Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PAIySection.cc,v 1.8 2010-11-23 15:31:10 grichine Exp $ >> 27 // GEANT4 tag $Name: geant4-09-04-patch-02 $ 26 // 28 // 27 // 29 // 28 // G4PAIySection.cc -- class implementation fi 30 // G4PAIySection.cc -- class implementation file 29 // 31 // 30 // GEANT 4 class implementation file 32 // GEANT 4 class implementation file 31 // 33 // 32 // For information related to this code, pleas 34 // For information related to this code, please, contact 33 // the Geant4 Collaboration. 35 // the Geant4 Collaboration. 34 // 36 // 35 // R&D: Vladimir.Grichine@cern.ch 37 // R&D: Vladimir.Grichine@cern.ch 36 // 38 // 37 // History: 39 // History: 38 // 40 // 39 // 01.10.07, V.Ivanchenko create using V.Grich 41 // 01.10.07, V.Ivanchenko create using V.Grichine G4PAIxSection class 40 // 26.07.09, V.Ivanchenko added protection for 42 // 26.07.09, V.Ivanchenko added protection for mumerical exceptions for 41 // low-density materials 43 // low-density materials 42 // 21.11.10 V. Grichine bug fixed in Initialis 44 // 21.11.10 V. Grichine bug fixed in Initialise for reading sandia table from 43 // material. Warning: the table is 45 // material. Warning: the table is tuned for photo-effect not PAI model. 44 // 23.06.13 V.Grichine arrays->G4DataVectors << 45 // 46 // 46 47 47 #include "G4PAIySection.hh" 48 #include "G4PAIySection.hh" 48 49 49 #include "globals.hh" 50 #include "globals.hh" 50 #include "G4PhysicalConstants.hh" << 51 #include "G4SystemOfUnits.hh" << 52 #include "G4ios.hh" 51 #include "G4ios.hh" 53 #include "G4Poisson.hh" 52 #include "G4Poisson.hh" 54 #include "G4Material.hh" 53 #include "G4Material.hh" 55 #include "G4MaterialCutsCouple.hh" 54 #include "G4MaterialCutsCouple.hh" 56 #include "G4SandiaTable.hh" 55 #include "G4SandiaTable.hh" 57 #include "G4Exp.hh" << 58 #include "G4Log.hh" << 59 56 60 using namespace std; 57 using namespace std; 61 58 62 // Local class constants 59 // Local class constants 63 60 64 const G4double G4PAIySection::fDelta = 0.005; 61 const G4double G4PAIySection::fDelta = 0.005; // energy shift from interval border 65 const G4double G4PAIySection::fError = 0.005; 62 const G4double G4PAIySection::fError = 0.005; // error in lin-log approximation 66 63 67 const G4int G4PAIySection::fMaxSplineSize = 50 64 const G4int G4PAIySection::fMaxSplineSize = 500; // Max size of output spline 68 << 65 // arrays 69 66 70 ////////////////////////////////////////////// 67 ////////////////////////////////////////////////////////////////// 71 // 68 // 72 // Constructor 69 // Constructor 73 // 70 // 74 71 75 G4PAIySection::G4PAIySection() 72 G4PAIySection::G4PAIySection() 76 { 73 { 77 fSandia = nullptr; << 74 fSandia = 0; 78 fDensity = fElectronDensity = fNormalization << 75 fDensity = fElectronDensity = fNormalizationCof = 0.0; 79 fIntervalNumber = fSplineNumber = 0; 76 fIntervalNumber = fSplineNumber = 0; 80 fVerbose = 0; << 81 << 82 betaBohr = fine_structure_const; << 83 G4double cofBetaBohr = 4.0; << 84 G4double betaBohr2 = fine_structure_const*fi << 85 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; << 86 << 87 fSplineEnergy = G4DataVector(fMaxSp << 88 fRePartDielectricConst = G4DataVector(fMaxSp << 89 fImPartDielectricConst = G4DataVector(fMaxSp << 90 fIntegralTerm = G4DataVector(fMaxSp << 91 fDifPAIySection = G4DataVector(fMaxSp << 92 fdNdxCerenkov = G4DataVector(fMaxSp << 93 fdNdxPlasmon = G4DataVector(fMaxSp << 94 fIntegralPAIySection = G4DataVector(fMaxSp << 95 fIntegralPAIdEdx = G4DataVector(fMaxSp << 96 fIntegralCerenkov = G4DataVector(fMaxSp << 97 fIntegralPlasmon = G4DataVector(fMaxSp << 98 << 99 for( G4int i = 0; i < 500; ++i ) << 100 { << 101 for( G4int j = 0; j < 112; ++j ) { fPAItab << 102 } << 103 } 77 } 104 78 105 ////////////////////////////////////////////// 79 //////////////////////////////////////////////////////////////////////////// 106 // 80 // 107 // << 81 // Destructor 108 82 109 G4double G4PAIySection::GetLorentzFactor(G4int << 83 G4PAIySection::~G4PAIySection() 110 { << 84 {} 111 return fLorentzFactor[j]; << 112 } << 113 85 114 ////////////////////////////////////////////// 86 //////////////////////////////////////////////////////////////////////// 115 // 87 // 116 // Constructor with beta*gamma square value ca << 88 // Test Constructor with beta*gamma square value 117 89 118 void G4PAIySection::Initialize( const G4Materi 90 void G4PAIySection::Initialize( const G4Material* material, 119 G4double maxEn << 91 G4double maxEnergyTransfer, 120 G4double betaG << 92 G4double betaGammaSq) 121 G4SandiaTable* << 122 { 93 { 123 if(fVerbose > 0) << 94 G4int i, j, numberOfElements; 124 { << 95 G4double energy; 125 G4cout<<G4endl; << 96 // fVerbose = 1; 126 G4cout<<"G4PAIySection::Initialize(...,G4S << 127 G4cout<<G4endl; << 128 } << 129 G4int i, j; << 130 << 131 fSandia = sandia; << 132 fIntervalNumber = sandia->GetMaxInterval(); << 133 fDensity = material->GetDensity(); 97 fDensity = material->GetDensity(); 134 fElectronDensity = material->GetElectronDens 98 fElectronDensity = material->GetElectronDensity(); >> 99 numberOfElements = material->GetNumberOfElements(); 135 100 136 // fIntervalNumber--; << 101 fSandia = material->GetSandiaTable(); 137 102 138 if( fVerbose > 0 ) << 103 fIntervalNumber = fSandia->GetMaxInterval(); 139 { << 140 G4cout<<"fDensity = "<<fDensity<<"\t"<<fEl << 141 <<fIntervalNumber<< " (beta*gamma)^2 << 142 } << 143 fEnergyInterval = G4DataVector(fIntervalNumb << 144 fA1 = G4DataVector(fIntervalNumb << 145 fA2 = G4DataVector(fIntervalNumb << 146 fA3 = G4DataVector(fIntervalNumb << 147 fA4 = G4DataVector(fIntervalNumb << 148 104 149 for( i = 1; i <= fIntervalNumber; ++i ) << 105 fIntervalNumber--; >> 106 >> 107 for( i = 1; i <= fIntervalNumber; i++ ) 150 { 108 { 151 if ( sandia->GetSandiaMatTablePAI(i-1,0) < << 109 energy = fSandia->GetSandiaMatTablePAI(i-1,0); //vmg 20.11.10 152 { << 110 153 fIntervalNumber--; << 111 if( energy >= maxEnergyTransfer || i > fIntervalNumber ) 154 continue; << 155 } << 156 if( ( sandia->GetSandiaMatTablePAI(i-1,0) << 157 || i >= fIntervalNumber ) << 158 { 112 { 159 fEnergyInterval[i] = maxEnergyTransfer; 113 fEnergyInterval[i] = maxEnergyTransfer; 160 fIntervalNumber = i; 114 fIntervalNumber = i; 161 break; 115 break; 162 } 116 } 163 fEnergyInterval[i] = sandia->GetSandiaMatT << 117 fEnergyInterval[i] = energy; 164 fA1[i] = sandia->GetSandiaMatT << 118 fA1[i] = fSandia->GetSandiaMatTablePAI(i-1,1); 165 fA2[i] = sandia->GetSandiaMatT << 119 fA2[i] = fSandia->GetSandiaMatTablePAI(i-1,2); 166 fA3[i] = sandia->GetSandiaMatT << 120 fA3[i] = fSandia->GetSandiaMatTablePAI(i-1,3); 167 fA4[i] = sandia->GetSandiaMatT << 121 fA4[i] = fSandia->GetSandiaMatTablePAI(i-1,4); 168 << 122 169 if( fVerbose > 0 ) { << 123 if( fVerbose > 0 && std::fabs( betaGammaSq - 8. ) < 0.4 ) 170 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 124 { 171 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4en << 125 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<" keV \t"<<fA1[i]<<"\t"<<fA2[i] <<"\t"<<fA3[i] <<"\t"<<fA4[i]<<G4endl; 172 } 126 } 173 } << 127 } 174 if( fVerbose > 0 ) { << 128 175 G4cout<<"last i = "<<i<<"; "<<"fIntervalNu << 129 176 <<fIntervalNumber<<G4endl; << 177 } << 178 if( fEnergyInterval[fIntervalNumber] != maxE 130 if( fEnergyInterval[fIntervalNumber] != maxEnergyTransfer ) 179 { 131 { 180 fIntervalNumber++; << 132 fIntervalNumber++; 181 fEnergyInterval[fIntervalNumber] = maxEn << 133 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; >> 134 fA1[fIntervalNumber] = fA1[fIntervalNumber-1]; >> 135 fA2[fIntervalNumber] = fA2[fIntervalNumber-1]; >> 136 fA3[fIntervalNumber] = fA3[fIntervalNumber-1]; >> 137 fA4[fIntervalNumber] = fA4[fIntervalNumber-1]; 182 } 138 } 183 if( fVerbose > 0 ) << 139 184 { << 140 // Now checking, if two borders are too close together 185 for( i = 1; i <= fIntervalNumber; ++i ) << 141 for( i = 1; i < fIntervalNumber; i++ ) 186 { << 187 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 188 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; << 189 } << 190 } << 191 if( fVerbose > 0 ) { << 192 G4cout<<"Now checking, if two borders are << 193 } << 194 for( i = 1; i < fIntervalNumber; ++i ) << 195 { 142 { 196 if( fEnergyInterval[i+1]-fEnergyInterval[i << 143 // G4cout<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 197 1.5*fDelta*(fEnergyInterval[i+1]+fEne << 144 // <<fA3[i]<<"\t"<<fA4[i]<<G4endl; 198 else << 145 if(fEnergyInterval[i+1]-fEnergyInterval[i] < >> 146 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i])) 199 { 147 { 200 for( j = i; j < fIntervalNumber; j++ ) 148 for( j = i; j < fIntervalNumber; j++ ) 201 { 149 { 202 fEnergyInterval[j] = fEnergyInte << 150 fEnergyInterval[j] = fEnergyInterval[j+1]; 203 fA1[j] = fA1[j+1]; << 151 fA1[j] = fA1[j+1]; 204 fA2[j] = fA2[j+1]; << 152 fA2[j] = fA2[j+1]; 205 fA3[j] = fA3[j+1]; << 153 fA3[j] = fA3[j+1]; 206 fA4[j] = fA4[j+1]; << 154 fA4[j] = fA4[j+1]; 207 } 155 } 208 fIntervalNumber--; 156 fIntervalNumber--; >> 157 i--; 209 } 158 } 210 } 159 } 211 if( fVerbose > 0 ) << 160 if( fVerbose > 0 && std::fabs( betaGammaSq - 8. ) < 0.4 ) 212 { 161 { 213 for( i = 1; i <= fIntervalNumber; ++i ) << 162 G4cout<<"Sandia cofs in G4PAIySection::Initialize(), mat = "<<material->GetName()<<G4endl; 214 { << 163 G4cout<<"for bg2 = "<<betaGammaSq<<", Tmax = "<< maxEnergyTransfer/keV<<" keV"<<G4endl; 215 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 164 G4cout<<"energy \t"<<"a1 \t"<<"a2 \t"<<"a3 \t"<<"a4 \t"<<G4endl; 216 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; << 165 217 } << 166 for( j = 1; j < fIntervalNumber; j++ ) >> 167 { >> 168 G4cout<<j<<"\t"<<fEnergyInterval[j]/keV<<" keV \t"<<fA1[j]<<"\t"<<fA2[j] <<"\t"<<fA3[j] <<"\t"<<fA4[j]<<G4endl; >> 169 } 218 } 170 } 219 // Preparation of fSplineEnergy array corres << 220 171 221 ComputeLowEnergyCof(material); << 172 // Preparation of fSplineEnergy array corresponding to min ionisation, G~4 222 << 173 223 G4double betaGammaSqRef = 174 G4double betaGammaSqRef = 224 fLorentzFactor[fRefGammaNumber]*fLorentzFa << 175 fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1; 225 176 226 NormShift(betaGammaSqRef); 177 NormShift(betaGammaSqRef); 227 SplainPAI(betaGammaSqRef); 178 SplainPAI(betaGammaSqRef); 228 179 229 // Preparation of integral PAI cross section << 180 // Preparation of integral PAI cross section for input betaGammaSq 230 181 231 for( i = 1; i <= fSplineNumber; ++i ) << 182 for( i = 1; i <= fSplineNumber; i++ ) 232 { 183 { 233 fDifPAIySection[i] = DifPAIySection(i,bet << 184 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq); 234 << 185 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 235 if( fVerbose > 0 ) G4cout<<i<<"; dNdxPAI << 186 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 236 } 187 } 237 IntegralPAIySection(); << 188 IntegralPAIySection(); 238 } << 189 IntegralCerenkov(); 239 << 190 IntegralPlasmon(); 240 ////////////////////////////////////////////// << 241 // << 242 // Compute low energy cof. It reduces PAI xsc << 243 // << 244 << 245 void G4PAIySection::ComputeLowEnergyCof(const << 246 { << 247 G4int i, numberOfElements = (G4int)material- << 248 G4double sumZ = 0., sumCof = 0.; << 249 << 250 static const G4double p0 = 1.20923e+00; << 251 static const G4double p1 = 3.53256e-01; << 252 static const G4double p2 = -1.45052e-03; << 253 << 254 G4double* thisMaterialZ = new G4double[num << 255 G4double* thisMaterialCof = new G4double[num << 256 << 257 for( i = 0; i < numberOfElements; ++i ) << 258 { << 259 thisMaterialZ[i] = material->GetElement(i) << 260 sumZ += thisMaterialZ[i]; << 261 thisMaterialCof[i] = p0+p1*thisMaterialZ[i << 262 } << 263 for( i = 0; i < numberOfElements; ++i ) << 264 { << 265 sumCof += thisMaterialCof[i]*thisMaterialZ << 266 } << 267 fLowEnergyCof = sumCof; << 268 delete [] thisMaterialZ; << 269 delete [] thisMaterialCof; << 270 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof << 271 } 191 } 272 192 273 ////////////////////////////////////////////// 193 ///////////////////////////////////////////////////////////////////////// 274 // 194 // 275 // General control function for class G4PAIySe 195 // General control function for class G4PAIySection 276 // 196 // 277 197 278 void G4PAIySection::InitPAI() 198 void G4PAIySection::InitPAI() 279 { 199 { 280 G4int i; 200 G4int i; 281 G4double betaGammaSq = fLorentzFactor[fRefG 201 G4double betaGammaSq = fLorentzFactor[fRefGammaNumber]* 282 fLorentzFactor[fRefG 202 fLorentzFactor[fRefGammaNumber] - 1; 283 203 284 // Preparation of integral PAI cross sectio 204 // Preparation of integral PAI cross section for reference gamma 285 205 286 NormShift(betaGammaSq); 206 NormShift(betaGammaSq); 287 SplainPAI(betaGammaSq); 207 SplainPAI(betaGammaSq); 288 208 289 IntegralPAIySection(); 209 IntegralPAIySection(); 290 IntegralCerenkov(); 210 IntegralCerenkov(); 291 IntegralPlasmon(); 211 IntegralPlasmon(); 292 212 293 for( i = 0; i<= fSplineNumber; ++i) << 213 for(i = 0; i<=fSplineNumber; i++) 294 { 214 { 295 fPAItable[i][fRefGammaNumber] = fIntegral << 215 fPAItable[i][fRefGammaNumber] = fIntegralPAIySection[i]; 296 << 216 if(i != 0) 297 if(i != 0) fPAItable[i][0] = fSplineEner << 217 { >> 218 fPAItable[i][0] = fSplineEnergy[i]; >> 219 } 298 } 220 } 299 fPAItable[0][0] = fSplineNumber; 221 fPAItable[0][0] = fSplineNumber; 300 222 301 for( G4int j = 1; j < 112; ++j) // fo << 223 for(G4int j = 1; j < 112; j++) // for other gammas 302 { 224 { 303 if( j == fRefGammaNumber ) continue; 225 if( j == fRefGammaNumber ) continue; 304 226 305 betaGammaSq = fLorentzFactor[j]*fLorentz 227 betaGammaSq = fLorentzFactor[j]*fLorentzFactor[j] - 1; 306 228 307 for(i = 1; i <= fSplineNumber; ++i) << 229 for(i = 1; i <= fSplineNumber; i++) 308 { 230 { 309 fDifPAIySection[i] = DifPAIySection(i 231 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq); 310 fdNdxCerenkov[i] = PAIdNdxCerenkov( 232 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 311 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 233 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 312 } 234 } 313 IntegralPAIySection(); 235 IntegralPAIySection(); 314 IntegralCerenkov(); 236 IntegralCerenkov(); 315 IntegralPlasmon(); 237 IntegralPlasmon(); 316 238 317 for(i = 0; i <= fSplineNumber; ++i) << 239 for(i = 0; i <= fSplineNumber; i++) 318 { 240 { 319 fPAItable[i][j] = fIntegralPAIySection << 241 fPAItable[i][j] = fIntegralPAIySection[i]; 320 } 242 } 321 } 243 } >> 244 322 } 245 } 323 246 324 ////////////////////////////////////////////// 247 /////////////////////////////////////////////////////////////////////// 325 // 248 // 326 // Shifting from borders to intervals Creation 249 // Shifting from borders to intervals Creation of first energy points 327 // 250 // 328 251 329 void G4PAIySection::NormShift(G4double betaGam 252 void G4PAIySection::NormShift(G4double betaGammaSq) 330 { 253 { 331 G4int i, j; 254 G4int i, j; 332 255 333 for( i = 1; i <= fIntervalNumber-1; ++i) << 256 for( i = 1; i <= fIntervalNumber-1; i++ ) 334 { 257 { 335 for( j = 1; j <= 2; ++j) << 258 for( j = 1; j <= 2; j++ ) 336 { 259 { 337 fSplineNumber = (i-1)*2 + j; 260 fSplineNumber = (i-1)*2 + j; 338 261 339 if( j == 1 ) fSplineEnergy[fSplineNumber 262 if( j == 1 ) fSplineEnergy[fSplineNumber] = fEnergyInterval[i ]*(1+fDelta); 340 else fSplineEnergy[fSplineNumber 263 else fSplineEnergy[fSplineNumber] = fEnergyInterval[i+1]*(1-fDelta); 341 // G4cout<<"cn = "<<fSplineNumber<<"; 264 // G4cout<<"cn = "<<fSplineNumber<<"; "<<"energy = " 342 // <<fSplineEnergy[fSplineNumber]<<G4en 265 // <<fSplineEnergy[fSplineNumber]<<G4endl; 343 } 266 } 344 } 267 } 345 fIntegralTerm[1]=RutherfordIntegral(1,fEnerg 268 fIntegralTerm[1]=RutherfordIntegral(1,fEnergyInterval[1],fSplineEnergy[1]); 346 269 347 j = 1; 270 j = 1; 348 271 349 for(i=2;i<=fSplineNumber;++i) << 272 for(i=2;i<=fSplineNumber;i++) 350 { 273 { 351 if(fSplineEnergy[i]<fEnergyInterval[j+1]) 274 if(fSplineEnergy[i]<fEnergyInterval[j+1]) 352 { 275 { 353 fIntegralTerm[i] = fIntegralTerm[i-1] 276 fIntegralTerm[i] = fIntegralTerm[i-1] + 354 RutherfordIntegral << 277 RutherfordIntegral(j,fSplineEnergy[i-1], 355 278 fSplineEnergy[i] ); 356 } 279 } 357 else 280 else 358 { 281 { 359 G4double x = RutherfordIntegral(j,fSpli 282 G4double x = RutherfordIntegral(j,fSplineEnergy[i-1], 360 fEn 283 fEnergyInterval[j+1] ); 361 j++; 284 j++; 362 fIntegralTerm[i] = fIntegralTerm[i-1] 285 fIntegralTerm[i] = fIntegralTerm[i-1] + x + 363 RutherfordIntegral << 286 RutherfordIntegral(j,fEnergyInterval[j], 364 287 fSplineEnergy[i] ); 365 } 288 } 366 // G4cout<<i<<"\t"<<fSplineEnergy[i]<<"\t" 289 // G4cout<<i<<"\t"<<fSplineEnergy[i]<<"\t"<<fIntegralTerm[i]<<"\n"<<G4endl; 367 } 290 } 368 static const G4double nfactor = << 291 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine_structure_const/electron_mass_c2; 369 2*pi*pi*hbarc*hbarc*fine_structure_const/e << 292 fNormalizationCof *= fElectronDensity/fIntegralTerm[fSplineNumber]; 370 fNormalizationCof = nfactor*fElectronDensity << 371 293 372 // G4cout<<"fNormalizationCof = "<<fNormaliz 294 // G4cout<<"fNormalizationCof = "<<fNormalizationCof<<G4endl; 373 295 374 // Calculation of PAI differrential cross-se << 296 // Calculation of PAI differrential cross-section (1/(keV*cm)) 375 // in the energy points near borders of ener << 297 // in the energy points near borders of energy intervals 376 298 377 for(G4int k=1; k<=fIntervalNumber-1; ++k) << 299 for(G4int k=1;k<=fIntervalNumber-1;k++) 378 { 300 { 379 for(j=1; j<=2; ++j) << 301 for(j=1;j<=2;j++) 380 { 302 { 381 i = (k-1)*2 + j; 303 i = (k-1)*2 + j; 382 fImPartDielectricConst[i] = fNormaliz 304 fImPartDielectricConst[i] = fNormalizationCof* 383 ImPartDie << 305 ImPartDielectricConst(k,fSplineEnergy[i]); 384 fRePartDielectricConst[i] = fNormaliz 306 fRePartDielectricConst[i] = fNormalizationCof* 385 RePartDie << 307 RePartDielectricConst(fSplineEnergy[i]); 386 fIntegralTerm[i] *= fNormalizationCof 308 fIntegralTerm[i] *= fNormalizationCof; 387 309 388 fDifPAIySection[i] = DifPAIySection(i 310 fDifPAIySection[i] = DifPAIySection(i,betaGammaSq); 389 fdNdxCerenkov[i] = PAIdNdxCerenkov( 311 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 390 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 312 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 391 } 313 } 392 } 314 } 393 315 394 } // end of NormShift 316 } // end of NormShift 395 317 396 ////////////////////////////////////////////// 318 ///////////////////////////////////////////////////////////////////////// 397 // 319 // 398 // Creation of new energy points as geometrica 320 // Creation of new energy points as geometrical mean of existing 399 // one, calculation PAI_cs for them, while the 321 // one, calculation PAI_cs for them, while the error of logarithmic 400 // linear approximation would be smaller than 322 // linear approximation would be smaller than 'fError' 401 323 402 void G4PAIySection::SplainPAI(G4double betaGam 324 void G4PAIySection::SplainPAI(G4double betaGammaSq) 403 { 325 { 404 G4int k = 1; 326 G4int k = 1; 405 G4int i = 1; 327 G4int i = 1; 406 328 407 while ( (i < fSplineNumber) && (fSplineNumb 329 while ( (i < fSplineNumber) && (fSplineNumber < fMaxSplineSize-1) ) 408 { 330 { 409 if(fSplineEnergy[i+1] > fEnergyInterval[ 331 if(fSplineEnergy[i+1] > fEnergyInterval[k+1]) 410 { 332 { 411 k++; // Here next energy point is 333 k++; // Here next energy point is in next energy interval 412 ++i; << 334 i++; 413 continue; 335 continue; 414 } 336 } 415 // Shifting of arrayes for inserting the << 337 // Shifting of arrayes for inserting the geometrical 416 // average of 'i' and 'i+1' energy point << 338 // average of 'i' and 'i+1' energy points to 'i+1' place 417 fSplineNumber++; 339 fSplineNumber++; 418 340 419 for(G4int j = fSplineNumber; j >= i+2; j 341 for(G4int j = fSplineNumber; j >= i+2; j-- ) 420 { 342 { 421 fSplineEnergy[j] = fSplineEn 343 fSplineEnergy[j] = fSplineEnergy[j-1]; 422 fImPartDielectricConst[j] = fImPartDi 344 fImPartDielectricConst[j] = fImPartDielectricConst[j-1]; 423 fRePartDielectricConst[j] = fRePartDi << 345 fRePartDielectricConst[j] = fRePartDielectricConst[j-1]; 424 fIntegralTerm[j] = fIntegral << 346 fIntegralTerm[j] = fIntegralTerm[j-1]; 425 347 426 fDifPAIySection[j] = fDifPAIySection[ << 348 fDifPAIySection[j] = fDifPAIySection[j-1]; 427 fdNdxCerenkov[j] = fdNdxCerenkov[j- 349 fdNdxCerenkov[j] = fdNdxCerenkov[j-1]; 428 fdNdxPlasmon[j] = fdNdxPlasmon[j-1 350 fdNdxPlasmon[j] = fdNdxPlasmon[j-1]; 429 } 351 } 430 G4double x1 = fSplineEnergy[i]; 352 G4double x1 = fSplineEnergy[i]; 431 G4double x2 = fSplineEnergy[i+1]; 353 G4double x2 = fSplineEnergy[i+1]; 432 G4double yy1 = fDifPAIySection[i]; 354 G4double yy1 = fDifPAIySection[i]; 433 G4double y2 = fDifPAIySection[i+1]; 355 G4double y2 = fDifPAIySection[i+1]; 434 356 435 G4double en1 = sqrt(x1*x2); 357 G4double en1 = sqrt(x1*x2); 436 fSplineEnergy[i+1] = en1; 358 fSplineEnergy[i+1] = en1; 437 359 438 // Calculation of logarithmic linear app << 360 // Calculation of logarithmic linear approximation 439 // in this (enr) energy point, which num << 361 // in this (enr) energy point, which number is 'i+1' now 440 362 441 G4double a = log10(y2/yy1)/log10(x2/x1); 363 G4double a = log10(y2/yy1)/log10(x2/x1); 442 G4double b = log10(yy1) - a*log10(x1); 364 G4double b = log10(yy1) - a*log10(x1); 443 G4double y = a*log10(en1) + b; 365 G4double y = a*log10(en1) + b; 444 y = pow(10.,y); 366 y = pow(10.,y); 445 367 446 // Calculation of the PAI dif. cross-sec << 368 // Calculation of the PAI dif. cross-section at this point 447 369 448 fImPartDielectricConst[i+1] = fNormaliza 370 fImPartDielectricConst[i+1] = fNormalizationCof* 449 ImPartDiel << 371 ImPartDielectricConst(k,fSplineEnergy[i+1]); 450 fRePartDielectricConst[i+1] = fNormaliza 372 fRePartDielectricConst[i+1] = fNormalizationCof* 451 RePartDiel << 373 RePartDielectricConst(fSplineEnergy[i+1]); 452 fIntegralTerm[i+1] = fIntegralTerm[i] + 374 fIntegralTerm[i+1] = fIntegralTerm[i] + fNormalizationCof* 453 RutherfordIntegral( << 375 RutherfordIntegral(k,fSplineEnergy[i], 454 376 fSplineEnergy[i+1]); 455 377 456 fDifPAIySection[i+1] = DifPAIySection(i+ 378 fDifPAIySection[i+1] = DifPAIySection(i+1,betaGammaSq); 457 fdNdxCerenkov[i+1] = PAIdNdxCerenkov(i 379 fdNdxCerenkov[i+1] = PAIdNdxCerenkov(i+1,betaGammaSq); 458 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i+ 380 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i+1,betaGammaSq); 459 381 460 // Condition for next divisi << 382 // Condition for next division of this segment or to pass 461 // to higher energies << 383 // to higher energies 462 384 463 G4double x = 2*(fDifPAIySection[i+1] - y 385 G4double x = 2*(fDifPAIySection[i+1] - y)/(fDifPAIySection[i+1] + y); 464 386 465 G4double delta = 2.*(fSplineEnergy[i+1]- << 466 /(fSplineEnergy[i+1]+fSplineEnergy[i]) << 467 << 468 if( x < 0 ) 387 if( x < 0 ) 469 { 388 { 470 x = -x; << 389 x = -x; 471 } 390 } 472 if( x > fError && fSplineNumber < fMaxSp << 391 if( x > fError && fSplineNumber < fMaxSplineSize-1 ) 473 { 392 { 474 continue; // next division << 393 continue; // next division 475 } 394 } 476 i += 2; // pass to next segment 395 i += 2; // pass to next segment 477 396 478 // Loop checking, 03-Aug-2015, Vladimir << 479 } // close 'while' 397 } // close 'while' 480 398 481 } // end of SplainPAI 399 } // end of SplainPAI 482 400 483 401 484 ////////////////////////////////////////////// 402 //////////////////////////////////////////////////////////////////// 485 // 403 // 486 // Integration over electrons that could be co 404 // Integration over electrons that could be considered 487 // quasi-free at energy transfer of interest 405 // quasi-free at energy transfer of interest 488 406 489 G4double G4PAIySection::RutherfordIntegral( G4 407 G4double G4PAIySection::RutherfordIntegral( G4int k, 490 G4 << 408 G4double x1, 491 << 409 G4double x2 ) 492 { 410 { 493 G4double c1, c2, c3; 411 G4double c1, c2, c3; 494 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<< << 412 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl; 495 G4double x12 = x1*x2; << 413 c1 = (x2 - x1)/x1/x2; 496 c1 = (x2 - x1)/x12; << 414 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2; 497 c2 = (x2 - x1)*(x2 + x1)/(x12*x12); << 415 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 498 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/(x12 << 499 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "< 416 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "<<c2<<"; "<<"c3 = "<<c3<<G4endl; 500 417 501 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3 418 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3[k]*c2/2 + fA4[k]*c3/3; 502 419 503 } // end of RutherfordIntegral 420 } // end of RutherfordIntegral 504 421 505 422 506 ////////////////////////////////////////////// 423 ///////////////////////////////////////////////////////////////// 507 // 424 // 508 // Imaginary part of dielectric constant 425 // Imaginary part of dielectric constant 509 // (G4int k - interval number, G4double en1 - 426 // (G4int k - interval number, G4double en1 - energy point) 510 427 511 G4double G4PAIySection::ImPartDielectricConst( << 428 G4double G4PAIySection::ImPartDielectricConst( G4int k , >> 429 G4double energy1 ) 512 { 430 { 513 G4double energy2,energy3,energy4,result; 431 G4double energy2,energy3,energy4,result; 514 432 515 energy2 = energy1*energy1; 433 energy2 = energy1*energy1; 516 energy3 = energy2*energy1; 434 energy3 = energy2*energy1; 517 energy4 = energy3*energy1; 435 energy4 = energy3*energy1; 518 436 519 result = fA1[k]/energy1+fA2[k]/energy2+fA3[ 437 result = fA1[k]/energy1+fA2[k]/energy2+fA3[k]/energy3+fA4[k]/energy4; 520 result *=hbarc/energy1; 438 result *=hbarc/energy1; 521 439 522 return result; 440 return result; 523 441 524 } // end of ImPartDielectricConst 442 } // end of ImPartDielectricConst 525 443 526 444 527 ////////////////////////////////////////////// 445 ////////////////////////////////////////////////////////////////////////////// 528 // 446 // 529 // Real part of dielectric constant minus unit 447 // Real part of dielectric constant minus unit: epsilon_1 - 1 530 // (G4double enb - energy point) 448 // (G4double enb - energy point) 531 // 449 // 532 450 533 G4double G4PAIySection::RePartDielectricConst( 451 G4double G4PAIySection::RePartDielectricConst(G4double enb) 534 { 452 { 535 G4double x0, x02, x03, x04, x05, x1, x2, xx 453 G4double x0, x02, x03, x04, x05, x1, x2, xx1 ,xx2 , xx12, 536 c1, c2, c3, cof1, cof2, xln1, xln2 454 c1, c2, c3, cof1, cof2, xln1, xln2, xln3, result; 537 455 538 x0 = enb; 456 x0 = enb; 539 result = 0; 457 result = 0; 540 458 541 for(G4int i=1;i<=fIntervalNumber-1;++i) << 459 for(G4int i=1;i<=fIntervalNumber-1;i++) 542 { 460 { 543 x1 = fEnergyInterval[i]; 461 x1 = fEnergyInterval[i]; 544 x2 = fEnergyInterval[i+1]; 462 x2 = fEnergyInterval[i+1]; 545 xx1 = x1 - x0; 463 xx1 = x1 - x0; 546 xx2 = x2 - x0; 464 xx2 = x2 - x0; 547 xx12 = xx2/xx1; 465 xx12 = xx2/xx1; 548 466 549 if(xx12<0.) << 467 if(xx12<0) 550 { 468 { 551 xx12 = -xx12; << 469 xx12 = -xx12; 552 } 470 } 553 xln1 = log(x2/x1); 471 xln1 = log(x2/x1); 554 xln2 = log(xx12); 472 xln2 = log(xx12); 555 xln3 = log((x2 + x0)/(x1 + x0)); 473 xln3 = log((x2 + x0)/(x1 + x0)); 556 x02 = x0*x0; 474 x02 = x0*x0; 557 x03 = x02*x0; 475 x03 = x02*x0; 558 x04 = x03*x0; 476 x04 = x03*x0; 559 x05 = x04*x0; 477 x05 = x04*x0; 560 G4double x12 = x1*x2; << 478 c1 = (x2 - x1)/x1/x2; 561 c1 = (x2 - x1)/x12; << 479 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2; 562 c2 = (x2 - x1)*(x2 +x1)/(x12*x12); << 480 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 563 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/( << 564 481 565 result -= (fA1[i]/x02 + fA3[i]/x04)*xln1 482 result -= (fA1[i]/x02 + fA3[i]/x04)*xln1; 566 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 483 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 567 result -= fA3[i]*c2/2/x02; 484 result -= fA3[i]*c2/2/x02; 568 result -= fA4[i]*c3/3/x02; 485 result -= fA4[i]*c3/3/x02; 569 486 570 cof1 = fA1[i]/x02 + fA3[i]/x04; 487 cof1 = fA1[i]/x02 + fA3[i]/x04; 571 cof2 = fA2[i]/x03 + fA4[i]/x05; 488 cof2 = fA2[i]/x03 + fA4[i]/x05; 572 489 573 result += 0.5*(cof1 +cof2)*xln2; 490 result += 0.5*(cof1 +cof2)*xln2; 574 result += 0.5*(cof1 - cof2)*xln3; 491 result += 0.5*(cof1 - cof2)*xln3; 575 } 492 } 576 result *= 2*hbarc/pi; 493 result *= 2*hbarc/pi; 577 494 578 return result; 495 return result; 579 496 580 } // end of RePartDielectricConst 497 } // end of RePartDielectricConst 581 498 582 ////////////////////////////////////////////// 499 ////////////////////////////////////////////////////////////////////// 583 // 500 // 584 // PAI differential cross-section in terms of 501 // PAI differential cross-section in terms of 585 // simplified Allison's equation 502 // simplified Allison's equation 586 // 503 // 587 504 588 G4double G4PAIySection::DifPAIySection( G4int 505 G4double G4PAIySection::DifPAIySection( G4int i , 589 G4doub 506 G4double betaGammaSq ) 590 { 507 { 591 G4double beta, be2,cof,x1,x2,x3,x4,x5,x6,x7 << 508 G4double be2,cof,x1,x2,x3,x4,x5,x6,x7,x8,result; >> 509 //G4double beta, be4; >> 510 G4double be4; >> 511 G4double betaBohr2 = fine_structure_const*fine_structure_const; >> 512 G4double betaBohr4 = betaBohr2*betaBohr2*4.0; 592 be2 = betaGammaSq/(1 + betaGammaSq); 513 be2 = betaGammaSq/(1 + betaGammaSq); 593 beta = std::sqrt(be2); << 514 be4 = be2*be2; >> 515 // beta = sqrt(be2); 594 cof = 1; 516 cof = 1; 595 x1 = log(2*electron_mass_c2/fSplineEnergy[i 517 x1 = log(2*electron_mass_c2/fSplineEnergy[i]); 596 518 597 if( betaGammaSq < 0.01 ) x2 = log(be2); 519 if( betaGammaSq < 0.01 ) x2 = log(be2); 598 else 520 else 599 { 521 { 600 x2 = -log( (1/betaGammaSq - fRePartDielec 522 x2 = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 601 (1/betaGammaSq - fRePartDielec << 523 (1/betaGammaSq - fRePartDielectricConst[i]) + 602 fImPartDielectricConst[i]*fImP << 524 fImPartDielectricConst[i]*fImPartDielectricConst[i] )/2; 603 } 525 } 604 if( fImPartDielectricConst[i] == 0.0 ||beta 526 if( fImPartDielectricConst[i] == 0.0 ||betaGammaSq < 0.01 ) 605 { 527 { 606 x6=0; 528 x6=0; 607 } 529 } 608 else 530 else 609 { 531 { 610 x3 = -fRePartDielectricConst[i] + 1/betaG 532 x3 = -fRePartDielectricConst[i] + 1/betaGammaSq; 611 x5 = -1 - fRePartDielectricConst[i] + 533 x5 = -1 - fRePartDielectricConst[i] + 612 be2*((1 +fRePartDielectricConst[i])* 534 be2*((1 +fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 613 fImPartDielectricConst[i]*fImPartDie << 535 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 614 536 615 x7 = std::atan2(fImPartDielectricConst[i] << 537 x7 = atan2(fImPartDielectricConst[i],x3); 616 x6 = x5 * x7; 538 x6 = x5 * x7; 617 } 539 } >> 540 // if(fImPartDielectricConst[i] == 0) x6 = 0; >> 541 618 x4 = ((x1 + x2)*fImPartDielectricConst[i] + 542 x4 = ((x1 + x2)*fImPartDielectricConst[i] + x6)/hbarc; >> 543 // if( x4 < 0.0 ) x4 = 0.0; 619 x8 = (1 + fRePartDielectricConst[i])*(1 + f 544 x8 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 620 fImPartDielectricConst[i]*fImPartDiele 545 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 621 546 622 result = (x4 + cof*fIntegralTerm[i]/fSpline 547 result = (x4 + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i]); 623 result = std::max(result, 1.0e-8); << 548 if(result < 1.0e-8) result = 1.0e-8; 624 result *= fine_structure_const/(be2*pi); << 549 result *= fine_structure_const/be2/pi; 625 // low energy correction << 550 // result *= (1-exp(-beta/betaBohr))*(1-exp(-beta/betaBohr)); 626 << 551 // result *= (1-exp(-be2/betaBohr2)); 627 G4double lowCof = fLowEnergyCof; // 6.0 ; / << 552 result *= (1-exp(-be4/betaBohr4)); 628 << 553 // if(fDensity >= 0.1) 629 result *= (1 - std::exp(-beta/(betaBohr*low << 630 if(x8 > 0.) 554 if(x8 > 0.) 631 { 555 { 632 result /= x8; << 556 result /= x8; 633 } 557 } 634 return result; 558 return result; 635 559 636 } // end of DifPAIySection 560 } // end of DifPAIySection 637 561 638 ////////////////////////////////////////////// 562 ////////////////////////////////////////////////////////////////////////// 639 // 563 // 640 // Calculation od dN/dx of collisions with cre 564 // Calculation od dN/dx of collisions with creation of Cerenkov pseudo-photons 641 565 642 G4double G4PAIySection::PAIdNdxCerenkov( G4int << 566 G4double G4PAIySection::PAIdNdxCerenkov( G4int i , >> 567 G4double betaGammaSq ) 643 { 568 { 644 G4double logarithm, x3, x5, argument, modul << 569 G4double cof, logarithm, x3, x5, argument, modul2, dNdxC; 645 G4double be2, be4; << 570 G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr; >> 571 >> 572 cof = 1.0; >> 573 cofBetaBohr = 4.0; >> 574 betaBohr2 = fine_structure_const*fine_structure_const; >> 575 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 646 576 647 be2 = betaGammaSq/(1 + betaGammaSq); 577 be2 = betaGammaSq/(1 + betaGammaSq); 648 be4 = be2*be2; 578 be4 = be2*be2; 649 579 650 if( betaGammaSq < 0.01 ) logarithm = log(1. 580 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq); // 0.0; 651 else 581 else 652 { 582 { 653 logarithm = -std::log( (1/betaGammaSq - f << 583 logarithm = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 654 (1/betaGammaSq - fRePa << 584 (1/betaGammaSq - fRePartDielectricConst[i]) + 655 fImPartDielectricConst << 585 fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5; 656 logarithm += std::log(1+1.0/betaGammaSq); << 586 logarithm += log(1+1.0/betaGammaSq); 657 } 587 } 658 588 659 if( fImPartDielectricConst[i] == 0.0 || bet 589 if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 ) 660 { 590 { 661 argument = 0.0; 591 argument = 0.0; 662 } 592 } 663 else 593 else 664 { 594 { 665 x3 = -fRePartDielectricConst[i] + 1.0/bet 595 x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq; 666 x5 = -1.0 - fRePartDielectricConst[i] + 596 x5 = -1.0 - fRePartDielectricConst[i] + 667 be2*((1.0 +fRePartDielectricConst[i] 597 be2*((1.0 +fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + 668 fImPartDielectricConst[i]*fImPartDie << 598 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 669 if( x3 == 0.0 ) argument = 0.5*pi; 599 if( x3 == 0.0 ) argument = 0.5*pi; 670 else argument = std::atan2(fIm << 600 else argument = atan2(fImPartDielectricConst[i],x3); 671 argument *= x5 ; 601 argument *= x5 ; 672 } 602 } 673 dNdxC = ( logarithm*fImPartDielectricConst[ 603 dNdxC = ( logarithm*fImPartDielectricConst[i] + argument )/hbarc; 674 604 675 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 605 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 676 606 677 dNdxC *= fine_structure_const/be2/pi; 607 dNdxC *= fine_structure_const/be2/pi; 678 608 679 dNdxC *= (1 - std::exp(-be4/betaBohr4)); << 609 dNdxC *= (1-exp(-be4/betaBohr4)); 680 610 >> 611 // if(fDensity >= 0.1) >> 612 // { 681 modul2 = (1.0 + fRePartDielectricConst[i])* 613 modul2 = (1.0 + fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + 682 fImPartDielectricConst[i]* 614 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 683 if(modul2 > 0.) 615 if(modul2 > 0.) 684 { 616 { 685 dNdxC /= modul2; 617 dNdxC /= modul2; 686 } 618 } 687 return dNdxC; 619 return dNdxC; 688 620 689 } // end of PAIdNdxCerenkov 621 } // end of PAIdNdxCerenkov 690 622 691 ////////////////////////////////////////////// 623 ////////////////////////////////////////////////////////////////////////// 692 // 624 // 693 // Calculation od dN/dx of collisions with cre 625 // Calculation od dN/dx of collisions with creation of longitudinal EM 694 // excitations (plasmons, delta-electrons) 626 // excitations (plasmons, delta-electrons) 695 627 696 G4double G4PAIySection::PAIdNdxPlasmon( G4int << 628 G4double G4PAIySection::PAIdNdxPlasmon( G4int i , >> 629 G4double betaGammaSq ) 697 { 630 { 698 G4double cof, resonance, modul2, dNdxP; 631 G4double cof, resonance, modul2, dNdxP; 699 G4double be2, be4; << 632 G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr; 700 633 701 cof = 1; 634 cof = 1; >> 635 cofBetaBohr = 4.0; >> 636 betaBohr2 = fine_structure_const*fine_structure_const; >> 637 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 702 638 703 be2 = betaGammaSq/(1 + betaGammaSq); 639 be2 = betaGammaSq/(1 + betaGammaSq); 704 be4 = be2*be2; 640 be4 = be2*be2; 705 641 706 resonance = std::log(2*electron_mass_c2*be2 << 642 resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]); 707 resonance *= fImPartDielectricConst[i]/hbar 643 resonance *= fImPartDielectricConst[i]/hbarc; 708 644 >> 645 709 dNdxP = ( resonance + cof*fIntegralTerm[i]/ 646 dNdxP = ( resonance + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i] ); 710 647 711 dNdxP = std::max(dNdxP, 1.0e-8); << 648 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 712 649 713 dNdxP *= fine_structure_const/be2/pi; 650 dNdxP *= fine_structure_const/be2/pi; 714 dNdxP *= (1 - std::exp(-be4/betaBohr4)); << 651 dNdxP *= (1-exp(-be4/betaBohr4)); 715 652 >> 653 // if( fDensity >= 0.1 ) >> 654 // { 716 modul2 = (1 + fRePartDielectricConst[i])*(1 655 modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 717 fImPartDielectricConst[i]*fImPartDielectr 656 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 718 if(modul2 > 0.) 657 if(modul2 > 0.) 719 { 658 { 720 dNdxP /= modul2; 659 dNdxP /= modul2; 721 } 660 } 722 return dNdxP; 661 return dNdxP; 723 662 724 } // end of PAIdNdxPlasmon 663 } // end of PAIdNdxPlasmon 725 664 726 ////////////////////////////////////////////// 665 //////////////////////////////////////////////////////////////////////// 727 // 666 // 728 // Calculation of the PAI integral cross-secti 667 // Calculation of the PAI integral cross-section 729 // fIntegralPAIySection[1] = specific primary 668 // fIntegralPAIySection[1] = specific primary ionisation, 1/cm 730 // and fIntegralPAIySection[0] = mean energy l 669 // and fIntegralPAIySection[0] = mean energy loss per cm in keV/cm 731 670 732 void G4PAIySection::IntegralPAIySection() 671 void G4PAIySection::IntegralPAIySection() 733 { 672 { 734 fIntegralPAIySection[fSplineNumber] = 0; 673 fIntegralPAIySection[fSplineNumber] = 0; 735 fIntegralPAIdEdx[fSplineNumber] = 0; 674 fIntegralPAIdEdx[fSplineNumber] = 0; 736 fIntegralPAIySection[0] = 0; 675 fIntegralPAIySection[0] = 0; 737 G4int k = fIntervalNumber -1; 676 G4int k = fIntervalNumber -1; 738 677 739 for(G4int i = fSplineNumber-1; i >= 1; i--) 678 for(G4int i = fSplineNumber-1; i >= 1; i--) 740 { 679 { 741 if(fSplineEnergy[i] >= fEnergyInterval[k]) 680 if(fSplineEnergy[i] >= fEnergyInterval[k]) 742 { 681 { 743 fIntegralPAIySection[i] = fIntegralPAIyS 682 fIntegralPAIySection[i] = fIntegralPAIySection[i+1] + SumOverInterval(i); 744 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i 683 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + SumOverIntervaldEdx(i); 745 } 684 } 746 else 685 else 747 { 686 { 748 fIntegralPAIySection[i] = fIntegralPAIyS 687 fIntegralPAIySection[i] = fIntegralPAIySection[i+1] + 749 SumOverBord << 688 SumOverBorder(i+1,fEnergyInterval[k]); 750 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i 689 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + 751 SumOverBord << 690 SumOverBorderdEdx(i+1,fEnergyInterval[k]); 752 k--; 691 k--; 753 } 692 } 754 } 693 } 755 } // end of IntegralPAIySection 694 } // end of IntegralPAIySection 756 695 757 ////////////////////////////////////////////// 696 //////////////////////////////////////////////////////////////////////// 758 // 697 // 759 // Calculation of the PAI Cerenkov integral cr 698 // Calculation of the PAI Cerenkov integral cross-section 760 // fIntegralCrenkov[1] = specific Crenkov ioni 699 // fIntegralCrenkov[1] = specific Crenkov ionisation, 1/cm 761 // and fIntegralCerenkov[0] = mean Cerenkov lo 700 // and fIntegralCerenkov[0] = mean Cerenkov loss per cm in keV/cm 762 701 763 void G4PAIySection::IntegralCerenkov() 702 void G4PAIySection::IntegralCerenkov() 764 { 703 { 765 G4int i, k; 704 G4int i, k; 766 fIntegralCerenkov[fSplineNumber] = 0; 705 fIntegralCerenkov[fSplineNumber] = 0; 767 fIntegralCerenkov[0] = 0; 706 fIntegralCerenkov[0] = 0; 768 k = fIntervalNumber -1; 707 k = fIntervalNumber -1; 769 708 770 for( i = fSplineNumber-1; i >= 1; i-- ) 709 for( i = fSplineNumber-1; i >= 1; i-- ) 771 { 710 { 772 if(fSplineEnergy[i] >= fEnergyInterval[k 711 if(fSplineEnergy[i] >= fEnergyInterval[k]) 773 { 712 { 774 fIntegralCerenkov[i] = fIntegralCerenk 713 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + SumOverInterCerenkov(i); 775 // G4cout<<"int: i = "<<i<<"; sumC = " << 714 // G4cout<<"int: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 776 } 715 } 777 else 716 else 778 { 717 { 779 fIntegralCerenkov[i] = fIntegralCerenk 718 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + 780 SumOverBord << 719 SumOverBordCerenkov(i+1,fEnergyInterval[k]); 781 k--; << 720 k--; 782 // G4cout<<"bord: i = "<<i<<"; sumC = << 721 // G4cout<<"bord: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 783 } 722 } 784 } 723 } 785 724 786 } // end of IntegralCerenkov 725 } // end of IntegralCerenkov 787 726 788 ////////////////////////////////////////////// 727 //////////////////////////////////////////////////////////////////////// 789 // 728 // 790 // Calculation of the PAI Plasmon integral cro 729 // Calculation of the PAI Plasmon integral cross-section 791 // fIntegralPlasmon[1] = splasmon primary ioni 730 // fIntegralPlasmon[1] = splasmon primary ionisation, 1/cm 792 // and fIntegralPlasmon[0] = mean plasmon loss 731 // and fIntegralPlasmon[0] = mean plasmon loss per cm in keV/cm 793 732 794 void G4PAIySection::IntegralPlasmon() 733 void G4PAIySection::IntegralPlasmon() 795 { 734 { 796 fIntegralPlasmon[fSplineNumber] = 0; 735 fIntegralPlasmon[fSplineNumber] = 0; 797 fIntegralPlasmon[0] = 0; 736 fIntegralPlasmon[0] = 0; 798 G4int k = fIntervalNumber -1; 737 G4int k = fIntervalNumber -1; 799 for(G4int i=fSplineNumber-1;i>=1;i--) 738 for(G4int i=fSplineNumber-1;i>=1;i--) 800 { 739 { 801 if(fSplineEnergy[i] >= fEnergyInterval[k 740 if(fSplineEnergy[i] >= fEnergyInterval[k]) 802 { 741 { 803 fIntegralPlasmon[i] = fIntegralPlasmon 742 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + SumOverInterPlasmon(i); 804 } 743 } 805 else 744 else 806 { 745 { 807 fIntegralPlasmon[i] = fIntegralPlasmon 746 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + 808 SumOverBord << 747 SumOverBordPlasmon(i+1,fEnergyInterval[k]); 809 k--; << 748 k--; 810 } 749 } 811 } 750 } >> 751 812 } // end of IntegralPlasmon 752 } // end of IntegralPlasmon 813 753 814 ////////////////////////////////////////////// 754 ////////////////////////////////////////////////////////////////////// 815 // 755 // 816 // Calculation the PAI integral cross-section 756 // Calculation the PAI integral cross-section inside 817 // of interval of continuous values of photo-i 757 // of interval of continuous values of photo-ionisation 818 // cross-section. Parameter 'i' is the number 758 // cross-section. Parameter 'i' is the number of interval. 819 759 820 G4double G4PAIySection::SumOverInterval( G4int 760 G4double G4PAIySection::SumOverInterval( G4int i ) 821 { 761 { 822 G4double x0,x1,y0,yy1,a,b,c,result; 762 G4double x0,x1,y0,yy1,a,b,c,result; 823 763 824 x0 = fSplineEnergy[i]; 764 x0 = fSplineEnergy[i]; 825 x1 = fSplineEnergy[i+1]; 765 x1 = fSplineEnergy[i+1]; 826 << 827 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 828 << 829 y0 = fDifPAIySection[i]; 766 y0 = fDifPAIySection[i]; 830 yy1 = fDifPAIySection[i+1]; 767 yy1 = fDifPAIySection[i+1]; 831 //G4cout << "## x0= " << x0 << " x1= " << x << 832 c = x1/x0; 768 c = x1/x0; 833 //G4cout << "c= " << c << " y0= " << y0 << << 834 a = log10(yy1/y0)/log10(c); 769 a = log10(yy1/y0)/log10(c); 835 //G4cout << "a= " << a << G4endl; << 770 // b = log10(y0) - a*log10(x0); 836 << 771 b = y0/pow(x0,a); 837 b = 0.0; << 838 if(a < 20.) b = y0/pow(x0,a); << 839 << 840 a += 1; 772 a += 1; 841 if(a == 0) 773 if(a == 0) 842 { 774 { 843 result = b*log(x1/x0); 775 result = b*log(x1/x0); 844 } 776 } 845 else 777 else 846 { 778 { 847 result = y0*(x1*pow(c,a-1) - x0)/a; 779 result = y0*(x1*pow(c,a-1) - x0)/a; 848 } 780 } 849 a++; 781 a++; 850 if(a == 0) 782 if(a == 0) 851 { 783 { 852 fIntegralPAIySection[0] += b*log(x1/x0); 784 fIntegralPAIySection[0] += b*log(x1/x0); 853 } 785 } 854 else 786 else 855 { 787 { 856 fIntegralPAIySection[0] += y0*(x1*x1*pow 788 fIntegralPAIySection[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 857 } 789 } 858 return result; 790 return result; 859 791 860 } // end of SumOverInterval 792 } // end of SumOverInterval 861 793 862 ///////////////////////////////// 794 ///////////////////////////////// 863 795 864 G4double G4PAIySection::SumOverIntervaldEdx( G 796 G4double G4PAIySection::SumOverIntervaldEdx( G4int i ) 865 { 797 { 866 G4double x0,x1,y0,yy1,a,b,c,result; 798 G4double x0,x1,y0,yy1,a,b,c,result; 867 799 868 x0 = fSplineEnergy[i]; 800 x0 = fSplineEnergy[i]; 869 x1 = fSplineEnergy[i+1]; 801 x1 = fSplineEnergy[i+1]; 870 << 871 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 872 << 873 y0 = fDifPAIySection[i]; 802 y0 = fDifPAIySection[i]; 874 yy1 = fDifPAIySection[i+1]; 803 yy1 = fDifPAIySection[i+1]; 875 c = x1/x0; 804 c = x1/x0; 876 a = log10(yy1/y0)/log10(c); 805 a = log10(yy1/y0)/log10(c); 877 << 806 // b = log10(y0) - a*log10(x0); 878 b = 0.0; << 807 b = y0/pow(x0,a); 879 if(a < 20.) b = y0/pow(x0,a); << 880 << 881 a += 2; 808 a += 2; 882 if(a == 0) 809 if(a == 0) 883 { 810 { 884 result = b*log(x1/x0); 811 result = b*log(x1/x0); 885 } 812 } 886 else 813 else 887 { 814 { 888 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 815 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 889 } 816 } 890 return result; 817 return result; 891 818 892 } // end of SumOverInterval 819 } // end of SumOverInterval 893 820 894 ////////////////////////////////////////////// 821 ////////////////////////////////////////////////////////////////////// 895 // 822 // 896 // Calculation the PAI Cerenkov integral cross 823 // Calculation the PAI Cerenkov integral cross-section inside 897 // of interval of continuous values of photo-i 824 // of interval of continuous values of photo-ionisation Cerenkov 898 // cross-section. Parameter 'i' is the number 825 // cross-section. Parameter 'i' is the number of interval. 899 826 900 G4double G4PAIySection::SumOverInterCerenkov( 827 G4double G4PAIySection::SumOverInterCerenkov( G4int i ) 901 { 828 { 902 G4double x0,x1,y0,yy1,a,c,result; 829 G4double x0,x1,y0,yy1,a,c,result; 903 830 904 x0 = fSplineEnergy[i]; 831 x0 = fSplineEnergy[i]; 905 x1 = fSplineEnergy[i+1]; 832 x1 = fSplineEnergy[i+1]; 906 << 907 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 908 << 909 y0 = fdNdxCerenkov[i]; 833 y0 = fdNdxCerenkov[i]; 910 yy1 = fdNdxCerenkov[i+1]; 834 yy1 = fdNdxCerenkov[i+1]; 911 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<" 835 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<"; x1 = "<<x1 912 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4en 836 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 913 837 914 c = x1/x0; 838 c = x1/x0; 915 a = log10(yy1/y0)/log10(c); 839 a = log10(yy1/y0)/log10(c); 916 G4double b = 0.0; 840 G4double b = 0.0; 917 if(a < 20.) b = y0/pow(x0,a); 841 if(a < 20.) b = y0/pow(x0,a); 918 842 919 a += 1.0; 843 a += 1.0; 920 if(a == 0) result = b*log(c); 844 if(a == 0) result = b*log(c); 921 else result = y0*(x1*pow(c,a-1) - x0) 845 else result = y0*(x1*pow(c,a-1) - x0)/a; 922 a += 1.0; 846 a += 1.0; 923 847 924 if( a == 0 ) fIntegralCerenkov[0] += b*log( 848 if( a == 0 ) fIntegralCerenkov[0] += b*log(x1/x0); 925 else fIntegralCerenkov[0] += y0*(x1 849 else fIntegralCerenkov[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 926 // G4cout<<"a = "<<a<<"; b = "<<b<<"; resu 850 // G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 927 return result; 851 return result; 928 852 929 } // end of SumOverInterCerenkov 853 } // end of SumOverInterCerenkov 930 854 931 ////////////////////////////////////////////// 855 ////////////////////////////////////////////////////////////////////// 932 // 856 // 933 // Calculation the PAI Plasmon integral cross- 857 // Calculation the PAI Plasmon integral cross-section inside 934 // of interval of continuous values of photo-i 858 // of interval of continuous values of photo-ionisation Plasmon 935 // cross-section. Parameter 'i' is the number 859 // cross-section. Parameter 'i' is the number of interval. 936 860 937 G4double G4PAIySection::SumOverInterPlasmon( G 861 G4double G4PAIySection::SumOverInterPlasmon( G4int i ) 938 { 862 { 939 G4double x0,x1,y0,yy1,a,c,result; << 863 G4double x0,x1,y0,yy1,a,c,result; 940 864 941 x0 = fSplineEnergy[i]; 865 x0 = fSplineEnergy[i]; 942 x1 = fSplineEnergy[i+1]; 866 x1 = fSplineEnergy[i+1]; 943 << 944 if( std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) << 945 << 946 y0 = fdNdxPlasmon[i]; 867 y0 = fdNdxPlasmon[i]; 947 yy1 = fdNdxPlasmon[i+1]; 868 yy1 = fdNdxPlasmon[i+1]; 948 c = x1/x0; << 869 c =x1/x0; 949 a = log10(yy1/y0)/log10(c); 870 a = log10(yy1/y0)/log10(c); 950 871 951 G4double b = 0.0; 872 G4double b = 0.0; 952 if(a < 20.) b = y0/pow(x0,a); 873 if(a < 20.) b = y0/pow(x0,a); 953 874 954 a += 1.0; 875 a += 1.0; 955 if(a == 0) result = b*log(x1/x0); 876 if(a == 0) result = b*log(x1/x0); 956 else result = y0*(x1*pow(c,a-1) - x0) 877 else result = y0*(x1*pow(c,a-1) - x0)/a; 957 a += 1.0; 878 a += 1.0; 958 879 959 if( a == 0 ) fIntegralPlasmon[0] += b*log(x 880 if( a == 0 ) fIntegralPlasmon[0] += b*log(x1/x0); 960 else fIntegralPlasmon[0] += y0*(x1* 881 else fIntegralPlasmon[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 961 882 962 return result; 883 return result; 963 884 964 } // end of SumOverInterPlasmon 885 } // end of SumOverInterPlasmon 965 886 966 ////////////////////////////////////////////// 887 /////////////////////////////////////////////////////////////////////////////// 967 // 888 // 968 // Integration of PAI cross-section for the ca 889 // Integration of PAI cross-section for the case of 969 // passing across border between intervals 890 // passing across border between intervals 970 891 971 G4double G4PAIySection::SumOverBorder( G4int 892 G4double G4PAIySection::SumOverBorder( G4int i , 972 G4doubl 893 G4double en0 ) 973 { 894 { 974 G4double x0,x1,y0,yy1,a,d,e0,result; << 895 G4double x0,x1,y0,yy1,a,c,d,e0,result; 975 896 976 e0 = en0; 897 e0 = en0; 977 x0 = fSplineEnergy[i]; 898 x0 = fSplineEnergy[i]; 978 x1 = fSplineEnergy[i+1]; 899 x1 = fSplineEnergy[i+1]; 979 y0 = fDifPAIySection[i]; 900 y0 = fDifPAIySection[i]; 980 yy1 = fDifPAIySection[i+1]; 901 yy1 = fDifPAIySection[i+1]; 981 902 >> 903 c = x1/x0; 982 d = e0/x0; 904 d = e0/x0; 983 a = log10(yy1/y0)/log10(x1/x0); 905 a = log10(yy1/y0)/log10(x1/x0); 984 906 985 G4double b = 0.0; 907 G4double b = 0.0; 986 if(a < 20.) b = y0/pow(x0,a); 908 if(a < 20.) b = y0/pow(x0,a); 987 909 988 a += 1; 910 a += 1; 989 if(a == 0) 911 if(a == 0) 990 { 912 { 991 result = b*log(x0/e0); 913 result = b*log(x0/e0); 992 } 914 } 993 else 915 else 994 { 916 { 995 result = y0*(x0 - e0*pow(d,a-1))/a; 917 result = y0*(x0 - e0*pow(d,a-1))/a; 996 } 918 } 997 a++; 919 a++; 998 if(a == 0) 920 if(a == 0) 999 { 921 { 1000 fIntegralPAIySection[0] += b*log(x0/e0) 922 fIntegralPAIySection[0] += b*log(x0/e0); 1001 } 923 } 1002 else 924 else 1003 { 925 { 1004 fIntegralPAIySection[0] += y0*(x0*x0 - 926 fIntegralPAIySection[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1005 } 927 } 1006 x0 = fSplineEnergy[i - 1]; 928 x0 = fSplineEnergy[i - 1]; 1007 x1 = fSplineEnergy[i - 2]; 929 x1 = fSplineEnergy[i - 2]; 1008 y0 = fDifPAIySection[i - 1]; 930 y0 = fDifPAIySection[i - 1]; 1009 yy1 = fDifPAIySection[i - 2]; 931 yy1 = fDifPAIySection[i - 2]; 1010 932 1011 //c = x1/x0; << 933 c = x1/x0; 1012 d = e0/x0; 934 d = e0/x0; 1013 a = log10(yy1/y0)/log10(x1/x0); 935 a = log10(yy1/y0)/log10(x1/x0); 1014 << 936 // b0 = log10(y0) - a*log10(x0); 1015 b = 0.0; << 937 b = y0/pow(x0,a); 1016 if(a < 20.) b = y0/pow(x0,a); << 1017 << 1018 a += 1; 938 a += 1; 1019 if(a == 0) 939 if(a == 0) 1020 { 940 { 1021 result += b*log(e0/x0); 941 result += b*log(e0/x0); 1022 } 942 } 1023 else 943 else 1024 { 944 { 1025 result += y0*(e0*pow(d,a-1) - x0)/a; 945 result += y0*(e0*pow(d,a-1) - x0)/a; 1026 } 946 } 1027 a++; 947 a++; 1028 if(a == 0) 948 if(a == 0) 1029 { 949 { 1030 fIntegralPAIySection[0] += b*log(e0/x0) 950 fIntegralPAIySection[0] += b*log(e0/x0); 1031 } 951 } 1032 else 952 else 1033 { 953 { 1034 fIntegralPAIySection[0] += y0*(e0*e0*po 954 fIntegralPAIySection[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1035 } 955 } 1036 return result; 956 return result; 1037 957 1038 } 958 } 1039 959 1040 ///////////////////////////////////////////// 960 /////////////////////////////////////////////////////////////////////// 1041 961 1042 G4double G4PAIySection::SumOverBorderdEdx( G4 962 G4double G4PAIySection::SumOverBorderdEdx( G4int i , 1043 G4doub 963 G4double en0 ) 1044 { 964 { 1045 G4double x0,x1,y0,yy1,a,/*c,*/d,e0,result; << 965 G4double x0,x1,y0,yy1,a,c,d,e0,result; 1046 966 1047 e0 = en0; 967 e0 = en0; 1048 x0 = fSplineEnergy[i]; 968 x0 = fSplineEnergy[i]; 1049 x1 = fSplineEnergy[i+1]; 969 x1 = fSplineEnergy[i+1]; 1050 y0 = fDifPAIySection[i]; 970 y0 = fDifPAIySection[i]; 1051 yy1 = fDifPAIySection[i+1]; 971 yy1 = fDifPAIySection[i+1]; 1052 972 >> 973 c = x1/x0; 1053 d = e0/x0; 974 d = e0/x0; 1054 a = log10(yy1/y0)/log10(x1/x0); 975 a = log10(yy1/y0)/log10(x1/x0); 1055 976 1056 G4double b = 0.0; 977 G4double b = 0.0; 1057 if(a < 20.) b = y0/pow(x0,a); 978 if(a < 20.) b = y0/pow(x0,a); 1058 979 1059 a += 2; 980 a += 2; 1060 if(a == 0) 981 if(a == 0) 1061 { 982 { 1062 result = b*log(x0/e0); 983 result = b*log(x0/e0); 1063 } 984 } 1064 else 985 else 1065 { 986 { 1066 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/ 987 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1067 } 988 } 1068 x0 = fSplineEnergy[i - 1]; 989 x0 = fSplineEnergy[i - 1]; 1069 x1 = fSplineEnergy[i - 2]; 990 x1 = fSplineEnergy[i - 2]; 1070 y0 = fDifPAIySection[i - 1]; 991 y0 = fDifPAIySection[i - 1]; 1071 yy1 = fDifPAIySection[i - 2]; 992 yy1 = fDifPAIySection[i - 2]; 1072 993 >> 994 c = x1/x0; 1073 d = e0/x0; 995 d = e0/x0; 1074 a = log10(yy1/y0)/log10(x1/x0); 996 a = log10(yy1/y0)/log10(x1/x0); 1075 997 1076 b = 0.0; << 1077 if(a < 20.) b = y0/pow(x0,a); 998 if(a < 20.) b = y0/pow(x0,a); 1078 999 1079 a += 2; 1000 a += 2; 1080 if(a == 0) 1001 if(a == 0) 1081 { 1002 { 1082 result += b*log(e0/x0); 1003 result += b*log(e0/x0); 1083 } 1004 } 1084 else 1005 else 1085 { 1006 { 1086 result += y0*(e0*e0*pow(d,a-2) - x0*x0) 1007 result += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1087 } 1008 } 1088 return result; 1009 return result; >> 1010 1089 } 1011 } 1090 1012 1091 ///////////////////////////////////////////// 1013 /////////////////////////////////////////////////////////////////////////////// 1092 // 1014 // 1093 // Integration of Cerenkov cross-section for 1015 // Integration of Cerenkov cross-section for the case of 1094 // passing across border between intervals 1016 // passing across border between intervals 1095 1017 1096 G4double G4PAIySection::SumOverBordCerenkov( 1018 G4double G4PAIySection::SumOverBordCerenkov( G4int i , 1097 1019 G4double en0 ) 1098 { 1020 { 1099 G4double x0,x1,y0,yy1,a,e0,c,d,result; 1021 G4double x0,x1,y0,yy1,a,e0,c,d,result; 1100 1022 1101 e0 = en0; 1023 e0 = en0; 1102 x0 = fSplineEnergy[i]; 1024 x0 = fSplineEnergy[i]; 1103 x1 = fSplineEnergy[i+1]; 1025 x1 = fSplineEnergy[i+1]; 1104 y0 = fdNdxCerenkov[i]; 1026 y0 = fdNdxCerenkov[i]; 1105 yy1 = fdNdxCerenkov[i+1]; 1027 yy1 = fdNdxCerenkov[i+1]; 1106 1028 1107 // G4cout<<G4endl; 1029 // G4cout<<G4endl; 1108 //G4cout<<"SumBordC, i = "<<i<<"; en0 = "< 1030 //G4cout<<"SumBordC, i = "<<i<<"; en0 = "<<en0<<"; x0 ="<<x0<<"; x1 = "<<x1 1109 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G 1031 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1110 c = x1/x0; 1032 c = x1/x0; 1111 d = e0/x0; 1033 d = e0/x0; 1112 a = log10(yy1/y0)/log10(c); 1034 a = log10(yy1/y0)/log10(c); 1113 1035 1114 G4double b = 0.0; 1036 G4double b = 0.0; 1115 if(a < 20.) b = y0/pow(x0,a); 1037 if(a < 20.) b = y0/pow(x0,a); 1116 1038 1117 a += 1.0; 1039 a += 1.0; 1118 if( a == 0 ) result = b*log(x0/e0); 1040 if( a == 0 ) result = b*log(x0/e0); 1119 else result = y0*(x0 - e0*pow(d,a- 1041 else result = y0*(x0 - e0*pow(d,a-1))/a; 1120 a += 1.0; 1042 a += 1.0; 1121 1043 1122 if( a == 0 ) fIntegralCerenkov[0] += b*log 1044 if( a == 0 ) fIntegralCerenkov[0] += b*log(x0/e0); 1123 else fIntegralCerenkov[0] += y0*(x 1045 else fIntegralCerenkov[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1124 1046 1125 //G4cout<<"a = "<<a<<"; b = "<<b<<"; resul 1047 //G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1126 1048 1127 x0 = fSplineEnergy[i - 1]; 1049 x0 = fSplineEnergy[i - 1]; 1128 x1 = fSplineEnergy[i - 2]; 1050 x1 = fSplineEnergy[i - 2]; 1129 y0 = fdNdxCerenkov[i - 1]; 1051 y0 = fdNdxCerenkov[i - 1]; 1130 yy1 = fdNdxCerenkov[i - 2]; 1052 yy1 = fdNdxCerenkov[i - 2]; 1131 1053 1132 //G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 1054 //G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 1133 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4 1055 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1134 1056 1135 c = x1/x0; 1057 c = x1/x0; 1136 d = e0/x0; 1058 d = e0/x0; 1137 a = log10(yy1/y0)/log10(x1/x0); 1059 a = log10(yy1/y0)/log10(x1/x0); 1138 1060 1139 // G4cout << "a= " << a << G4endl; 1061 // G4cout << "a= " << a << G4endl; >> 1062 if(a < 20.) b = y0/pow(x0,a); >> 1063 1140 if(a > 20.0) b = 0.0; 1064 if(a > 20.0) b = 0.0; 1141 else b = y0/pow(x0,a); << 1065 else b = y0/pow(x0,a); // pow(10.,b0); 1142 1066 1143 //G4cout << "b= " << b << G4endl; 1067 //G4cout << "b= " << b << G4endl; 1144 1068 1145 a += 1.0; 1069 a += 1.0; 1146 if( a == 0 ) result += b*log(e0/x0); 1070 if( a == 0 ) result += b*log(e0/x0); 1147 else result += y0*(e0*pow(d,a-1) - 1071 else result += y0*(e0*pow(d,a-1) - x0 )/a; 1148 a += 1.0; 1072 a += 1.0; 1149 //G4cout << "result= " << result << G4endl 1073 //G4cout << "result= " << result << G4endl; 1150 1074 1151 if( a == 0 ) fIntegralCerenkov[0] += b*l 1075 if( a == 0 ) fIntegralCerenkov[0] += b*log(e0/x0); 1152 else fIntegralCerenkov[0] += y0* 1076 else fIntegralCerenkov[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1153 1077 1154 //G4cout<<"a = "<<a<<"; b = "<<b<<"; resul 1078 //G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1155 1079 1156 return result; 1080 return result; >> 1081 1157 } 1082 } 1158 1083 1159 ///////////////////////////////////////////// 1084 /////////////////////////////////////////////////////////////////////////////// 1160 // 1085 // 1161 // Integration of Plasmon cross-section for t 1086 // Integration of Plasmon cross-section for the case of 1162 // passing across border between intervals 1087 // passing across border between intervals 1163 1088 1164 G4double G4PAIySection::SumOverBordPlasmon( G 1089 G4double G4PAIySection::SumOverBordPlasmon( G4int i , 1165 1090 G4double en0 ) 1166 { 1091 { 1167 G4double x0,x1,y0,yy1,a,c,d,e0,result; 1092 G4double x0,x1,y0,yy1,a,c,d,e0,result; 1168 1093 1169 e0 = en0; 1094 e0 = en0; 1170 x0 = fSplineEnergy[i]; 1095 x0 = fSplineEnergy[i]; 1171 x1 = fSplineEnergy[i+1]; 1096 x1 = fSplineEnergy[i+1]; 1172 y0 = fdNdxPlasmon[i]; 1097 y0 = fdNdxPlasmon[i]; 1173 yy1 = fdNdxPlasmon[i+1]; 1098 yy1 = fdNdxPlasmon[i+1]; 1174 1099 1175 c = x1/x0; 1100 c = x1/x0; 1176 d = e0/x0; 1101 d = e0/x0; 1177 a = log10(yy1/y0)/log10(c); 1102 a = log10(yy1/y0)/log10(c); 1178 1103 1179 G4double b = 0.0; 1104 G4double b = 0.0; 1180 if(a < 20.) b = y0/pow(x0,a); 1105 if(a < 20.) b = y0/pow(x0,a); 1181 1106 1182 a += 1.0; 1107 a += 1.0; 1183 if( a == 0 ) result = b*log(x0/e0); 1108 if( a == 0 ) result = b*log(x0/e0); 1184 else result = y0*(x0 - e0*pow(d,a- 1109 else result = y0*(x0 - e0*pow(d,a-1))/a; 1185 a += 1.0; 1110 a += 1.0; 1186 1111 1187 if( a == 0 ) fIntegralPlasmon[0] += b*log( 1112 if( a == 0 ) fIntegralPlasmon[0] += b*log(x0/e0); 1188 else fIntegralPlasmon[0] += y0*(x0 1113 else fIntegralPlasmon[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1189 1114 1190 x0 = fSplineEnergy[i - 1]; 1115 x0 = fSplineEnergy[i - 1]; 1191 x1 = fSplineEnergy[i - 2]; 1116 x1 = fSplineEnergy[i - 2]; 1192 y0 = fdNdxPlasmon[i - 1]; 1117 y0 = fdNdxPlasmon[i - 1]; 1193 yy1 = fdNdxPlasmon[i - 2]; 1118 yy1 = fdNdxPlasmon[i - 2]; 1194 1119 1195 c = x1/x0; 1120 c = x1/x0; 1196 d = e0/x0; 1121 d = e0/x0; 1197 a = log10(yy1/y0)/log10(c); 1122 a = log10(yy1/y0)/log10(c); 1198 1123 1199 if(a < 20.) b = y0/pow(x0,a); 1124 if(a < 20.) b = y0/pow(x0,a); 1200 1125 1201 a += 1.0; 1126 a += 1.0; 1202 if( a == 0 ) result += b*log(e0/x0); 1127 if( a == 0 ) result += b*log(e0/x0); 1203 else result += y0*(e0*pow(d,a-1) - 1128 else result += y0*(e0*pow(d,a-1) - x0)/a; 1204 a += 1.0; 1129 a += 1.0; 1205 1130 1206 if( a == 0 ) fIntegralPlasmon[0] += b*lo 1131 if( a == 0 ) fIntegralPlasmon[0] += b*log(e0/x0); 1207 else fIntegralPlasmon[0] += y0*( 1132 else fIntegralPlasmon[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1208 1133 1209 return result; 1134 return result; 1210 1135 1211 } 1136 } 1212 1137 1213 ///////////////////////////////////////////// 1138 ///////////////////////////////////////////////////////////////////////// 1214 // 1139 // 1215 // 1140 // 1216 1141 1217 G4double G4PAIySection::GetStepEnergyLoss( G4 1142 G4double G4PAIySection::GetStepEnergyLoss( G4double step ) 1218 { 1143 { 1219 G4int iTransfer ; 1144 G4int iTransfer ; 1220 G4long numOfCollisions; 1145 G4long numOfCollisions; 1221 G4double loss = 0.0; 1146 G4double loss = 0.0; 1222 G4double meanNumber, position; 1147 G4double meanNumber, position; 1223 1148 1224 // G4cout<<" G4PAIySection::GetStepEnergyLo 1149 // G4cout<<" G4PAIySection::GetStepEnergyLoss "<<G4endl; 1225 1150 1226 1151 1227 1152 1228 meanNumber = fIntegralPAIySection[1]*step; 1153 meanNumber = fIntegralPAIySection[1]*step; 1229 numOfCollisions = G4Poisson(meanNumber); 1154 numOfCollisions = G4Poisson(meanNumber); 1230 1155 1231 // G4cout<<"numOfCollisions = "<<numOfCol 1156 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 1232 1157 1233 while(numOfCollisions) 1158 while(numOfCollisions) 1234 { 1159 { 1235 position = fIntegralPAIySection[1]*G4Unif 1160 position = fIntegralPAIySection[1]*G4UniformRand(); 1236 1161 1237 for( iTransfer=1; iTransfer<=fSplineNumbe 1162 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ ) 1238 { 1163 { 1239 if( position >= fIntegralPAIySection[ 1164 if( position >= fIntegralPAIySection[iTransfer] ) break; 1240 } 1165 } 1241 loss += fSplineEnergy[iTransfer] ; 1166 loss += fSplineEnergy[iTransfer] ; 1242 numOfCollisions--; 1167 numOfCollisions--; 1243 // Loop checking, 03-Aug-2015, Vladimir I << 1244 } 1168 } 1245 // G4cout<<"PAI energy loss = "<<loss/keV<< 1169 // G4cout<<"PAI energy loss = "<<loss/keV<<" keV"<<G4endl; 1246 1170 1247 return loss; 1171 return loss; 1248 } 1172 } 1249 1173 1250 ///////////////////////////////////////////// 1174 ///////////////////////////////////////////////////////////////////////// 1251 // 1175 // 1252 // 1176 // 1253 1177 1254 G4double G4PAIySection::GetStepCerenkovLoss( 1178 G4double G4PAIySection::GetStepCerenkovLoss( G4double step ) 1255 { 1179 { 1256 G4int iTransfer ; 1180 G4int iTransfer ; 1257 G4long numOfCollisions; 1181 G4long numOfCollisions; 1258 G4double loss = 0.0; 1182 G4double loss = 0.0; 1259 G4double meanNumber, position; 1183 G4double meanNumber, position; 1260 1184 1261 // G4cout<<" G4PAIySection::GetStepCreLosnk 1185 // G4cout<<" G4PAIySection::GetStepCreLosnkovs "<<G4endl; 1262 1186 1263 1187 1264 1188 1265 meanNumber = fIntegralCerenkov[1]*step; 1189 meanNumber = fIntegralCerenkov[1]*step; 1266 numOfCollisions = G4Poisson(meanNumber); 1190 numOfCollisions = G4Poisson(meanNumber); 1267 1191 1268 // G4cout<<"numOfCollisions = "<<numOfCol 1192 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 1269 1193 1270 while(numOfCollisions) 1194 while(numOfCollisions) 1271 { 1195 { 1272 position = fIntegralCerenkov[1]*G4Uniform 1196 position = fIntegralCerenkov[1]*G4UniformRand(); 1273 1197 1274 for( iTransfer=1; iTransfer<=fSplineNumbe 1198 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ ) 1275 { 1199 { 1276 if( position >= fIntegralCerenkov[iTr 1200 if( position >= fIntegralCerenkov[iTransfer] ) break; 1277 } 1201 } 1278 loss += fSplineEnergy[iTransfer] ; 1202 loss += fSplineEnergy[iTransfer] ; 1279 numOfCollisions--; 1203 numOfCollisions--; 1280 // Loop checking, 03-Aug-2015, Vladimir I << 1281 } 1204 } 1282 // G4cout<<"PAI Cerenkov loss = "<<loss/keV 1205 // G4cout<<"PAI Cerenkov loss = "<<loss/keV<<" keV"<<G4endl; 1283 1206 1284 return loss; 1207 return loss; 1285 } 1208 } 1286 1209 1287 ///////////////////////////////////////////// 1210 ///////////////////////////////////////////////////////////////////////// 1288 // 1211 // 1289 // 1212 // 1290 1213 1291 G4double G4PAIySection::GetStepPlasmonLoss( G 1214 G4double G4PAIySection::GetStepPlasmonLoss( G4double step ) 1292 { 1215 { 1293 G4int iTransfer ; 1216 G4int iTransfer ; 1294 G4long numOfCollisions; 1217 G4long numOfCollisions; 1295 G4double loss = 0.0; 1218 G4double loss = 0.0; 1296 G4double meanNumber, position; 1219 G4double meanNumber, position; 1297 1220 1298 // G4cout<<" G4PAIySection::GetStepCreLosnk 1221 // G4cout<<" G4PAIySection::GetStepCreLosnkovs "<<G4endl; 1299 1222 1300 1223 1301 1224 1302 meanNumber = fIntegralPlasmon[1]*step; 1225 meanNumber = fIntegralPlasmon[1]*step; 1303 numOfCollisions = G4Poisson(meanNumber); 1226 numOfCollisions = G4Poisson(meanNumber); 1304 1227 1305 // G4cout<<"numOfCollisions = "<<numOfCol 1228 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 1306 1229 1307 while(numOfCollisions) 1230 while(numOfCollisions) 1308 { 1231 { 1309 position = fIntegralPlasmon[1]*G4UniformR 1232 position = fIntegralPlasmon[1]*G4UniformRand(); 1310 1233 1311 for( iTransfer=1; iTransfer<=fSplineNumbe 1234 for( iTransfer=1; iTransfer<=fSplineNumber; iTransfer++ ) 1312 { 1235 { 1313 if( position >= fIntegralPlasmon[iTra 1236 if( position >= fIntegralPlasmon[iTransfer] ) break; 1314 } 1237 } 1315 loss += fSplineEnergy[iTransfer] ; 1238 loss += fSplineEnergy[iTransfer] ; 1316 numOfCollisions--; 1239 numOfCollisions--; 1317 // Loop checking, 03-Aug-2015, Vladimir I << 1318 } 1240 } 1319 // G4cout<<"PAI Plasmon loss = "<<loss/keV< 1241 // G4cout<<"PAI Plasmon loss = "<<loss/keV<<" keV"<<G4endl; 1320 1242 1321 return loss; 1243 return loss; 1322 } 1244 } 1323 1245 1324 ///////////////////////////////////////////// << 1325 // << 1326 1246 1327 void G4PAIySection::CallError(G4int i, const << 1328 { << 1329 G4String head = "G4PAIySection::" + methodN << 1330 G4ExceptionDescription ed; << 1331 ed << "Wrong index " << i << " fSplineNumbe << 1332 G4Exception(head,"pai001",FatalException,ed << 1333 } << 1334 1247 1335 ///////////////////////////////////////////// 1248 ///////////////////////////////////////////////////////////////////////////// 1336 // 1249 // 1337 // Init array of Lorentz factors 1250 // Init array of Lorentz factors 1338 // 1251 // 1339 1252 1340 G4int G4PAIySection::fNumberOfGammas = 111; 1253 G4int G4PAIySection::fNumberOfGammas = 111; 1341 1254 1342 const G4double G4PAIySection::fLorentzFactor[ 1255 const G4double G4PAIySection::fLorentzFactor[112] = // fNumberOfGammas+1 1343 { 1256 { 1344 0.0, 1257 0.0, 1345 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.1 1258 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.138890e+00, 1.157642e+00, 1346 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.2 1259 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.261620e+00, 1.296942e+00, // 10 1347 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.4 1260 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.492800e+00, 1.559334e+00, 1348 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.9 1261 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.928263e+00, 2.053589e+00, // 20 1349 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.7 1262 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.748522e+00, 2.984591e+00, 1350 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.2 1263 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.293602e+00, 4.738274e+00, // 30 1351 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.2 1264 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.203990e+00, 8.041596e+00, 1352 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.2 1265 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.268614e+01, 1.426390e+01, // 40 1353 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.3 1266 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.301259e+01, 2.598453e+01, 1354 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.2 1267 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.246399e+01, 4.806208e+01, // 50 1355 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.9 1268 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.910361e+01, 8.964844e+01, 1356 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.4 1269 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.481198e+02, 1.679826e+02, // 60 1357 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.7 1270 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.781221e+02, 3.155365e+02, 1358 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.2 1271 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.230007e+02, 5.934765e+02, // 70 1359 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.8 1272 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.842662e+02, 1.117018e+03, 1360 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.8 1273 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.853128e+03, 2.103186e+03, // 80 1361 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.4 1274 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.489760e+03, 3.960780e+03, 1362 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.5 1275 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.572600e+03, 7.459837e+03, // 90 1363 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.2 1276 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.237959e+04, 1.405083e+04, 1364 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.3 1277 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.331792e+04, 2.646595e+04, // 100 1365 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.3 1278 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.392189e+04, 4.985168e+04, 1366 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.2 1279 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.273254e+04, 9.390219e+04, // 110 1367 1.065799e+05 1280 1.065799e+05 1368 }; 1281 }; 1369 1282 1370 ///////////////////////////////////////////// 1283 /////////////////////////////////////////////////////////////////////// 1371 // 1284 // 1372 // The number of gamma for creation of splin 1285 // The number of gamma for creation of spline (near ion-min , G ~ 4 ) 1373 // 1286 // 1374 1287 1375 const G4int G4PAIySection::fRefGammaNumber = << 1288 const >> 1289 G4int G4PAIySection::fRefGammaNumber = 29; 1376 1290 >> 1291 1377 // 1292 // 1378 // end of G4PAIySection implementation file 1293 // end of G4PAIySection implementation file 1379 // 1294 // 1380 ///////////////////////////////////////////// 1295 //////////////////////////////////////////////////////////////////////////// 1381 1296 1382 1297