if( a == 0 ) fIntegralPlasmon[0] += b*log(e0/x0); 1207 else fIntegralPlasmon[0] += y0*( 1191 else fIntegralPlasmon[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1208 1192 1209 return result; 1193 return result; 1210 1194 1211 } 1195 } 1212 1196 1213 ///////////////////////////////////////////// 1197 ///////////////////////////////////////////////////////////////////////// 1214 // 1198 // 1215 // 1199 // 1216 1200 1217 G4double G4PAIySection::GetStepEnergyLoss( G4 1201 G4double G4PAIySection::GetStepEnergyLoss( G4double step ) 1218 { 1202 { 1219 G4int iTransfer ; 1203 G4int iTransfer ; 1220 G4long numOfCollisions; 1204 G4long numOfCollisions; 1221 G4double loss = 0.0; 1205 G4double loss = 0.0; 1222 G4double meanNumber, position; 1206 G4double meanNumber, position; 1223 1207 1224 // G4cout<<" G4PAIySection::GetStepEnergyLo 1208 // G4cout<<" G4PAIySection::GetStepEnergyLoss "<<G4endl; 1225 1209 1226 1210 1227 1211 1228 meanNumber = fIntegralPAIySection[1]*step; 1212 meanNumber = fIntegralPAIySection[1]*step; 1229 numOfCollisions = G4Poisson(meanNumber); 1213 numOfCollisions = G4Poisson(meanNumber); 1230 1214 1231 // G4cout<<"numOfCollisions = "<<numOfCol 1215 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 1232 1216 1233 while(numOfCollisions) 1217 while(numOfCollisions) 1234 { 1218 { 1235 position = fIntegralPAIySection[1]*G4Unif 1219 position = fIntegralPAIySection[1]*G4UniformRand(); 1236 1220 1237 for( iTransfer=1; iTransfer<=fSplineNumbe 1221 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ ) 1238 { 1222 { 1239 if( position >= fIntegralPAIySection[ 1223 if( position >= fIntegralPAIySection[iTransfer] ) break; 1240 } 1224 } 1241 loss += fSplineEnergy[iTransfer] ; 1225 loss += fSplineEnergy[iTransfer] ; 1242 numOfCollisions--; 1226 numOfCollisions--; 1243 // Loop checking, 03-Aug-2015, Vladimir I << 1244 } 1227 } 1245 // G4cout<<"PAI energy loss = "<<loss/keV<< 1228 // G4cout<<"PAI energy loss = "<<loss/keV<<" keV"<<G4endl; 1246 1229 1247 return loss; 1230 return loss; 1248 } 1231 } 1249 1232 1250 ///////////////////////////////////////////// 1233 ///////////////////////////////////////////////////////////////////////// 1251 // 1234 // 1252 // 1235 // 1253 1236 1254 G4double G4PAIySection::GetStepCerenkovLoss( 1237 G4double G4PAIySection::GetStepCerenkovLoss( G4double step ) 1255 { 1238 { 1256 G4int iTransfer ; 1239 G4int iTransfer ; 1257 G4long numOfCollisions; 1240 G4long numOfCollisions; 1258 G4double loss = 0.0; 1241 G4double loss = 0.0; 1259 G4double meanNumber, position; 1242 G4double meanNumber, position; 1260 1243 1261 // G4cout<<" G4PAIySection::GetStepCreLosnk 1244 // G4cout<<" G4PAIySection::GetStepCreLosnkovs "<<G4endl; 1262 1245 1263 1246 1264 1247 1265 meanNumber = fIntegralCerenkov[1]*step; 1248 meanNumber = fIntegralCerenkov[1]*step; 1266 numOfCollisions = G4Poisson(meanNumber); 1249 numOfCollisions = G4Poisson(meanNumber); 1267 1250 1268 // G4cout<<"numOfCollisions = "<<numOfCol 1251 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 1269 1252 1270 while(numOfCollisions) 1253 while(numOfCollisions) 1271 { 1254 { 1272 position = fIntegralCerenkov[1]*G4Uniform 1255 position = fIntegralCerenkov[1]*G4UniformRand(); 1273 1256 1274 for( iTransfer=1; iTransfer<=fSplineNumbe 1257 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ ) 1275 { 1258 { 1276 if( position >= fIntegralCerenkov[iTr 1259 if( position >= fIntegralCerenkov[iTransfer] ) break; 1277 } 1260 } 1278 loss += fSplineEnergy[iTransfer] ; 1261 loss += fSplineEnergy[iTransfer] ; 1279 numOfCollisions--; 1262 numOfCollisions--; 1280 // Loop checking, 03-Aug-2015, Vladimir I << 1281 } 1263 } 1282 // G4cout<<"PAI Cerenkov loss = "<<loss/keV 1264 // G4cout<<"PAI Cerenkov loss = "<<loss/keV<<" keV"<<G4endl; 1283 1265 1284 return loss; 1266 return loss; 1285 } 1267 } 1286 1268 1287 ///////////////////////////////////////////// 1269 ///////////////////////////////////////////////////////////////////////// 1288 // 1270 // 1289 // 1271 // 1290 1272 1291 G4double G4PAIySection::GetStepPlasmonLoss( G 1273 G4double G4PAIySection::GetStepPlasmonLoss( G4double step ) 1292 { 1274 { 1293 G4int iTransfer ; 1275 G4int iTransfer ; 1294 G4long numOfCollisions; 1276 G4long numOfCollisions; 1295 G4double loss = 0.0; 1277 G4double loss = 0.0; 1296 G4double meanNumber, position; 1278 G4double meanNumber, position; 1297 1279 1298 // G4cout<<" G4PAIySection::GetStepCreLosnk 1280 // G4cout<<" G4PAIySection::GetStepCreLosnkovs "<<G4endl; 1299 1281 1300 1282 1301 1283 1302 meanNumber = fIntegralPlasmon[1]*step; 1284 meanNumber = fIntegralPlasmon[1]*step; 1303 numOfCollisions = G4Poisson(meanNumber); 1285 numOfCollisions = G4Poisson(meanNumber); 1304 1286 1305 // G4cout<<"numOfCollisions = "<<numOfCol 1287 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 1306 1288 1307 while(numOfCollisions) 1289 while(numOfCollisions) 1308 { 1290 { 1309 position = fIntegralPlasmon[1]*G4UniformR 1291 position = fIntegralPlasmon[1]*G4UniformRand(); 1310 1292 1311 for( iTransfer=1; iTransfer<=fSplineNumbe 1293 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ ) 1312 { 1294 { 1313 if( position >= fIntegralPlasmon[iTra 1295 if( position >= fIntegralPlasmon[iTransfer] ) break; 1314 } 1296 } 1315 loss += fSplineEnergy[iTransfer] ; 1297 loss += fSplineEnergy[iTransfer] ; 1316 numOfCollisions--; 1298 numOfCollisions--; 1317 // Loop checking, 03-Aug-2015, Vladimir I << 1318 } 1299 } 1319 // G4cout<<"PAI Plasmon loss = "<<loss/keV< 1300 // G4cout<<"PAI Plasmon loss = "<<loss/keV<<" keV"<<G4endl; 1320 1301 1321 return loss; 1302 return loss; 1322 } 1303 } 1323 1304 1324 ///////////////////////////////////////////// 1305 ///////////////////////////////////////////////////////////////////////////// 1325 // 1306 // 1326 1307 1327 void G4PAIySection::CallError(G4int i, const 1308 void G4PAIySection::CallError(G4int i, const G4String& methodName) const 1328 { 1309 { 1329 G4String head = "G4PAIySection::" + methodN 1310 G4String head = "G4PAIySection::" + methodName + "()"; 1330 G4ExceptionDescription ed; 1311 G4ExceptionDescription ed; 1331 ed << "Wrong index " << i << " fSplineNumbe << 1312 ed << "Wrong index " << i << " fSplineNumber= " << fSplineNumber << G4endl; 1332 G4Exception(head,"pai001",FatalException,ed 1313 G4Exception(head,"pai001",FatalException,ed); 1333 } 1314 } 1334 1315 1335 ///////////////////////////////////////////// 1316 ///////////////////////////////////////////////////////////////////////////// 1336 // 1317 // 1337 // Init array of Lorentz factors 1318 // Init array of Lorentz factors 1338 // 1319 // 1339 1320 1340 G4int G4PAIySection::fNumberOfGammas = 111; 1321 G4int G4PAIySection::fNumberOfGammas = 111; 1341 1322 1342 const G4double G4PAIySection::fLorentzFactor[ 1323 const G4double G4PAIySection::fLorentzFactor[112] = // fNumberOfGammas+1 1343 { 1324 { 1344 0.0, 1325 0.0, 1345 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.1 1326 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.138890e+00, 1.157642e+00, 1346 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.2 1327 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.261620e+00, 1.296942e+00, // 10 1347 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.4 1328 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.492800e+00, 1.559334e+00, 1348 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.9 1329 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.928263e+00, 2.053589e+00, // 20 1349 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.7 1330 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.748522e+00, 2.984591e+00, 1350 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.2 1331 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.293602e+00, 4.738274e+00, // 30 1351 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.2 1332 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.203990e+00, 8.041596e+00, 1352 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.2 1333 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.268614e+01, 1.426390e+01, // 40 1353 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.3 1334 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.301259e+01, 2.598453e+01, 1354 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.2 1335 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.246399e+01, 4.806208e+01, // 50 1355 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.9 1336 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.910361e+01, 8.964844e+01, 1356 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.4 1337 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.481198e+02, 1.679826e+02, // 60 1357 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.7 1338 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.781221e+02, 3.155365e+02, 1358 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.2 1339 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.230007e+02, 5.934765e+02, // 70 1359 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.8 1340 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.842662e+02, 1.117018e+03, 1360 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.8 1341 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.853128e+03, 2.103186e+03, // 80 1361 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.4 1342 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.489760e+03, 3.960780e+03, 1362 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.5 1343 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.572600e+03, 7.459837e+03, // 90 1363 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.2 1344 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.237959e+04, 1.405083e+04, 1364 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.3 1345 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.331792e+04, 2.646595e+04, // 100 1365 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.3 1346 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.392189e+04, 4.985168e+04, 1366 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.2 1347 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.273254e+04, 9.390219e+04, // 110 1367 1.065799e+05 1348 1.065799e+05 1368 }; 1349 }; 1369 1350 1370 ///////////////////////////////////////////// 1351 /////////////////////////////////////////////////////////////////////// 1371 // 1352 // 1372 // The number of gamma for creation of splin 1353 // The number of gamma for creation of spline (near ion-min , G ~ 4 ) 1373 // 1354 // 1374 1355 1375 const G4int G4PAIySection::fRefGammaNumber = << 1356 const >> 1357 G4int G4PAIySection::fRefGammaNumber = 29; 1376 1358 >> 1359 1377 // 1360 // 1378 // end of G4PAIySection implementation file 1361 // end of G4PAIySection implementation file 1379 // 1362 // 1380 ///////////////////////////////////////////// 1363 //////////////////////////////////////////////////////////////////////////// 1381 1364 1382 1365