Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4PAIxSection.cc,v 1.24 2008/05/30 16:04:40 grichine Exp $ >> 28 // GEANT4 tag $Name: geant4-09-03-ref-06 $ 27 // 29 // 28 // 30 // 29 // G4PAIxSection.cc -- class implementation fi 31 // G4PAIxSection.cc -- class implementation file 30 // 32 // 31 // GEANT 4 class implementation file 33 // GEANT 4 class implementation file 32 // 34 // 33 // For information related to this code, pleas 35 // For information related to this code, please, contact 34 // the Geant4 Collaboration. 36 // the Geant4 Collaboration. 35 // 37 // 36 // R&D: Vladimir.Grichine@cern.ch 38 // R&D: Vladimir.Grichine@cern.ch 37 // 39 // 38 // History: 40 // History: 39 // 41 // 40 // 13.05.03 V. Grichine, bug fixed for maxEner 42 // 13.05.03 V. Grichine, bug fixed for maxEnergyTransfer > max interval energy 41 // 28.05.01 V.Ivanchenko minor changes to prov 43 // 28.05.01 V.Ivanchenko minor changes to provide ANSI -wall compilation 42 // 17.05.01 V. Grichine, low energy extension 44 // 17.05.01 V. Grichine, low energy extension down to 10*keV of proton 43 // 20.11.98 adapted to a new Material/SandiaTa 45 // 20.11.98 adapted to a new Material/SandiaTable interface, mma 44 // 11.06.97 V. Grichine, 1st version 46 // 11.06.97 V. Grichine, 1st version 45 // 47 // 46 48 >> 49 >> 50 47 #include "G4PAIxSection.hh" 51 #include "G4PAIxSection.hh" 48 52 49 #include "globals.hh" 53 #include "globals.hh" 50 #include "G4PhysicalConstants.hh" << 51 #include "G4SystemOfUnits.hh" << 52 #include "G4ios.hh" 54 #include "G4ios.hh" 53 #include "G4Poisson.hh" 55 #include "G4Poisson.hh" 54 #include "G4Material.hh" 56 #include "G4Material.hh" 55 #include "G4MaterialCutsCouple.hh" 57 #include "G4MaterialCutsCouple.hh" 56 #include "G4SandiaTable.hh" 58 #include "G4SandiaTable.hh" 57 59 58 using namespace std; 60 using namespace std; 59 61 60 /* ******************************************* 62 /* ****************************************************************** 61 63 62 // Init array of Lorentz factors 64 // Init array of Lorentz factors 63 65 64 const G4double G4PAIxSection::fLorentzFactor[2 66 const G4double G4PAIxSection::fLorentzFactor[22] = 65 { 67 { 66 0.0 , 1.1 , 1.2 , 1.3 , 1 68 0.0 , 1.1 , 1.2 , 1.3 , 1.5 , 1.8 , 2.0 , 67 2.5 , 3.0 , 4.0 , 7.0 , 10 69 2.5 , 3.0 , 4.0 , 7.0 , 10.0 , 20.0 , 40.0 , 68 70.0 , 100.0 , 300.0 , 600.0 , 1000 70 70.0 , 100.0 , 300.0 , 600.0 , 1000.0 , 3000.0 , 69 10000.0 , 50000.0 71 10000.0 , 50000.0 70 }; 72 }; 71 73 72 const G4int G4PAIxSection:: 74 const G4int G4PAIxSection:: 73 fRefGammaNumber = 29; // The number of 75 fRefGammaNumber = 29; // The number of gamma for creation of 74 // spline (9) 76 // spline (9) 75 77 76 ********************************************** 78 ***************************************************************** */ 77 79 78 // Local class constants 80 // Local class constants 79 81 80 const G4double G4PAIxSection::fDelta = 0.005; 82 const G4double G4PAIxSection::fDelta = 0.005; // 0.005 energy shift from interval border 81 const G4double G4PAIxSection::fError = 0.005; 83 const G4double G4PAIxSection::fError = 0.005; // 0.005 error in lin-log approximation 82 84 83 const G4int G4PAIxSection::fMaxSplineSize = 10 << 85 const G4int G4PAIxSection::fMaxSplineSize = 500; // Max size of output spline 84 86 // arrays 85 ////////////////////////////////////////////// << 86 // << 87 // Constructor << 88 // << 89 << 90 G4PAIxSection::G4PAIxSection() << 91 { << 92 fSandia = nullptr; << 93 fMatSandiaMatrix = nullptr; << 94 fDensity = fElectronDensity = fNormalization << 95 fIntervalNumber = fSplineNumber = 0; << 96 fVerbose = 0; << 97 << 98 fSplineEnergy = G4DataVector(fMaxSp << 99 fRePartDielectricConst = G4DataVector(fMaxSp << 100 fImPartDielectricConst = G4DataVector(fMaxSp << 101 fIntegralTerm = G4DataVector(fMaxSp << 102 fDifPAIxSection = G4DataVector(fMaxSp << 103 fdNdxCerenkov = G4DataVector(fMaxSp << 104 fdNdxPlasmon = G4DataVector(fMaxSp << 105 fdNdxMM = G4DataVector(fMaxSp << 106 fdNdxResonance = G4DataVector(fMaxSp << 107 fIntegralPAIxSection = G4DataVector(fMaxSp << 108 fIntegralPAIdEdx = G4DataVector(fMaxSp << 109 fIntegralCerenkov = G4DataVector(fMaxSp << 110 fIntegralPlasmon = G4DataVector(fMaxSp << 111 fIntegralMM = G4DataVector(fMaxSp << 112 fIntegralResonance = G4DataVector(fMaxSp << 113 << 114 fMaterialIndex = 0; << 115 << 116 for( G4int i = 0; i < 500; ++i ) << 117 { << 118 for( G4int j = 0; j < 112; ++j ) fPAItabl << 119 } << 120 } << 121 87 122 ////////////////////////////////////////////// 88 ////////////////////////////////////////////////////////////////// 123 // 89 // 124 // Constructor 90 // Constructor 125 // 91 // 126 92 127 G4PAIxSection::G4PAIxSection(G4MaterialCutsCou 93 G4PAIxSection::G4PAIxSection(G4MaterialCutsCouple* matCC) 128 { 94 { 129 fDensity = matCC->GetMaterial()->GetDe 95 fDensity = matCC->GetMaterial()->GetDensity(); 130 G4int matIndex = (G4int)matCC->GetMaterial() << 96 G4int matIndex = matCC->GetMaterial()->GetIndex(); 131 fMaterialIndex = matIndex; 97 fMaterialIndex = matIndex; 132 << 98 fSandia = new G4SandiaTable(matIndex); 133 const G4MaterialTable* theMaterialTable = G4 << 134 fSandia = (*theMaterialTable)[matIndex]->Get << 135 << 136 fVerbose = 0; << 137 99 138 G4int i, j; 100 G4int i, j; 139 fMatSandiaMatrix = new G4OrderedTable(); 101 fMatSandiaMatrix = new G4OrderedTable(); 140 102 141 for (i = 0; i < fSandia->GetMaxInterval()-1; << 103 for (i = 0; i < fSandia->GetMaxInterval()-1; i++) 142 { 104 { 143 fMatSandiaMatrix->push_back(new G4DataVec 105 fMatSandiaMatrix->push_back(new G4DataVector(5,0.)); 144 } << 106 } 145 for (i = 0; i < fSandia->GetMaxInterval()-1; << 107 for (i = 0; i < fSandia->GetMaxInterval()-1; i++) 146 { 108 { 147 (*(*fMatSandiaMatrix)[i])[0] = fSandia->Ge 109 (*(*fMatSandiaMatrix)[i])[0] = fSandia->GetSandiaMatTable(i,0); 148 110 149 for(j = 1; j < 5; ++j) << 111 for(j = 1; j < 5; j++) 150 { 112 { 151 (*(*fMatSandiaMatrix)[i])[j] = fSandia-> 113 (*(*fMatSandiaMatrix)[i])[j] = fSandia->GetSandiaMatTable(i,j)*fDensity; 152 } 114 } 153 } << 115 } 154 ComputeLowEnergyCof(); << 155 // fEnergyInterval = fA1 = fA2 = fA3 = fA4 << 156 } 116 } 157 117 158 ////////////////////////////////////////////// 118 //////////////////////////////////////////////////////////////// 159 119 160 G4PAIxSection::G4PAIxSection(G4int materialInd 120 G4PAIxSection::G4PAIxSection(G4int materialIndex, 161 G4double maxEnerg << 121 G4double maxEnergyTransfer) 162 { 122 { 163 fSandia = nullptr; << 123 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 164 fMatSandiaMatrix = nullptr; << 124 G4int i, j; 165 fVerbose = 0; << 166 const G4MaterialTable* theMaterialTable = G4 << 167 G4int i, j; << 168 125 169 fMaterialIndex = materialIndex; << 126 fMaterialIndex = materialIndex; 170 fDensity = (*theMaterialTable << 127 fDensity = (*theMaterialTable)[materialIndex]->GetDensity(); 171 fElectronDensity = (*theMaterialTable << 128 fElectronDensity = (*theMaterialTable)[materialIndex]-> 172 GetElectronDensit 129 GetElectronDensity(); 173 fIntervalNumber = (*theMaterialTable << 130 fIntervalNumber = (*theMaterialTable)[materialIndex]-> 174 GetSandiaTable()- 131 GetSandiaTable()->GetMatNbOfIntervals(); 175 fIntervalNumber--; << 132 fIntervalNumber--; 176 // G4cout<<fDensity<<"\t"<<fElectronDensity< << 133 // G4cout<<fDensity<<"\t"<<fElectronDensity<<"\t"<<fIntervalNumber<<G4endl; 177 134 178 fEnergyInterval = G4DataVector(fIntervalNumb << 135 fEnergyInterval = new G4double[fIntervalNumber+2]; 179 fA1 = G4DataVector(fIntervalNumb << 136 fA1 = new G4double[fIntervalNumber+2]; 180 fA2 = G4DataVector(fIntervalNumb << 137 fA2 = new G4double[fIntervalNumber+2]; 181 fA3 = G4DataVector(fIntervalNumb << 138 fA3 = new G4double[fIntervalNumber+2]; 182 fA4 = G4DataVector(fIntervalNumb << 139 fA4 = new G4double[fIntervalNumber+2]; 183 140 184 for(i = 1; i <= fIntervalNumber; i++ ) << 141 for(i = 1; i <= fIntervalNumber; i++ ) 185 { << 142 { 186 if(((*theMaterialTable)[materialIndex]-> << 143 if(((*theMaterialTable)[materialIndex]-> 187 GetSandiaTable()->GetSandiaCofForMaterial( 144 GetSandiaTable()->GetSandiaCofForMaterial(i-1,0) >= maxEnergyTransfer) || 188 i > fIntervalNumber 145 i > fIntervalNumber ) 189 { << 146 { 190 fEnergyInterval[i] = maxEnergyTransf << 147 fEnergyInterval[i] = maxEnergyTransfer; 191 fIntervalNumber = i; << 148 fIntervalNumber = i; 192 break; << 149 break; 193 } << 150 } 194 fEnergyInterval[i] = (*theMaterialTab 151 fEnergyInterval[i] = (*theMaterialTable)[materialIndex]-> 195 GetSandiaTable() << 152 GetSandiaTable()->GetSandiaCofForMaterial(i-1,0); 196 fA1[i] = (*theMaterialTab 153 fA1[i] = (*theMaterialTable)[materialIndex]-> 197 GetSandiaTable() << 154 GetSandiaTable()->GetSandiaCofForMaterial(i-1,1); 198 fA2[i] = (*theMaterialTab 155 fA2[i] = (*theMaterialTable)[materialIndex]-> 199 GetSandiaTable() << 156 GetSandiaTable()->GetSandiaCofForMaterial(i-1,2); 200 fA3[i] = (*theMaterialTab 157 fA3[i] = (*theMaterialTable)[materialIndex]-> 201 GetSandiaTable() << 158 GetSandiaTable()->GetSandiaCofForMaterial(i-1,3); 202 fA4[i] = (*theMaterialTab 159 fA4[i] = (*theMaterialTable)[materialIndex]-> 203 GetSandiaTable() << 160 GetSandiaTable()->GetSandiaCofForMaterial(i-1,4); 204 // G4cout<<i<<"\t"<<fEnergyInterval[i << 161 // G4cout<<i<<"\t"<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 205 // <<fA << 162 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 206 } << 163 } 207 if(fEnergyInterval[fIntervalNumber] != maxEn << 164 if(fEnergyInterval[fIntervalNumber] != maxEnergyTransfer) 208 { << 165 { 209 fIntervalNumber++; 166 fIntervalNumber++; 210 fEnergyInterval[fIntervalNumber] = ma 167 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; 211 } << 168 } 212 169 213 // Now checking, if two borders are too clos << 170 // Now checking, if two borders are too close together 214 171 215 for(i=1;i<fIntervalNumber;i++) << 172 for(i=1;i<fIntervalNumber;i++) 216 { << 173 { 217 if(fEnergyInterval[i+1]-fEnergyInterva 174 if(fEnergyInterval[i+1]-fEnergyInterval[i] > 218 1.5*fDelta*(fEnergyInterval[i+1]+fE 175 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i])) 219 { << 176 { 220 continue; 177 continue; 221 } << 178 } 222 else 179 else 223 { << 180 { 224 for(j=i;j<fIntervalNumber;j++) 181 for(j=i;j<fIntervalNumber;j++) 225 { << 182 { 226 fEnergyInterval[j] = fEnergyInterv 183 fEnergyInterval[j] = fEnergyInterval[j+1]; 227 fA1[j] = fA1[j+1]; 184 fA1[j] = fA1[j+1]; 228 fA2[j] = fA2[j+1]; 185 fA2[j] = fA2[j+1]; 229 fA3[j] = fA3[j+1]; 186 fA3[j] = fA3[j+1]; 230 fA4[j] = fA4[j+1]; 187 fA4[j] = fA4[j+1]; 231 } << 188 } 232 fIntervalNumber--; 189 fIntervalNumber--; 233 i--; 190 i--; 234 } << 191 } 235 } << 192 } 236 193 237 194 238 /* ********************************* 195 /* ********************************* 239 196 240 fSplineEnergy = new G4double[fM 197 fSplineEnergy = new G4double[fMaxSplineSize]; 241 fRePartDielectricConst = new G4double[fM 198 fRePartDielectricConst = new G4double[fMaxSplineSize]; 242 fImPartDielectricConst = new G4double[fM 199 fImPartDielectricConst = new G4double[fMaxSplineSize]; 243 fIntegralTerm = new G4double[fM 200 fIntegralTerm = new G4double[fMaxSplineSize]; 244 fDifPAIxSection = new G4double[fM 201 fDifPAIxSection = new G4double[fMaxSplineSize]; 245 fIntegralPAIxSection = new G4double[fM 202 fIntegralPAIxSection = new G4double[fMaxSplineSize]; 246 203 247 for(i=0;i<fMaxSplineSize;i++) 204 for(i=0;i<fMaxSplineSize;i++) 248 { 205 { 249 fSplineEnergy[i] = 0.0; 206 fSplineEnergy[i] = 0.0; 250 fRePartDielectricConst[i] = 0.0; 207 fRePartDielectricConst[i] = 0.0; 251 fImPartDielectricConst[i] = 0.0; 208 fImPartDielectricConst[i] = 0.0; 252 fIntegralTerm[i] = 0.0; 209 fIntegralTerm[i] = 0.0; 253 fDifPAIxSection[i] = 0.0; 210 fDifPAIxSection[i] = 0.0; 254 fIntegralPAIxSection[i] = 0.0; 211 fIntegralPAIxSection[i] = 0.0; 255 } 212 } 256 **************************************** 213 ************************************************** */ 257 ComputeLowEnergyCof(); << 214 258 InitPAI(); // create arrays allocated a 215 InitPAI(); // create arrays allocated above 259 /* << 216 260 delete[] fEnergyInterval; 217 delete[] fEnergyInterval; 261 delete[] fA1; 218 delete[] fA1; 262 delete[] fA2; 219 delete[] fA2; 263 delete[] fA3; 220 delete[] fA3; 264 delete[] fA4; << 221 delete[] fA4; 265 */ << 266 } 222 } 267 223 268 ////////////////////////////////////////////// 224 //////////////////////////////////////////////////////////////////////// 269 // 225 // 270 // Constructor called from G4PAIPhotonModel !! << 226 // Constructor with beta*gamma square value 271 227 272 G4PAIxSection::G4PAIxSection( G4int materialIn 228 G4PAIxSection::G4PAIxSection( G4int materialIndex, 273 G4double maxEner << 229 G4double maxEnergyTransfer, 274 G4double betaGam << 230 G4double betaGammaSq, 275 G4double** photo 231 G4double** photoAbsCof, 276 G4int intNumber 232 G4int intNumber ) 277 { 233 { 278 fSandia = nullptr; << 234 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 279 fDensity = fElectronDensity = fNormalization << 235 G4int i, j; 280 fIntervalNumber = fSplineNumber = 0; << 281 fVerbose = 0; << 282 << 283 fSplineEnergy = G4DataVector(500,0. << 284 fRePartDielectricConst = G4DataVector(500,0. << 285 fImPartDielectricConst = G4DataVector(500,0. << 286 fIntegralTerm = G4DataVector(500,0. << 287 fDifPAIxSection = G4DataVector(500,0. << 288 fdNdxCerenkov = G4DataVector(500,0. << 289 fdNdxPlasmon = G4DataVector(500,0. << 290 fdNdxMM = G4DataVector(500,0. << 291 fdNdxResonance = G4DataVector(500,0. << 292 fIntegralPAIxSection = G4DataVector(500,0. << 293 fIntegralPAIdEdx = G4DataVector(500,0. << 294 fIntegralCerenkov = G4DataVector(500,0. << 295 fIntegralPlasmon = G4DataVector(500,0. << 296 fIntegralMM = G4DataVector(500,0. << 297 fIntegralResonance = G4DataVector(500,0. << 298 << 299 for( G4int i = 0; i < 500; ++i ) << 300 { << 301 for( G4int j = 0; j < 112; ++j ) fPAItabl << 302 } << 303 << 304 fSandia = nullptr; << 305 fMatSandiaMatrix = nullptr; << 306 const G4MaterialTable* theMaterialTable = G4 << 307 G4int i, j; << 308 << 309 fMaterialIndex = materialIndex; << 310 fDensity = (*theMaterialTable)[mater << 311 fElectronDensity = (*theMaterialTable)[mater << 312 << 313 fIntervalNumber = intNumber; << 314 fIntervalNumber--; << 315 // G4cout<<fDensity<<"\t"<<fElectronDensit << 316 236 317 fEnergyInterval = G4DataVector(fIntervalNumb << 237 fMaterialIndex = materialIndex; 318 fA1 = G4DataVector(fIntervalNumb << 238 fDensity = (*theMaterialTable)[materialIndex]->GetDensity(); 319 fA2 = G4DataVector(fIntervalNumb << 239 fElectronDensity = (*theMaterialTable)[materialIndex]-> 320 fA3 = G4DataVector(fIntervalNumb << 240 GetElectronDensity(); 321 fA4 = G4DataVector(fIntervalNumb << 322 << 323 241 324 /* << 242 fIntervalNumber = intNumber; >> 243 fIntervalNumber--; >> 244 // G4cout<<fDensity<<"\t"<<fElectronDensity<<"\t"<<fIntervalNumber<<G4endl; >> 245 325 fEnergyInterval = new G4double[fInterval 246 fEnergyInterval = new G4double[fIntervalNumber+2]; 326 fA1 = new G4double[fInterval 247 fA1 = new G4double[fIntervalNumber+2]; 327 fA2 = new G4double[fInterval 248 fA2 = new G4double[fIntervalNumber+2]; 328 fA3 = new G4double[fInterval 249 fA3 = new G4double[fIntervalNumber+2]; 329 fA4 = new G4double[fInterval 250 fA4 = new G4double[fIntervalNumber+2]; 330 */ << 251 331 for( i = 1; i <= fIntervalNumber; i++ ) << 252 for( i = 1; i <= fIntervalNumber; i++ ) 332 { << 253 { 333 if( ( photoAbsCof[i-1][0] >= maxEnerg 254 if( ( photoAbsCof[i-1][0] >= maxEnergyTransfer ) || 334 i > fIntervalNumber ) 255 i > fIntervalNumber ) 335 { 256 { 336 fEnergyInterval[i] = maxEnergyTran 257 fEnergyInterval[i] = maxEnergyTransfer; 337 fIntervalNumber = i; << 258 fIntervalNumber = i; 338 break; << 259 break; 339 } 260 } 340 fEnergyInterval[i] = photoAbsCof[i-1] 261 fEnergyInterval[i] = photoAbsCof[i-1][0]; 341 fA1[i] = photoAbsCof[i-1] 262 fA1[i] = photoAbsCof[i-1][1]; 342 fA2[i] = photoAbsCof[i-1] 263 fA2[i] = photoAbsCof[i-1][2]; 343 fA3[i] = photoAbsCof[i-1] 264 fA3[i] = photoAbsCof[i-1][3]; 344 fA4[i] = photoAbsCof[i-1] 265 fA4[i] = photoAbsCof[i-1][4]; 345 // G4cout<<i<<"\t"<<fEnergyInterval[i << 266 // G4cout<<i<<"\t"<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 346 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"< << 267 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 347 } << 268 } 348 // G4cout<<"i last = "<<i<<"; "<<"fInter << 269 // G4cout<<"i last = "<<i<<"; "<<"fIntervalNumber = "<<fIntervalNumber<<G4endl; 349 << 270 if(fEnergyInterval[fIntervalNumber] != maxEnergyTransfer) 350 if(fEnergyInterval[fIntervalNumber] != maxEn << 271 { 351 { << 352 fIntervalNumber++; 272 fIntervalNumber++; 353 fEnergyInterval[fIntervalNumber] = ma 273 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; 354 } << 274 } 355 // G4cout<<"after check of max energy tr << 275 for(i=1;i<=fIntervalNumber;i++) 356 << 276 { 357 for( i = 1; i <= fIntervalNumber; i++ ) << 277 // G4cout<<i<<"\t"<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 358 { << 278 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 359 // G4cout<<i<<"\t"<<fEnergyInterval[i] << 279 } 360 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4e << 361 } << 362 // Now checking, if two borders are too 280 // Now checking, if two borders are too close together 363 281 364 for( i = 1; i < fIntervalNumber; i++ ) << 282 for( i = 1; i < fIntervalNumber; i++ ) 365 { << 283 { 366 if(fEnergyInterval[i+1]-fEnergyInterva 284 if(fEnergyInterval[i+1]-fEnergyInterval[i] > 367 1.5*fDelta*(fEnergyInterval[i+1]+fE 285 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i])) 368 { << 286 { 369 continue; 287 continue; 370 } << 288 } 371 else 289 else 372 { << 290 { 373 for(j=i;j<fIntervalNumber;j++) 291 for(j=i;j<fIntervalNumber;j++) 374 { << 292 { 375 fEnergyInterval[j] = fEnergyInterv 293 fEnergyInterval[j] = fEnergyInterval[j+1]; 376 fA1[j] = fA1[j+1]; 294 fA1[j] = fA1[j+1]; 377 fA2[j] = fA2[j+1]; 295 fA2[j] = fA2[j+1]; 378 fA3[j] = fA3[j+1]; 296 fA3[j] = fA3[j+1]; 379 fA4[j] = fA4[j+1]; 297 fA4[j] = fA4[j+1]; 380 } << 298 } 381 fIntervalNumber--; 299 fIntervalNumber--; 382 i--; 300 i--; 383 } << 301 } 384 } << 302 } 385 // G4cout<<"after check of close borders"<<G << 386 << 387 for( i = 1; i <= fIntervalNumber; i++ ) << 388 { << 389 // G4cout<<i<<"\t"<<fEnergyInterval[i] << 390 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4en << 391 } << 392 << 393 // Preparation of fSplineEnergy array corres << 394 303 395 ComputeLowEnergyCof(); << 304 // Preparation of fSplineEnergy array corresponding to min ionisation, G~4 396 G4double betaGammaSqRef = << 305 397 fLorentzFactor[fRefGammaNumber]*fLorentzFa << 306 G4double betaGammaSqRef = >> 307 fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1; 398 308 399 NormShift(betaGammaSqRef); << 309 NormShift(betaGammaSqRef); 400 SplainPAI(betaGammaSqRef); << 310 SplainPAI(betaGammaSqRef); 401 311 402 // Preparation of integral PAI cross section << 312 // Preparation of integral PAI cross section for input betaGammaSq 403 313 404 for(i = 1; i <= fSplineNumber; i++) << 314 for(i = 1; i <= fSplineNumber; i++) 405 { << 315 { 406 fdNdxCerenkov[i] = PAIdNdxCerenkov( 316 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 407 fdNdxMM[i] = PAIdNdxMM(i,betaGammaS 317 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 408 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 318 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 409 fdNdxResonance[i] = PAIdNdxResonance 319 fdNdxResonance[i] = PAIdNdxResonance(i,betaGammaSq); 410 fDifPAIxSection[i] = DifPAIxSection(i 320 fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq); 411 321 412 // G4cout<<i<<"; dNdxC = "<<fdNdxCere << 322 // G4cout<<i<<"; dNdxC = "<<fdNdxCerenkov[i]<<"; dNdxP = "<<fdNdxPlasmon[i] 413 // <<"; dNdxPAI = "<<fDifPAIxSecti << 323 // <<"; dNdxPAI = "<<fDifPAIxSection[i]<<G4endl; 414 } << 324 } 415 IntegralCerenkov(); << 325 IntegralCerenkov(); 416 IntegralMM(); << 326 IntegralMM(); 417 IntegralPlasmon(); << 327 IntegralPlasmon(); 418 IntegralResonance(); << 328 IntegralResonance(); 419 IntegralPAIxSection(); << 329 IntegralPAIxSection(); 420 /* << 330 421 delete[] fEnergyInterval; 331 delete[] fEnergyInterval; 422 delete[] fA1; 332 delete[] fA1; 423 delete[] fA2; 333 delete[] fA2; 424 delete[] fA3; 334 delete[] fA3; 425 delete[] fA4; << 335 delete[] fA4; 426 */ << 427 } 336 } 428 337 429 ////////////////////////////////////////////// 338 //////////////////////////////////////////////////////////////////////// 430 // 339 // 431 // Test Constructor with beta*gamma square val 340 // Test Constructor with beta*gamma square value 432 341 433 G4PAIxSection::G4PAIxSection( G4int materialIn 342 G4PAIxSection::G4PAIxSection( G4int materialIndex, 434 G4double maxEner << 343 G4double maxEnergyTransfer, 435 G4double betaGam << 344 G4double betaGammaSq ) 436 { 345 { 437 fSandia = nullptr; << 346 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 438 fMatSandiaMatrix = nullptr; << 439 fVerbose = 0; << 440 const G4MaterialTable* theMaterialTable = G4 << 441 347 442 G4int i, j, numberOfElements; << 348 G4int i, j, numberOfElements; 443 349 444 fMaterialIndex = materialIndex; << 350 fMaterialIndex = materialIndex; 445 fDensity = (*theMaterialTable)[mater << 351 fDensity = (*theMaterialTable)[materialIndex]->GetDensity(); 446 fElectronDensity = (*theMaterialTable)[mater << 352 fElectronDensity = (*theMaterialTable)[materialIndex]->GetElectronDensity(); 447 numberOfElements = (G4int)(*theMaterialTable << 353 numberOfElements = (*theMaterialTable)[materialIndex]->GetNumberOfElements(); 448 354 449 G4int* thisMaterialZ = new G4int[numberOfEle << 355 G4int* thisMaterialZ = new G4int[numberOfElements]; 450 356 451 for( i = 0; i < numberOfElements; ++i ) << 357 for( i = 0; i < numberOfElements; i++ ) 452 { 358 { 453 thisMaterialZ[i] = (G4int)(*theMateri 359 thisMaterialZ[i] = (G4int)(*theMaterialTable)[materialIndex]-> 454 GetEleme 360 GetElement(i)->GetZ(); 455 } 361 } 456 // fSandia = new G4SandiaTable(materialIndex << 362 // fSandia = new G4SandiaTable(materialIndex); 457 fSandia = (*theMaterialTable)[materialIndex] << 363 fSandia = (*theMaterialTable)[materialIndex]-> 458 G4SandiaTable thisMaterialSandiaTable(ma << 364 GetSandiaTable(); 459 fIntervalNumber = thisMaterialSandiaTable.Sa << 365 G4SandiaTable thisMaterialSandiaTable(materialIndex); 460 << 366 fIntervalNumber = thisMaterialSandiaTable.SandiaIntervals 461 fIntervalNumber = thisMaterialSandiaTable.Sa << 367 (thisMaterialZ,numberOfElements); >> 368 fIntervalNumber = thisMaterialSandiaTable.SandiaMixing 462 ( thisMaterialZ , 369 ( thisMaterialZ , 463 (*theMaterialTable)[mate 370 (*theMaterialTable)[materialIndex]->GetFractionVector() , 464 numberOfElements, << 371 numberOfElements,fIntervalNumber); 465 372 466 fIntervalNumber--; << 373 fIntervalNumber--; 467 374 468 fEnergyInterval = G4DataVector(fIntervalNumb << 469 fA1 = G4DataVector(fIntervalNumb << 470 fA2 = G4DataVector(fIntervalNumb << 471 fA3 = G4DataVector(fIntervalNumb << 472 fA4 = G4DataVector(fIntervalNumb << 473 << 474 /* << 475 fEnergyInterval = new G4double[fInterval 375 fEnergyInterval = new G4double[fIntervalNumber+2]; 476 fA1 = new G4double[fInterval 376 fA1 = new G4double[fIntervalNumber+2]; 477 fA2 = new G4double[fInterval 377 fA2 = new G4double[fIntervalNumber+2]; 478 fA3 = new G4double[fInterval 378 fA3 = new G4double[fIntervalNumber+2]; 479 fA4 = new G4double[fInterval 379 fA4 = new G4double[fIntervalNumber+2]; 480 */ << 380 481 for( i = 1; i <= fIntervalNumber; i++ ) << 381 for( i = 1; i <= fIntervalNumber; i++ ) 482 { << 382 { 483 if((thisMaterialSandiaTable.GetPhotoAbsorpCo 383 if((thisMaterialSandiaTable.GetPhotoAbsorpCof(i,0) >= maxEnergyTransfer) || 484 i > fIntervalNumber) 384 i > fIntervalNumber) 485 { 385 { 486 fEnergyInterval[i] = maxEnergyTran 386 fEnergyInterval[i] = maxEnergyTransfer; 487 fIntervalNumber = i; << 387 fIntervalNumber = i; 488 break; << 388 break; 489 } 389 } 490 fEnergyInterval[i] = thisMaterialSandiaTabl 390 fEnergyInterval[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,0); 491 fA1[i] = thisMaterialSandiaTabl 391 fA1[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,1)*fDensity; 492 fA2[i] = thisMaterialSandiaTabl 392 fA2[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,2)*fDensity; 493 fA3[i] = thisMaterialSandiaTabl 393 fA3[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,3)*fDensity; 494 fA4[i] = thisMaterialSandiaTabl 394 fA4[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,4)*fDensity; 495 395 496 } << 396 } 497 if(fEnergyInterval[fIntervalNumber] != maxEn << 397 if(fEnergyInterval[fIntervalNumber] != maxEnergyTransfer) 498 { << 398 { 499 fIntervalNumber++; 399 fIntervalNumber++; 500 fEnergyInterval[fIntervalNumber] = ma 400 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; 501 fA1[fIntervalNumber] = fA1[fIntervalN 401 fA1[fIntervalNumber] = fA1[fIntervalNumber-1]; 502 fA2[fIntervalNumber] = fA2[fIntervalN 402 fA2[fIntervalNumber] = fA2[fIntervalNumber-1]; 503 fA3[fIntervalNumber] = fA3[fIntervalN 403 fA3[fIntervalNumber] = fA3[fIntervalNumber-1]; 504 fA4[fIntervalNumber] = fA4[fIntervalN 404 fA4[fIntervalNumber] = fA4[fIntervalNumber-1]; 505 } << 405 } 506 for(i=1;i<=fIntervalNumber;i++) << 406 for(i=1;i<=fIntervalNumber;i++) 507 { << 407 { 508 // G4cout<<fEnergyInterval[i]<<"\t"<<f << 408 // G4cout<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 509 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4e << 409 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 510 } << 410 } 511 // Now checking, if two borders are too clos << 411 // Now checking, if two borders are too close together 512 412 513 for( i = 1; i < fIntervalNumber; i++ ) << 413 for( i = 1; i < fIntervalNumber; i++ ) 514 { << 414 { 515 if(fEnergyInterval[i+1]-fEnergyInterva 415 if(fEnergyInterval[i+1]-fEnergyInterval[i] > 516 1.5*fDelta*(fEnergyInterval[i+1]+fE 416 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i])) 517 { << 417 { 518 continue; 418 continue; 519 } << 419 } 520 else 420 else 521 { << 421 { 522 for( j = i; j < fIntervalNumber; j++ 422 for( j = i; j < fIntervalNumber; j++ ) 523 { << 423 { 524 fEnergyInterval[j] = fEnergyInterv 424 fEnergyInterval[j] = fEnergyInterval[j+1]; 525 fA1[j] = fA1[j+1]; 425 fA1[j] = fA1[j+1]; 526 fA2[j] = fA2[j+1]; 426 fA2[j] = fA2[j+1]; 527 fA3[j] = fA3[j+1]; 427 fA3[j] = fA3[j+1]; 528 fA4[j] = fA4[j+1]; 428 fA4[j] = fA4[j+1]; 529 } << 429 } 530 fIntervalNumber--; 430 fIntervalNumber--; 531 i--; 431 i--; 532 } << 432 } 533 } << 433 } 534 434 535 /* ********************************* 435 /* ********************************* 536 fSplineEnergy = new G4double[fM 436 fSplineEnergy = new G4double[fMaxSplineSize]; 537 fRePartDielectricConst = new G4double[fM 437 fRePartDielectricConst = new G4double[fMaxSplineSize]; 538 fImPartDielectricConst = new G4double[fM 438 fImPartDielectricConst = new G4double[fMaxSplineSize]; 539 fIntegralTerm = new G4double[fM 439 fIntegralTerm = new G4double[fMaxSplineSize]; 540 fDifPAIxSection = new G4double[fM 440 fDifPAIxSection = new G4double[fMaxSplineSize]; 541 fIntegralPAIxSection = new G4double[fM 441 fIntegralPAIxSection = new G4double[fMaxSplineSize]; 542 442 543 for(i=0;i<fMaxSplineSize;i++) 443 for(i=0;i<fMaxSplineSize;i++) 544 { 444 { 545 fSplineEnergy[i] = 0.0; 445 fSplineEnergy[i] = 0.0; 546 fRePartDielectricConst[i] = 0.0; 446 fRePartDielectricConst[i] = 0.0; 547 fImPartDielectricConst[i] = 0.0; 447 fImPartDielectricConst[i] = 0.0; 548 fIntegralTerm[i] = 0.0; 448 fIntegralTerm[i] = 0.0; 549 fDifPAIxSection[i] = 0.0; 449 fDifPAIxSection[i] = 0.0; 550 fIntegralPAIxSection[i] = 0.0; 450 fIntegralPAIxSection[i] = 0.0; 551 } 451 } 552 */ //////////////////////// 452 */ //////////////////////// 553 453 554 // Preparation of fSplineEnergy array co 454 // Preparation of fSplineEnergy array corresponding to min ionisation, G~4 >> 455 >> 456 G4double betaGammaSqRef = >> 457 fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1; 555 458 556 ComputeLowEnergyCof(); << 459 NormShift(betaGammaSqRef); 557 G4double betaGammaSqRef = << 460 SplainPAI(betaGammaSqRef); 558 fLorentzFactor[fRefGammaNumber]*fLorentzFa << 559 << 560 NormShift(betaGammaSqRef); << 561 SplainPAI(betaGammaSqRef); << 562 461 563 // Preparation of integral PAI cross section << 462 // Preparation of integral PAI cross section for input betaGammaSq 564 463 565 for(i = 1; i <= fSplineNumber; i++) << 464 for(i = 1; i <= fSplineNumber; i++) 566 { << 465 { 567 fDifPAIxSection[i] = DifPAIxSection(i 466 fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq); 568 fdNdxCerenkov[i] = PAIdNdxCerenkov( 467 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 569 fdNdxMM[i] = PAIdNdxMM(i,betaGammaS 468 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 570 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 469 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 571 fdNdxResonance[i] = PAIdNdxResonance 470 fdNdxResonance[i] = PAIdNdxResonance(i,betaGammaSq); 572 } << 471 } 573 IntegralPAIxSection(); << 472 IntegralPAIxSection(); 574 IntegralCerenkov(); << 473 IntegralCerenkov(); 575 IntegralMM(); << 474 IntegralMM(); 576 IntegralPlasmon(); << 475 IntegralPlasmon(); 577 IntegralResonance(); << 476 IntegralResonance(); >> 477 >> 478 // delete[] fEnergyInterval; >> 479 delete[] fA1; >> 480 delete[] fA2; >> 481 delete[] fA3; >> 482 delete[] fA4; 578 } 483 } 579 484 >> 485 580 ////////////////////////////////////////////// 486 //////////////////////////////////////////////////////////////////////////// 581 // 487 // 582 // Destructor 488 // Destructor 583 489 584 G4PAIxSection::~G4PAIxSection() 490 G4PAIxSection::~G4PAIxSection() 585 { 491 { 586 /* ************************ 492 /* ************************ 587 delete[] fSplineEnergy ; 493 delete[] fSplineEnergy ; 588 delete[] fRePartDielectricConst; 494 delete[] fRePartDielectricConst; 589 delete[] fImPartDielectricConst; 495 delete[] fImPartDielectricConst; 590 delete[] fIntegralTerm ; 496 delete[] fIntegralTerm ; 591 delete[] fDifPAIxSection ; 497 delete[] fDifPAIxSection ; 592 delete[] fIntegralPAIxSection ; 498 delete[] fIntegralPAIxSection ; 593 */ //////////////////////// 499 */ //////////////////////// 594 delete fMatSandiaMatrix; << 595 } << 596 << 597 G4double G4PAIxSection::GetLorentzFactor(G4int << 598 { << 599 return fLorentzFactor[j]; << 600 } << 601 << 602 ////////////////////////////////////////////// << 603 // << 604 // Constructor with beta*gamma square value ca << 605 << 606 void G4PAIxSection::Initialize( const G4Materi << 607 G4double maxEn << 608 G4double betaG << 609 G4SandiaTable* << 610 { << 611 if(fVerbose > 0) << 612 { << 613 G4cout<<G4endl; << 614 G4cout<<"G4PAIxSection::Initialize(...,G4S << 615 G4cout<<G4endl; << 616 } << 617 G4int i, j; << 618 << 619 fSandia = sandia; << 620 fIntervalNumber = sandia->GetMaxInterval(); << 621 fDensity = material->GetDensity(); << 622 fElectronDensity = material->GetElectronDens << 623 << 624 // fIntervalNumber--; << 625 << 626 if( fVerbose > 0 ) << 627 { << 628 G4cout<<"fDensity = "<<fDensity<<"\t"<<fEl << 629 } << 630 fEnergyInterval = G4DataVector(fIntervalNumb << 631 fA1 = G4DataVector(fIntervalNumb << 632 fA2 = G4DataVector(fIntervalNumb << 633 fA3 = G4DataVector(fIntervalNumb << 634 fA4 = G4DataVector(fIntervalNumb << 635 << 636 for( i = 1; i <= fIntervalNumber; i++ ) << 637 { << 638 if ( sandia->GetSandiaMatTablePAI(i-1,0) < << 639 { << 640 fIntervalNumber--; << 641 continue; << 642 } << 643 if( ( sandia->GetSandiaMatTablePAI(i-1,0) << 644 { << 645 fEnergyInterval[i] = maxEnergyTransfer; << 646 fIntervalNumber = i; << 647 break; << 648 } << 649 fEnergyInterval[i] = sandia->GetSandiaMatT << 650 fA1[i] = sandia->GetSandiaMatT << 651 fA2[i] = sandia->GetSandiaMatT << 652 fA3[i] = sandia->GetSandiaMatT << 653 fA4[i] = sandia->GetSandiaMatT << 654 << 655 if( fVerbose > 0 ) << 656 { << 657 G4cout<<i<<"\t"<<fEnergyInterval[i]/ke << 658 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4e << 659 } << 660 } << 661 if( fVerbose > 0 ) G4cout<<"last i = "<<i<<" << 662 << 663 if( fEnergyInterval[fIntervalNumber] != maxE << 664 { << 665 fIntervalNumber++; << 666 fEnergyInterval[fIntervalNumber] = maxEn << 667 } << 668 if( fVerbose > 0 ) << 669 { << 670 for( i = 1; i <= fIntervalNumber; i++ ) << 671 { << 672 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 673 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; << 674 } << 675 } << 676 if( fVerbose > 0 ) G4cout<<"Now checking, << 677 << 678 for( i = 1; i < fIntervalNumber; i++ ) << 679 { << 680 if( fEnergyInterval[i+1]-fEnergyInterval[i << 681 1.5*fDelta*(fEnergyInterval[i+1]+fEne << 682 else << 683 { << 684 if( fVerbose > 0 ) G4cout<<i<<"\t"<<fEn << 685 << 686 for( j = i; j < fIntervalNumber; j++ ) << 687 { << 688 fEnergyInterval[j] = fEnergyInte << 689 fA1[j] = fA1[j+1]; << 690 fA2[j] = fA2[j+1]; << 691 fA3[j] = fA3[j+1]; << 692 fA4[j] = fA4[j+1]; << 693 } << 694 fIntervalNumber--; << 695 i--; << 696 } << 697 } << 698 if( fVerbose > 0 ) << 699 { << 700 for( i = 1; i <= fIntervalNumber; i++ ) << 701 { << 702 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 703 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; << 704 } << 705 } << 706 // Preparation of fSplineEnergy array corres << 707 << 708 ComputeLowEnergyCof(material); << 709 << 710 G4double betaGammaSqRef = << 711 fLorentzFactor[fRefGammaNumber]*fLorentzFa << 712 << 713 NormShift(betaGammaSqRef); << 714 SplainPAI(betaGammaSqRef); << 715 << 716 // Preparation of integral PAI cross section << 717 << 718 for( i = 1; i <= fSplineNumber; i++ ) << 719 { << 720 fDifPAIxSection[i] = DifPAIxSection(i,bet << 721 << 722 << 723 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,be << 724 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); << 725 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,bet << 726 fdNdxResonance[i] = PAIdNdxResonance(i,b << 727 } << 728 IntegralPAIxSection(); << 729 IntegralCerenkov(); << 730 IntegralMM(); << 731 IntegralPlasmon(); << 732 IntegralResonance(); << 733 << 734 for( i = 1; i <= fSplineNumber; i++ ) << 735 { << 736 if(fVerbose>0) G4cout<<i<<"; w = "<<fSplin << 737 } << 738 } << 739 << 740 << 741 ////////////////////////////////////////////// << 742 // << 743 // Compute low energy cof. It reduces PAI xsc << 744 // << 745 << 746 void G4PAIxSection::ComputeLowEnergyCof(const << 747 { << 748 G4int i, numberOfElements = (G4int)material- << 749 G4double sumZ = 0., sumCof = 0.; << 750 << 751 static const G4double p0 = 1.20923e+00; << 752 static const G4double p1 = 3.53256e-01; << 753 static const G4double p2 = -1.45052e-03; << 754 << 755 G4double* thisMaterialZ = new G4double[num << 756 G4double* thisMaterialCof = new G4double[num << 757 << 758 for( i = 0; i < numberOfElements; ++i ) << 759 { << 760 thisMaterialZ[i] = material->GetElement(i) << 761 sumZ += thisMaterialZ[i]; << 762 thisMaterialCof[i] = p0+p1*thisMaterialZ[i << 763 } << 764 for( i = 0; i < numberOfElements; ++i ) << 765 { << 766 sumCof += thisMaterialCof[i]*thisMaterialZ << 767 } << 768 fLowEnergyCof = sumCof; << 769 delete [] thisMaterialZ; << 770 delete [] thisMaterialCof; << 771 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof << 772 } << 773 << 774 ////////////////////////////////////////////// << 775 // << 776 // Compute low energy cof. It reduces PAI xsc << 777 // << 778 << 779 void G4PAIxSection::ComputeLowEnergyCof() << 780 { << 781 const G4MaterialTable* theMaterialTable = G4 << 782 G4int i, numberOfElements = (G4int)(*theMate << 783 G4double sumZ = 0., sumCof = 0.; << 784 << 785 const G4double p0 = 1.20923e+00; << 786 const G4double p1 = 3.53256e-01; << 787 const G4double p2 = -1.45052e-03; << 788 << 789 G4double* thisMaterialZ = new G4double[num << 790 G4double* thisMaterialCof = new G4double[num << 791 << 792 for( i = 0; i < numberOfElements; ++i ) << 793 { << 794 thisMaterialZ[i] = (*theMaterialTable)[fMa << 795 sumZ += thisMaterialZ[i]; << 796 thisMaterialCof[i] = p0+p1*thisMaterialZ[i << 797 } << 798 for( i = 0; i < numberOfElements; ++i ) << 799 { << 800 sumCof += thisMaterialCof[i]*thisMaterialZ << 801 } << 802 fLowEnergyCof = sumCof; << 803 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof << 804 delete [] thisMaterialZ; << 805 delete [] thisMaterialCof; << 806 } 500 } 807 501 808 ////////////////////////////////////////////// 502 ///////////////////////////////////////////////////////////////////////// 809 // 503 // 810 // General control function for class G4PAIxSe 504 // General control function for class G4PAIxSection 811 // 505 // 812 506 813 void G4PAIxSection::InitPAI() 507 void G4PAIxSection::InitPAI() 814 { 508 { 815 G4int i; 509 G4int i; 816 G4double betaGammaSq = fLorentzFactor[fRefG 510 G4double betaGammaSq = fLorentzFactor[fRefGammaNumber]* 817 fLorentzFactor[fRefG 511 fLorentzFactor[fRefGammaNumber] - 1; 818 512 819 // Preparation of integral PAI cross sectio 513 // Preparation of integral PAI cross section for reference gamma 820 514 821 NormShift(betaGammaSq); 515 NormShift(betaGammaSq); 822 SplainPAI(betaGammaSq); 516 SplainPAI(betaGammaSq); 823 517 824 IntegralPAIxSection(); 518 IntegralPAIxSection(); 825 IntegralCerenkov(); 519 IntegralCerenkov(); 826 IntegralMM(); 520 IntegralMM(); 827 IntegralPlasmon(); 521 IntegralPlasmon(); 828 IntegralResonance(); 522 IntegralResonance(); 829 523 830 for(i = 0; i<= fSplineNumber; i++) 524 for(i = 0; i<= fSplineNumber; i++) 831 { 525 { 832 fPAItable[i][fRefGammaNumber] = fIntegra 526 fPAItable[i][fRefGammaNumber] = fIntegralPAIxSection[i]; 833 if(i != 0) 527 if(i != 0) 834 { 528 { 835 fPAItable[i][0] = fSplineEnergy[i]; << 529 fPAItable[i][0] = fSplineEnergy[i]; 836 } 530 } 837 } 531 } 838 fPAItable[0][0] = fSplineNumber; 532 fPAItable[0][0] = fSplineNumber; 839 533 840 for(G4int j = 1; j < 112; j++) // for 534 for(G4int j = 1; j < 112; j++) // for other gammas 841 { 535 { 842 if( j == fRefGammaNumber ) continue; 536 if( j == fRefGammaNumber ) continue; 843 537 844 betaGammaSq = fLorentzFactor[j]*fLorentz 538 betaGammaSq = fLorentzFactor[j]*fLorentzFactor[j] - 1; 845 539 846 for(i = 1; i <= fSplineNumber; i++) 540 for(i = 1; i <= fSplineNumber; i++) 847 { 541 { 848 fDifPAIxSection[i] = DifPAIxSection(i 542 fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq); 849 fdNdxCerenkov[i] = PAIdNdxCerenkov( 543 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 850 fdNdxMM[i] = PAIdNdxMM(i,betaGammaS 544 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 851 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 545 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 852 fdNdxResonance[i] = PAIdNdxResonance 546 fdNdxResonance[i] = PAIdNdxResonance(i,betaGammaSq); 853 } 547 } 854 IntegralPAIxSection(); 548 IntegralPAIxSection(); 855 IntegralCerenkov(); 549 IntegralCerenkov(); 856 IntegralMM(); 550 IntegralMM(); 857 IntegralPlasmon(); 551 IntegralPlasmon(); 858 IntegralResonance(); 552 IntegralResonance(); 859 553 860 for(i = 0; i <= fSplineNumber; i++) 554 for(i = 0; i <= fSplineNumber; i++) 861 { 555 { 862 fPAItable[i][j] = fIntegralPAIxSectio 556 fPAItable[i][j] = fIntegralPAIxSection[i]; 863 } 557 } 864 } 558 } 865 559 866 } 560 } 867 561 868 ////////////////////////////////////////////// 562 /////////////////////////////////////////////////////////////////////// 869 // 563 // 870 // Shifting from borders to intervals Creation 564 // Shifting from borders to intervals Creation of first energy points 871 // 565 // 872 566 873 void G4PAIxSection::NormShift(G4double betaGam 567 void G4PAIxSection::NormShift(G4double betaGammaSq) 874 { 568 { 875 G4int i, j; 569 G4int i, j; 876 570 877 if(fVerbose>0) G4cout<<" G4PAIxSection: << 878 << 879 << 880 for( i = 1; i <= fIntervalNumber-1; i++ ) 571 for( i = 1; i <= fIntervalNumber-1; i++ ) 881 { 572 { 882 for( j = 1; j <= 2; j++ ) 573 for( j = 1; j <= 2; j++ ) 883 { 574 { 884 fSplineNumber = (i-1)*2 + j; 575 fSplineNumber = (i-1)*2 + j; 885 576 886 if( j == 1 ) fSplineEnergy[fSplineNumber 577 if( j == 1 ) fSplineEnergy[fSplineNumber] = fEnergyInterval[i ]*(1+fDelta); 887 else fSplineEnergy[fSplineNumber 578 else fSplineEnergy[fSplineNumber] = fEnergyInterval[i+1]*(1-fDelta); 888 if(fVerbose>0) G4cout<<"cn = "<<fSplineN << 579 // G4cout<<"cn = "<<fSplineNumber<<"; "<<"energy = " >> 580 // <<fSplineEnergy[fSplineNumber]<<G4endl; 889 } 581 } 890 } 582 } 891 fIntegralTerm[1]=RutherfordIntegral(1,fEnerg 583 fIntegralTerm[1]=RutherfordIntegral(1,fEnergyInterval[1],fSplineEnergy[1]); 892 584 893 j = 1; 585 j = 1; 894 586 895 for( i = 2; i <= fSplineNumber; i++ ) 587 for( i = 2; i <= fSplineNumber; i++ ) 896 { 588 { 897 if( fSplineEnergy[i]<fEnergyInterval[j+1] << 589 if(fSplineEnergy[i]<fEnergyInterval[j+1]) 898 { 590 { 899 fIntegralTerm[i] = fIntegralTerm[i-1] 591 fIntegralTerm[i] = fIntegralTerm[i-1] + 900 RutherfordIntegral << 592 RutherfordIntegral(j,fSplineEnergy[i-1], 901 593 fSplineEnergy[i] ); 902 } 594 } 903 else 595 else 904 { 596 { 905 G4double x = RutherfordIntegral(j,fSpli 597 G4double x = RutherfordIntegral(j,fSplineEnergy[i-1], 906 fEn 598 fEnergyInterval[j+1] ); 907 j++; 599 j++; 908 fIntegralTerm[i] = fIntegralTerm[i-1] 600 fIntegralTerm[i] = fIntegralTerm[i-1] + x + 909 RutherfordIntegral << 601 RutherfordIntegral(j,fEnergyInterval[j], 910 602 fSplineEnergy[i] ); 911 } 603 } 912 if(fVerbose>0) G4cout<<i<<" Shift: w = "< << 604 // G4cout<<i<<"\t"<<fSplineEnergy[i]<<"\t"<<fIntegralTerm[i]<<"\n"<<G4endl; 913 } 605 } 914 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine 606 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine_structure_const/electron_mass_c2; 915 fNormalizationCof *= fElectronDensity/fInteg 607 fNormalizationCof *= fElectronDensity/fIntegralTerm[fSplineNumber]; 916 608 917 // G4cout<<"fNormalizationCof = "<<fNormaliz 609 // G4cout<<"fNormalizationCof = "<<fNormalizationCof<<G4endl; 918 610 919 // Calculation of PAI differrential << 611 // Calculation of PAI differrential cross-section (1/(keV*cm)) 920 // in the energy points near borders << 612 // in the energy points near borders of energy intervals 921 613 922 for(G4int k = 1; k <= fIntervalNumber-1; k+ 614 for(G4int k = 1; k <= fIntervalNumber-1; k++ ) 923 { 615 { 924 for( j = 1; j <= 2; j++ ) 616 for( j = 1; j <= 2; j++ ) 925 { 617 { 926 i = (k-1)*2 + j; 618 i = (k-1)*2 + j; 927 fImPartDielectricConst[i] = fNormaliz 619 fImPartDielectricConst[i] = fNormalizationCof* 928 ImPartDie << 620 ImPartDielectricConst(k,fSplineEnergy[i]); 929 fRePartDielectricConst[i] = fNormaliz 621 fRePartDielectricConst[i] = fNormalizationCof* 930 RePartDie << 622 RePartDielectricConst(fSplineEnergy[i]); 931 fIntegralTerm[i] *= fNormalizationCof 623 fIntegralTerm[i] *= fNormalizationCof; 932 624 933 fDifPAIxSection[i] = DifPAIxSection(i 625 fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq); 934 fdNdxCerenkov[i] = PAIdNdxCerenkov( 626 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 935 fdNdxMM[i] = PAIdNdxMM(i,betaGammaS 627 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 936 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 628 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 937 fdNdxResonance[i] = PAIdNdxResonan 629 fdNdxResonance[i] = PAIdNdxResonance(i,betaGammaSq); 938 if(fVerbose>0) G4cout<<i<<" Shift: w = "< << 939 } 630 } 940 } 631 } 941 632 942 } // end of NormShift 633 } // end of NormShift 943 634 944 ////////////////////////////////////////////// 635 ///////////////////////////////////////////////////////////////////////// 945 // 636 // 946 // Creation of new energy points as geometrica 637 // Creation of new energy points as geometrical mean of existing 947 // one, calculation PAI_cs for them, while the 638 // one, calculation PAI_cs for them, while the error of logarithmic 948 // linear approximation would be smaller than 639 // linear approximation would be smaller than 'fError' 949 640 950 void G4PAIxSection::SplainPAI(G4double betaGam 641 void G4PAIxSection::SplainPAI(G4double betaGammaSq) 951 { 642 { 952 G4int j, k = 1, i = 1; << 643 G4int k = 1; 953 << 644 G4int i = 1; 954 if(fVerbose>0) G4cout<<" G << 955 645 956 while ( (i < fSplineNumber) && (fSplineNumbe << 646 while ( (i < fSplineNumber) && (fSplineNumber < fMaxSplineSize-1) ) 957 { << 647 { 958 // if( std::abs(fSplineEnergy[i+1]-fEnerg << 648 if(fSplineEnergy[i+1] > fEnergyInterval[k+1]) 959 if( fSplineEnergy[i+1] > fEnergyInterval[ << 649 { 960 { << 961 k++; // Here next energy point is 650 k++; // Here next energy point is in next energy interval 962 i++; << 651 i++; 963 if(fVerbose>0) G4cout<<" << 964 continue; 652 continue; 965 } << 653 } 966 if(fVerbose>0) G4cout<<" out if: i << 654 // Shifting of arrayes for inserting the geometrical 967 << 655 // average of 'i' and 'i+1' energy points to 'i+1' place 968 // Shifting of arrayes << 656 fSplineNumber++; 969 // average of 'i' and ' << 970 fSplineNumber++; << 971 657 972 for( j = fSplineNumber; j >= i+2; j-- ) << 658 for(G4int j = fSplineNumber; j >= i+2; j-- ) 973 { << 659 { 974 fSplineEnergy[j] = fSplineEn 660 fSplineEnergy[j] = fSplineEnergy[j-1]; 975 fImPartDielectricConst[j] = fImPartDi 661 fImPartDielectricConst[j] = fImPartDielectricConst[j-1]; 976 fRePartDielectricConst[j] = fRePartDi << 662 fRePartDielectricConst[j] = fRePartDielectricConst[j-1]; 977 fIntegralTerm[j] = fIntegral << 663 fIntegralTerm[j] = fIntegralTerm[j-1]; 978 664 979 fDifPAIxSection[j] = fDifPAIxSection[ << 665 fDifPAIxSection[j] = fDifPAIxSection[j-1]; 980 fdNdxCerenkov[j] = fdNdxCerenkov[j- 666 fdNdxCerenkov[j] = fdNdxCerenkov[j-1]; 981 fdNdxMM[j] = fdNdxMM[j-1]; << 667 fdNdxMM[j] = fdNdxMM[j-1]; 982 fdNdxPlasmon[j] = fdNdxPlasmon[j-1 668 fdNdxPlasmon[j] = fdNdxPlasmon[j-1]; 983 fdNdxResonance[j] = fdNdxResonance[j 669 fdNdxResonance[j] = fdNdxResonance[j-1]; 984 } << 670 } 985 G4double x1 = fSplineEnergy[i]; 671 G4double x1 = fSplineEnergy[i]; 986 G4double x2 = fSplineEnergy[i+1]; 672 G4double x2 = fSplineEnergy[i+1]; 987 G4double yy1 = fDifPAIxSection[i]; 673 G4double yy1 = fDifPAIxSection[i]; 988 G4double y2 = fDifPAIxSection[i+1]; 674 G4double y2 = fDifPAIxSection[i+1]; 989 675 990 if(fVerbose>0) G4cout<<"Spline: x1 = "<< << 991 << 992 << 993 G4double en1 = sqrt(x1*x2); 676 G4double en1 = sqrt(x1*x2); 994 // G4double en1 = 0.5*(x1 + x2); << 995 << 996 << 997 fSplineEnergy[i+1] = en1; 677 fSplineEnergy[i+1] = en1; 998 678 999 // Calculation of logarithmic << 679 // Calculation of logarithmic linear approximation 1000 // in this (enr) energy poin << 680 // in this (enr) energy point, which number is 'i+1' now 1001 681 1002 G4double a = log10(y2/yy1)/log10(x2/x1) 682 G4double a = log10(y2/yy1)/log10(x2/x1); 1003 G4double b = log10(yy1) - a*log10(x1); 683 G4double b = log10(yy1) - a*log10(x1); 1004 G4double y = a*log10(en1) + b; 684 G4double y = a*log10(en1) + b; 1005 << 1006 y = pow(10.,y); 685 y = pow(10.,y); 1007 686 1008 // Calculation of the PAI di << 687 // Calculation of the PAI dif. cross-section at this point 1009 688 1010 fImPartDielectricConst[i+1] = fNormaliz 689 fImPartDielectricConst[i+1] = fNormalizationCof* 1011 ImPartDie << 690 ImPartDielectricConst(k,fSplineEnergy[i+1]); 1012 fRePartDielectricConst[i+1] = fNormaliz 691 fRePartDielectricConst[i+1] = fNormalizationCof* 1013 RePartDie << 692 RePartDielectricConst(fSplineEnergy[i+1]); 1014 fIntegralTerm[i+1] = fIntegralTerm[i] + 693 fIntegralTerm[i+1] = fIntegralTerm[i] + fNormalizationCof* 1015 RutherfordIntegral << 694 RutherfordIntegral(k,fSplineEnergy[i], 1016 695 fSplineEnergy[i+1]); 1017 696 1018 fDifPAIxSection[i+1] = DifPAIxSection(i 697 fDifPAIxSection[i+1] = DifPAIxSection(i+1,betaGammaSq); 1019 fdNdxCerenkov[i+1] = PAIdNdxCerenkov( 698 fdNdxCerenkov[i+1] = PAIdNdxCerenkov(i+1,betaGammaSq); 1020 fdNdxMM[i+1] = PAIdNdxMM(i+1,be << 699 fdNdxMM[i+1] = PAIdNdxMM(i+1,betaGammaSq); 1021 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i 700 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i+1,betaGammaSq); 1022 fdNdxResonance[i+1] = PAIdNdxResonance 701 fdNdxResonance[i+1] = PAIdNdxResonance(i+1,betaGammaSq); 1023 702 1024 // Condition for next divis << 703 // Condition for next division of this segment or to pass 1025 << 704 // to higher energies 1026 if(fVerbose>0) G4cout<<"Spline, a = "<<a< << 1027 << 1028 // to higher energies << 1029 705 1030 G4double x = 2*(fDifPAIxSection[i+1] - 706 G4double x = 2*(fDifPAIxSection[i+1] - y)/(fDifPAIxSection[i+1] + y); 1031 707 1032 G4double delta = 2.*(fSplineEnergy[i+1] << 1033 << 1034 if( x < 0 ) 708 if( x < 0 ) 1035 { 709 { 1036 x = -x; << 710 x = -x; 1037 } 711 } 1038 if( x > fError && fSplineNumber < fMaxS << 712 if( x > fError && fSplineNumber < fMaxSplineSize-1 ) 1039 { 713 { 1040 continue; // next division << 714 continue; // next division 1041 } 715 } 1042 i += 2; // pass to next segment 716 i += 2; // pass to next segment 1043 717 1044 // Loop checking, 03-Aug-2015, Vladimir << 718 } // close 'while' 1045 } // close 'while' << 1046 719 1047 } // end of SplainPAI 720 } // end of SplainPAI 1048 721 1049 722 1050 ///////////////////////////////////////////// 723 //////////////////////////////////////////////////////////////////// 1051 // 724 // 1052 // Integration over electrons that could be c 725 // Integration over electrons that could be considered 1053 // quasi-free at energy transfer of interest 726 // quasi-free at energy transfer of interest 1054 727 1055 G4double G4PAIxSection::RutherfordIntegral( G 728 G4double G4PAIxSection::RutherfordIntegral( G4int k, 1056 G << 729 G4double x1, 1057 << 730 G4double x2 ) 1058 { 731 { 1059 G4double c1, c2, c3; 732 G4double c1, c2, c3; 1060 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "< 733 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl; 1061 c1 = (x2 - x1)/x1/x2; 734 c1 = (x2 - x1)/x1/x2; 1062 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2; 735 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2; 1063 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/ 736 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 1064 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = " 737 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "<<c2<<"; "<<"c3 = "<<c3<<G4endl; 1065 738 1066 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA 739 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3[k]*c2/2 + fA4[k]*c3/3; 1067 740 1068 } // end of RutherfordIntegral 741 } // end of RutherfordIntegral 1069 742 1070 743 1071 ///////////////////////////////////////////// 744 ///////////////////////////////////////////////////////////////// 1072 // 745 // 1073 // Imaginary part of dielectric constant 746 // Imaginary part of dielectric constant 1074 // (G4int k - interval number, G4double en1 - 747 // (G4int k - interval number, G4double en1 - energy point) 1075 748 1076 G4double G4PAIxSection::ImPartDielectricConst 749 G4double G4PAIxSection::ImPartDielectricConst( G4int k , 1077 << 750 G4double energy1 ) 1078 { 751 { 1079 G4double energy2,energy3,energy4,result; 752 G4double energy2,energy3,energy4,result; 1080 753 1081 energy2 = energy1*energy1; 754 energy2 = energy1*energy1; 1082 energy3 = energy2*energy1; 755 energy3 = energy2*energy1; 1083 energy4 = energy3*energy1; 756 energy4 = energy3*energy1; 1084 757 1085 result = fA1[k]/energy1+fA2[k]/energy2+fA3 758 result = fA1[k]/energy1+fA2[k]/energy2+fA3[k]/energy3+fA4[k]/energy4; 1086 result *=hbarc/energy1; 759 result *=hbarc/energy1; 1087 760 1088 return result; 761 return result; 1089 762 1090 } // end of ImPartDielectricConst 763 } // end of ImPartDielectricConst 1091 764 1092 ///////////////////////////////////////////// 765 ///////////////////////////////////////////////////////////////// 1093 // 766 // 1094 // Returns lambda of photon with energy1 in c 767 // Returns lambda of photon with energy1 in current material 1095 768 1096 G4double G4PAIxSection::GetPhotonRange( G4dou 769 G4double G4PAIxSection::GetPhotonRange( G4double energy1 ) 1097 { 770 { 1098 G4int i; 771 G4int i; 1099 G4double energy2, energy3, energy4, result, 772 G4double energy2, energy3, energy4, result, lambda; 1100 773 1101 energy2 = energy1*energy1; 774 energy2 = energy1*energy1; 1102 energy3 = energy2*energy1; 775 energy3 = energy2*energy1; 1103 energy4 = energy3*energy1; 776 energy4 = energy3*energy1; 1104 777 >> 778 // G4double* SandiaCof = fSandia->GetSandiaCofForMaterialPAI(energy1); >> 779 // result = SandiaCof[0]/energy1+SandiaCof[1]/energy2+SandiaCof[2]/energy3+SandiaCof[3]/energy4; >> 780 // result *= fDensity; >> 781 1105 for( i = 1; i <= fIntervalNumber; i++ ) 782 for( i = 1; i <= fIntervalNumber; i++ ) 1106 { 783 { 1107 if( energy1 < fEnergyInterval[i]) break; 784 if( energy1 < fEnergyInterval[i]) break; 1108 } 785 } 1109 i--; 786 i--; 1110 if(i == 0) i = 1; 787 if(i == 0) i = 1; 1111 788 1112 result = fA1[i]/energy1+fA2[i]/energy2+fA3[ 789 result = fA1[i]/energy1+fA2[i]/energy2+fA3[i]/energy3+fA4[i]/energy4; 1113 790 1114 if( result > DBL_MIN ) lambda = 1./result; 791 if( result > DBL_MIN ) lambda = 1./result; 1115 else lambda = DBL_MAX; 792 else lambda = DBL_MAX; 1116 793 1117 return lambda; 794 return lambda; 1118 } 795 } 1119 796 1120 ///////////////////////////////////////////// 797 ///////////////////////////////////////////////////////////////// 1121 // 798 // 1122 // Return lambda of electron with energy1 in 799 // Return lambda of electron with energy1 in current material 1123 // parametrisation from NIM A554(2005)474-493 800 // parametrisation from NIM A554(2005)474-493 1124 801 1125 G4double G4PAIxSection::GetElectronRange( G4d 802 G4double G4PAIxSection::GetElectronRange( G4double energy ) 1126 { 803 { 1127 G4double range; 804 G4double range; 1128 /* 805 /* 1129 const G4MaterialTable* theMaterialTable = G 806 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 1130 807 1131 G4double Z = (*theMaterialTable)[fMaterialI 808 G4double Z = (*theMaterialTable)[fMaterialIndex]->GetIonisation()->GetZeffective(); 1132 G4double A = (*theMaterialTable)[fMaterialI 809 G4double A = (*theMaterialTable)[fMaterialIndex]->GetA(); 1133 810 1134 energy /= keV; // energy in keV in parametr 811 energy /= keV; // energy in keV in parametrised formula 1135 812 1136 if (energy < 10.) 813 if (energy < 10.) 1137 { 814 { 1138 range = 3.872e-3*A/Z; 815 range = 3.872e-3*A/Z; 1139 range *= pow(energy,1.492); 816 range *= pow(energy,1.492); 1140 } 817 } 1141 else 818 else 1142 { 819 { 1143 range = 6.97e-3*pow(energy,1.6); 820 range = 6.97e-3*pow(energy,1.6); 1144 } 821 } 1145 */ 822 */ 1146 // Blum&Rolandi Particle Detection with Dri 823 // Blum&Rolandi Particle Detection with Drift Chambers, p. 7 1147 824 1148 G4double cofA = 5.37e-4*g/cm2/keV; 825 G4double cofA = 5.37e-4*g/cm2/keV; 1149 G4double cofB = 0.9815; 826 G4double cofB = 0.9815; 1150 G4double cofC = 3.123e-3/keV; 827 G4double cofC = 3.123e-3/keV; 1151 // energy /= keV; 828 // energy /= keV; 1152 829 1153 range = cofA*energy*( 1 - cofB/(1 + cofC*en 830 range = cofA*energy*( 1 - cofB/(1 + cofC*energy) ); 1154 831 1155 // range *= g/cm2; 832 // range *= g/cm2; 1156 range /= fDensity; 833 range /= fDensity; 1157 834 1158 return range; 835 return range; 1159 } 836 } 1160 837 1161 ///////////////////////////////////////////// 838 ////////////////////////////////////////////////////////////////////////////// 1162 // 839 // 1163 // Real part of dielectric constant minus uni 840 // Real part of dielectric constant minus unit: epsilon_1 - 1 1164 // (G4double enb - energy point) 841 // (G4double enb - energy point) 1165 // 842 // 1166 843 1167 G4double G4PAIxSection::RePartDielectricConst 844 G4double G4PAIxSection::RePartDielectricConst(G4double enb) 1168 { 845 { 1169 G4double x0, x02, x03, x04, x05, x1, x2, x 846 G4double x0, x02, x03, x04, x05, x1, x2, xx1 ,xx2 , xx12, 1170 c1, c2, c3, cof1, cof2, xln1, xln 847 c1, c2, c3, cof1, cof2, xln1, xln2, xln3, result; 1171 848 1172 x0 = enb; 849 x0 = enb; 1173 result = 0; 850 result = 0; 1174 851 1175 for(G4int i=1;i<=fIntervalNumber-1;i++) 852 for(G4int i=1;i<=fIntervalNumber-1;i++) 1176 { 853 { 1177 x1 = fEnergyInterval[i]; 854 x1 = fEnergyInterval[i]; 1178 x2 = fEnergyInterval[i+1]; 855 x2 = fEnergyInterval[i+1]; 1179 xx1 = x1 - x0; 856 xx1 = x1 - x0; 1180 xx2 = x2 - x0; 857 xx2 = x2 - x0; 1181 xx12 = xx2/xx1; 858 xx12 = xx2/xx1; 1182 859 1183 if(xx12<0) 860 if(xx12<0) 1184 { 861 { 1185 xx12 = -xx12; << 862 xx12 = -xx12; 1186 } 863 } 1187 xln1 = log(x2/x1); 864 xln1 = log(x2/x1); 1188 xln2 = log(xx12); 865 xln2 = log(xx12); 1189 xln3 = log((x2 + x0)/(x1 + x0)); 866 xln3 = log((x2 + x0)/(x1 + x0)); 1190 x02 = x0*x0; 867 x02 = x0*x0; 1191 x03 = x02*x0; 868 x03 = x02*x0; 1192 x04 = x03*x0; 869 x04 = x03*x0; 1193 x05 = x04*x0; 870 x05 = x04*x0; 1194 c1 = (x2 - x1)/x1/x2; 871 c1 = (x2 - x1)/x1/x2; 1195 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2; 872 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2; 1196 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/ 873 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 1197 874 1198 result -= (fA1[i]/x02 + fA3[i]/x04)*xln 875 result -= (fA1[i]/x02 + fA3[i]/x04)*xln1; 1199 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 876 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 1200 result -= fA3[i]*c2/2/x02; 877 result -= fA3[i]*c2/2/x02; 1201 result -= fA4[i]*c3/3/x02; 878 result -= fA4[i]*c3/3/x02; 1202 879 1203 cof1 = fA1[i]/x02 + fA3[i]/x04; 880 cof1 = fA1[i]/x02 + fA3[i]/x04; 1204 cof2 = fA2[i]/x03 + fA4[i]/x05; 881 cof2 = fA2[i]/x03 + fA4[i]/x05; 1205 882 1206 result += 0.5*(cof1 +cof2)*xln2; 883 result += 0.5*(cof1 +cof2)*xln2; 1207 result += 0.5*(cof1 - cof2)*xln3; 884 result += 0.5*(cof1 - cof2)*xln3; 1208 } 885 } 1209 result *= 2*hbarc/pi; 886 result *= 2*hbarc/pi; 1210 887 1211 return result; 888 return result; 1212 889 1213 } // end of RePartDielectricConst 890 } // end of RePartDielectricConst 1214 891 1215 ///////////////////////////////////////////// 892 ////////////////////////////////////////////////////////////////////// 1216 // 893 // 1217 // PAI differential cross-section in terms of 894 // PAI differential cross-section in terms of 1218 // simplified Allison's equation 895 // simplified Allison's equation 1219 // 896 // 1220 897 1221 G4double G4PAIxSection::DifPAIxSection( G4int << 898 G4double G4PAIxSection::DifPAIxSection( G4int i , >> 899 G4double betaGammaSq ) 1222 { 900 { 1223 G4double cof,x1,x2,x3,x4,x5,x6,x7,x8,resul 901 G4double cof,x1,x2,x3,x4,x5,x6,x7,x8,result; 1224 902 1225 G4double betaBohr = fine_structure_const; 903 G4double betaBohr = fine_structure_const; >> 904 // G4double betaBohr2 = fine_structure_const*fine_structure_const; >> 905 // G4double betaBohr3 = betaBohr*betaBohr2; // *4.0; >> 906 1226 G4double be2 = betaGammaSq/(1 + betaGamma 907 G4double be2 = betaGammaSq/(1 + betaGammaSq); 1227 G4double beta = std::sqrt(be2); << 908 G4double beta = sqrt(be2); >> 909 // G4double be3 = beta*be2; 1228 910 1229 cof = 1.; 911 cof = 1.; 1230 x1 = std::log(2*electron_mass_c2/fSplineE << 912 x1 = log(2*electron_mass_c2/fSplineEnergy[i]); 1231 913 1232 if( betaGammaSq < 0.01 ) x2 = std::log(be2 << 914 if( betaGammaSq < 0.01 ) x2 = log(be2); 1233 else 915 else 1234 { 916 { 1235 x2 = -log( (1/betaGammaSq - fRePartDiele 917 x2 = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 1236 (1/betaGammaSq - fRePartDiele << 918 (1/betaGammaSq - fRePartDielectricConst[i]) + 1237 fImPartDielectricConst[i]*fIm << 919 fImPartDielectricConst[i]*fImPartDielectricConst[i] )/2; 1238 } 920 } 1239 if( fImPartDielectricConst[i] == 0.0 ||bet 921 if( fImPartDielectricConst[i] == 0.0 ||betaGammaSq < 0.01 ) 1240 { 922 { 1241 x6 = 0.; 923 x6 = 0.; 1242 } 924 } 1243 else 925 else 1244 { 926 { 1245 x3 = -fRePartDielectricConst[i] + 1/beta 927 x3 = -fRePartDielectricConst[i] + 1/betaGammaSq; 1246 x5 = -1 - fRePartDielectricConst[i] + 928 x5 = -1 - fRePartDielectricConst[i] + 1247 be2*((1 +fRePartDielectricConst[i]) 929 be2*((1 +fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 1248 fImPartDielectricConst[i]*fImPartDi << 930 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 1249 931 1250 x7 = atan2(fImPartDielectricConst[i],x3) 932 x7 = atan2(fImPartDielectricConst[i],x3); 1251 x6 = x5 * x7; 933 x6 = x5 * x7; 1252 } 934 } >> 935 // if(fImPartDielectricConst[i] == 0) x6 = 0.; 1253 936 1254 x4 = ((x1 + x2)*fImPartDielectricConst[i] 937 x4 = ((x1 + x2)*fImPartDielectricConst[i] + x6)/hbarc; 1255 938 >> 939 // if( x4 < 0.0 ) x4 = 0.0; >> 940 1256 x8 = (1 + fRePartDielectricConst[i])*(1 + 941 x8 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 1257 fImPartDielectricConst[i]*fImPartDiel 942 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 1258 943 1259 result = (x4 + cof*fIntegralTerm[i]/fSplin 944 result = (x4 + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i]); 1260 945 1261 if( result < 1.0e-8 ) result = 1.0e-8; 946 if( result < 1.0e-8 ) result = 1.0e-8; 1262 947 1263 result *= fine_structure_const/be2/pi; 948 result *= fine_structure_const/be2/pi; 1264 949 1265 // low energy correction 950 // low energy correction 1266 951 1267 G4double lowCof = fLowEnergyCof; // 6.0 ; << 952 G4double lowCof = 4.0 ; // Ar ~ 4.; -> fLowCof as f(Z1,Z2)? >> 953 >> 954 result *= (1 - exp(-beta/betaBohr/lowCof)); >> 955 >> 956 // result *= (1 - exp(-be2/betaBohr2/lowCof)); >> 957 >> 958 // result *= (1 - exp(-be3/betaBohr3/lowCof)); // ~ be for be<<betaBohr >> 959 >> 960 // result *= (1 - exp(-be4/betaBohr4/lowCof)); 1268 961 1269 result *= (1 - std::exp(-beta/betaBohr/low << 962 if(fDensity >= 0.1) 1270 if(x8 >= 0.0) << 1271 { 963 { 1272 result /= x8; << 964 result /= x8; 1273 } 965 } 1274 return result; 966 return result; 1275 967 1276 } // end of DifPAIxSection 968 } // end of DifPAIxSection 1277 969 1278 ///////////////////////////////////////////// 970 ////////////////////////////////////////////////////////////////////////// 1279 // 971 // 1280 // Calculation od dN/dx of collisions with cr 972 // Calculation od dN/dx of collisions with creation of Cerenkov pseudo-photons 1281 973 1282 G4double G4PAIxSection::PAIdNdxCerenkov( G4in 974 G4double G4PAIxSection::PAIdNdxCerenkov( G4int i , 1283 G4do 975 G4double betaGammaSq ) 1284 { 976 { 1285 G4double logarithm, x3, x5, argument, modu 977 G4double logarithm, x3, x5, argument, modul2, dNdxC; 1286 G4double be2, betaBohr2, cofBetaBohr; << 978 G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr; 1287 979 1288 cofBetaBohr = 4.0; 980 cofBetaBohr = 4.0; 1289 betaBohr2 = fine_structure_const*fine_stru << 981 betaBohr2 = fine_structure_const*fine_structure_const; 1290 G4double betaBohr4 = betaBohr2*betaBohr2*c << 982 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 1291 983 1292 be2 = betaGammaSq/(1 + betaGammaSq); 984 be2 = betaGammaSq/(1 + betaGammaSq); 1293 G4double be4 = be2*be2; << 985 be4 = be2*be2; 1294 986 1295 if( betaGammaSq < 0.01 ) logarithm = std:: << 987 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq); // 0.0; 1296 else 988 else 1297 { 989 { 1298 logarithm = -log( (1/betaGammaSq - fReP 990 logarithm = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 1299 (1/betaGammaSq - fReP << 991 (1/betaGammaSq - fRePartDielectricConst[i]) + 1300 fImPartDielectricCons << 992 fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5; 1301 logarithm += log(1+1.0/betaGammaSq); 993 logarithm += log(1+1.0/betaGammaSq); 1302 } 994 } 1303 995 1304 if( fImPartDielectricConst[i] == 0.0 || be 996 if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 ) 1305 { 997 { 1306 argument = 0.0; 998 argument = 0.0; 1307 } 999 } 1308 else 1000 else 1309 { 1001 { 1310 x3 = -fRePartDielectricConst[i] + 1.0/be 1002 x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq; 1311 x5 = -1.0 - fRePartDielectricConst[i] + 1003 x5 = -1.0 - fRePartDielectricConst[i] + 1312 be2*((1.0 +fRePartDielectricConst[i 1004 be2*((1.0 +fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + 1313 fImPartDielectricConst[i]*fImPartDi << 1005 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 1314 if( x3 == 0.0 ) argument = 0.5*pi; 1006 if( x3 == 0.0 ) argument = 0.5*pi; 1315 else argument = std::atan2(fI << 1007 else argument = atan2(fImPartDielectricConst[i],x3); 1316 argument *= x5 ; 1008 argument *= x5 ; 1317 } 1009 } 1318 dNdxC = ( logarithm*fImPartDielectricConst 1010 dNdxC = ( logarithm*fImPartDielectricConst[i] + argument )/hbarc; 1319 1011 1320 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 1012 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 1321 1013 1322 dNdxC *= fine_structure_const/be2/pi; 1014 dNdxC *= fine_structure_const/be2/pi; 1323 1015 1324 dNdxC *= (1-std::exp(-be4/betaBohr4)); << 1016 dNdxC *= (1-exp(-be4/betaBohr4)); 1325 1017 1326 modul2 = (1.0 + fRePartDielectricConst[i]) << 1018 if(fDensity >= 0.1) 1327 fImPartDielectricConst[i]*fImPartDielect << 1328 if(modul2 >= 0.0) << 1329 { 1019 { 1330 dNdxC /= modul2; << 1020 modul2 = (1.0 + fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + >> 1021 fImPartDielectricConst[i]*fImPartDielectricConst[i]; >> 1022 dNdxC /= modul2; 1331 } 1023 } 1332 return dNdxC; 1024 return dNdxC; 1333 1025 1334 } // end of PAIdNdxCerenkov 1026 } // end of PAIdNdxCerenkov 1335 1027 1336 ///////////////////////////////////////////// 1028 ////////////////////////////////////////////////////////////////////////// 1337 // 1029 // 1338 // Calculation od dN/dx of collisions of MM w 1030 // Calculation od dN/dx of collisions of MM with creation of Cerenkov pseudo-photons 1339 1031 1340 G4double G4PAIxSection::PAIdNdxMM( G4int i 1032 G4double G4PAIxSection::PAIdNdxMM( G4int i , 1341 G4do 1033 G4double betaGammaSq ) 1342 { 1034 { 1343 G4double logarithm, x3, x5, argument, dNdx 1035 G4double logarithm, x3, x5, argument, dNdxC; 1344 G4double be2, be4, betaBohr2,betaBohr4,cof 1036 G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr; 1345 1037 1346 cofBetaBohr = 4.0; 1038 cofBetaBohr = 4.0; 1347 betaBohr2 = fine_structure_const*fine_st 1039 betaBohr2 = fine_structure_const*fine_structure_const; 1348 betaBohr4 = betaBohr2*betaBohr2*cofBetaB 1040 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 1349 1041 1350 be2 = betaGammaSq/(1 + betaGammaSq); 1042 be2 = betaGammaSq/(1 + betaGammaSq); 1351 be4 = be2*be2; 1043 be4 = be2*be2; 1352 1044 1353 if( betaGammaSq < 0.01 ) logarithm = log(1 1045 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq); // 0.0; 1354 else 1046 else 1355 { 1047 { 1356 logarithm = -log( (1/betaGammaSq - fReP 1048 logarithm = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 1357 (1/betaGammaSq - fReP << 1049 (1/betaGammaSq - fRePartDielectricConst[i]) + 1358 fImPartDielectricCons << 1050 fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5; 1359 logarithm += log(1+1.0/betaGammaSq); 1051 logarithm += log(1+1.0/betaGammaSq); 1360 } 1052 } 1361 1053 1362 if( fImPartDielectricConst[i] == 0.0 || be 1054 if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 ) 1363 { 1055 { 1364 argument = 0.0; 1056 argument = 0.0; 1365 } 1057 } 1366 else 1058 else 1367 { 1059 { 1368 x3 = -fRePartDielectricConst[i] + 1.0/be 1060 x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq; 1369 x5 = be2*( 1.0 + fRePartDielectricConst[ 1061 x5 = be2*( 1.0 + fRePartDielectricConst[i] ) - 1.0; 1370 if( x3 == 0.0 ) argument = 0.5*pi; 1062 if( x3 == 0.0 ) argument = 0.5*pi; 1371 else argument = atan2(fImPart 1063 else argument = atan2(fImPartDielectricConst[i],x3); 1372 argument *= x5 ; 1064 argument *= x5 ; 1373 } 1065 } 1374 dNdxC = ( logarithm*fImPartDielectricConst 1066 dNdxC = ( logarithm*fImPartDielectricConst[i]*be2 + argument )/hbarc; 1375 1067 1376 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 1068 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 1377 1069 1378 dNdxC *= fine_structure_const/be2/pi; 1070 dNdxC *= fine_structure_const/be2/pi; 1379 1071 1380 dNdxC *= (1-std::exp(-be4/betaBohr4)); << 1072 dNdxC *= (1-exp(-be4/betaBohr4)); 1381 return dNdxC; 1073 return dNdxC; 1382 1074 1383 } // end of PAIdNdxMM 1075 } // end of PAIdNdxMM 1384 1076 1385 ///////////////////////////////////////////// 1077 ////////////////////////////////////////////////////////////////////////// 1386 // 1078 // 1387 // Calculation od dN/dx of collisions with cr 1079 // Calculation od dN/dx of collisions with creation of longitudinal EM 1388 // excitations (plasmons, delta-electrons) 1080 // excitations (plasmons, delta-electrons) 1389 1081 1390 G4double G4PAIxSection::PAIdNdxPlasmon( G4int 1082 G4double G4PAIxSection::PAIdNdxPlasmon( G4int i , 1391 G4dou 1083 G4double betaGammaSq ) 1392 { 1084 { 1393 G4double resonance, modul2, dNdxP, cof = 1 1085 G4double resonance, modul2, dNdxP, cof = 1.; 1394 G4double be2, betaBohr; << 1086 G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr; >> 1087 1395 1088 1396 betaBohr = fine_structure_const; << 1089 cofBetaBohr = 4.0; 1397 be2 = betaGammaSq/(1 + betaGammaSq); << 1090 betaBohr2 = fine_structure_const*fine_structure_const; >> 1091 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 1398 1092 1399 G4double beta = std::sqrt(be2); << 1093 be2 = betaGammaSq/(1 + betaGammaSq); >> 1094 be4 = be2*be2; 1400 1095 1401 resonance = std::log(2*electron_mass_c2*be << 1096 resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]); 1402 resonance *= fImPartDielectricConst[i]/hba 1097 resonance *= fImPartDielectricConst[i]/hbarc; 1403 1098 >> 1099 1404 dNdxP = ( resonance + cof*fIntegralTerm[i] 1100 dNdxP = ( resonance + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i] ); 1405 1101 1406 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 1102 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 1407 1103 1408 dNdxP *= fine_structure_const/be2/pi; 1104 dNdxP *= fine_structure_const/be2/pi; >> 1105 dNdxP *= (1-exp(-be4/betaBohr4)); 1409 1106 1410 dNdxP *= (1 - std::exp(-beta/betaBohr/fLo << 1107 if( fDensity >= 0.1 ) 1411 << 1412 modul2 = (1 + fRePartDielectricConst[i])*( << 1413 fImPartDielectricConst[i]*fImPartDielect << 1414 if( modul2 >= 0.0 ) << 1415 { 1108 { >> 1109 modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + >> 1110 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 1416 dNdxP /= modul2; 1111 dNdxP /= modul2; 1417 } 1112 } 1418 return dNdxP; 1113 return dNdxP; 1419 1114 1420 } // end of PAIdNdxPlasmon 1115 } // end of PAIdNdxPlasmon 1421 1116 1422 ///////////////////////////////////////////// 1117 ////////////////////////////////////////////////////////////////////////// 1423 // 1118 // 1424 // Calculation od dN/dx of collisions with cr 1119 // Calculation od dN/dx of collisions with creation of longitudinal EM 1425 // resonance excitations (plasmons, delta-ele 1120 // resonance excitations (plasmons, delta-electrons) 1426 1121 1427 G4double G4PAIxSection::PAIdNdxResonance( G4i 1122 G4double G4PAIxSection::PAIdNdxResonance( G4int i , 1428 G4dou 1123 G4double betaGammaSq ) 1429 { 1124 { 1430 G4double resonance, modul2, dNdxP; 1125 G4double resonance, modul2, dNdxP; 1431 G4double be2, be4, betaBohr2, betaBohr4, c 1126 G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr; 1432 1127 1433 cofBetaBohr = 4.0; 1128 cofBetaBohr = 4.0; 1434 betaBohr2 = fine_structure_const*fine_st 1129 betaBohr2 = fine_structure_const*fine_structure_const; 1435 betaBohr4 = betaBohr2*betaBohr2*cofBetaB 1130 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 1436 1131 1437 be2 = betaGammaSq/(1 + betaGammaSq); 1132 be2 = betaGammaSq/(1 + betaGammaSq); 1438 be4 = be2*be2; 1133 be4 = be2*be2; 1439 1134 1440 resonance = log(2*electron_mass_c2*be2/fSp 1135 resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]); 1441 resonance *= fImPartDielectricConst[i]/hba 1136 resonance *= fImPartDielectricConst[i]/hbarc; 1442 1137 >> 1138 1443 dNdxP = resonance; 1139 dNdxP = resonance; 1444 1140 1445 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 1141 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 1446 1142 1447 dNdxP *= fine_structure_const/be2/pi; 1143 dNdxP *= fine_structure_const/be2/pi; 1448 dNdxP *= (1 - std::exp(-be4/betaBohr4)); << 1144 dNdxP *= (1-exp(-be4/betaBohr4)); 1449 1145 1450 modul2 = (1 + fRePartDielectricConst[i])*( << 1146 if( fDensity >= 0.1 ) 1451 fImPartDielectricConst[i]*fImPartDielect << 1452 if( modul2 >= 0.0 ) << 1453 { 1147 { >> 1148 modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + >> 1149 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 1454 dNdxP /= modul2; 1150 dNdxP /= modul2; 1455 } 1151 } 1456 return dNdxP; 1152 return dNdxP; 1457 1153 1458 } // end of PAIdNdxResonance 1154 } // end of PAIdNdxResonance 1459 1155 1460 ///////////////////////////////////////////// 1156 //////////////////////////////////////////////////////////////////////// 1461 // 1157 // 1462 // Calculation of the PAI integral cross-sect 1158 // Calculation of the PAI integral cross-section 1463 // fIntegralPAIxSection[1] = specific primary 1159 // fIntegralPAIxSection[1] = specific primary ionisation, 1/cm 1464 // and fIntegralPAIxSection[0] = mean energy 1160 // and fIntegralPAIxSection[0] = mean energy loss per cm in keV/cm 1465 1161 1466 void G4PAIxSection::IntegralPAIxSection() 1162 void G4PAIxSection::IntegralPAIxSection() 1467 { 1163 { 1468 fIntegralPAIxSection[fSplineNumber] = 0; 1164 fIntegralPAIxSection[fSplineNumber] = 0; 1469 fIntegralPAIdEdx[fSplineNumber] = 0; 1165 fIntegralPAIdEdx[fSplineNumber] = 0; 1470 fIntegralPAIxSection[0] = 0; 1166 fIntegralPAIxSection[0] = 0; 1471 G4int i, k = fIntervalNumber -1; << 1167 G4int k = fIntervalNumber -1; 1472 1168 1473 for( i = fSplineNumber-1; i >= 1; i--) << 1169 for(G4int i = fSplineNumber-1; i >= 1; i--) 1474 { 1170 { 1475 if(fSplineEnergy[i] >= fEnergyInterval[k] 1171 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1476 { 1172 { 1477 fIntegralPAIxSection[i] = fIntegralPAIx 1173 fIntegralPAIxSection[i] = fIntegralPAIxSection[i+1] + SumOverInterval(i); 1478 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[ 1174 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + SumOverIntervaldEdx(i); 1479 } 1175 } 1480 else 1176 else 1481 { 1177 { 1482 fIntegralPAIxSection[i] = fIntegralPAIx 1178 fIntegralPAIxSection[i] = fIntegralPAIxSection[i+1] + 1483 SumOverBor << 1179 SumOverBorder(i+1,fEnergyInterval[k]); 1484 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[ 1180 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + 1485 SumOverBor << 1181 SumOverBorderdEdx(i+1,fEnergyInterval[k]); 1486 k--; 1182 k--; 1487 } 1183 } 1488 if(fVerbose>0) G4cout<<"i = "<<i<<"; k = << 1489 } 1184 } 1490 } // end of IntegralPAIxSection 1185 } // end of IntegralPAIxSection 1491 1186 1492 ///////////////////////////////////////////// 1187 //////////////////////////////////////////////////////////////////////// 1493 // 1188 // 1494 // Calculation of the PAI Cerenkov integral c 1189 // Calculation of the PAI Cerenkov integral cross-section 1495 // fIntegralCrenkov[1] = specific Crenkov ion 1190 // fIntegralCrenkov[1] = specific Crenkov ionisation, 1/cm 1496 // and fIntegralCerenkov[0] = mean Cerenkov l 1191 // and fIntegralCerenkov[0] = mean Cerenkov loss per cm in keV/cm 1497 1192 1498 void G4PAIxSection::IntegralCerenkov() 1193 void G4PAIxSection::IntegralCerenkov() 1499 { 1194 { 1500 G4int i, k; 1195 G4int i, k; 1501 fIntegralCerenkov[fSplineNumber] = 0; 1196 fIntegralCerenkov[fSplineNumber] = 0; 1502 fIntegralCerenkov[0] = 0; 1197 fIntegralCerenkov[0] = 0; 1503 k = fIntervalNumber -1; 1198 k = fIntervalNumber -1; 1504 1199 1505 for( i = fSplineNumber-1; i >= 1; i-- ) 1200 for( i = fSplineNumber-1; i >= 1; i-- ) 1506 { 1201 { 1507 if(fSplineEnergy[i] >= fEnergyInterval[ 1202 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1508 { 1203 { 1509 fIntegralCerenkov[i] = fIntegralCeren 1204 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + SumOverInterCerenkov(i); 1510 // G4cout<<"int: i = "<<i<<"; sumC = << 1205 // G4cout<<"int: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 1511 } 1206 } 1512 else 1207 else 1513 { 1208 { 1514 fIntegralCerenkov[i] = fIntegralCeren 1209 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + 1515 SumOverBor << 1210 SumOverBordCerenkov(i+1,fEnergyInterval[k]); 1516 k--; << 1211 k--; 1517 // G4cout<<"bord: i = "<<i<<"; sumC = << 1212 // G4cout<<"bord: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 1518 } 1213 } 1519 } 1214 } 1520 1215 1521 } // end of IntegralCerenkov 1216 } // end of IntegralCerenkov 1522 1217 1523 ///////////////////////////////////////////// 1218 //////////////////////////////////////////////////////////////////////// 1524 // 1219 // 1525 // Calculation of the PAI MM-Cerenkov integra 1220 // Calculation of the PAI MM-Cerenkov integral cross-section 1526 // fIntegralMM[1] = specific MM-Cerenkov ioni 1221 // fIntegralMM[1] = specific MM-Cerenkov ionisation, 1/cm 1527 // and fIntegralMM[0] = mean MM-Cerenkov loss 1222 // and fIntegralMM[0] = mean MM-Cerenkov loss per cm in keV/cm 1528 1223 1529 void G4PAIxSection::IntegralMM() 1224 void G4PAIxSection::IntegralMM() 1530 { 1225 { 1531 G4int i, k; 1226 G4int i, k; 1532 fIntegralMM[fSplineNumber] = 0; 1227 fIntegralMM[fSplineNumber] = 0; 1533 fIntegralMM[0] = 0; 1228 fIntegralMM[0] = 0; 1534 k = fIntervalNumber -1; 1229 k = fIntervalNumber -1; 1535 1230 1536 for( i = fSplineNumber-1; i >= 1; i-- ) 1231 for( i = fSplineNumber-1; i >= 1; i-- ) 1537 { 1232 { 1538 if(fSplineEnergy[i] >= fEnergyInterval[ 1233 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1539 { 1234 { 1540 fIntegralMM[i] = fIntegralMM[i+1] + S 1235 fIntegralMM[i] = fIntegralMM[i+1] + SumOverInterMM(i); 1541 // G4cout<<"int: i = "<<i<<"; sumC = << 1236 // G4cout<<"int: i = "<<i<<"; sumC = "<<fIntegralMM[i]<<G4endl; 1542 } 1237 } 1543 else 1238 else 1544 { 1239 { 1545 fIntegralMM[i] = fIntegralMM[i+1] + 1240 fIntegralMM[i] = fIntegralMM[i+1] + 1546 SumOverBor << 1241 SumOverBordMM(i+1,fEnergyInterval[k]); 1547 k--; << 1242 k--; 1548 // G4cout<<"bord: i = "<<i<<"; sumC = << 1243 // G4cout<<"bord: i = "<<i<<"; sumC = "<<fIntegralMM[i]<<G4endl; 1549 } 1244 } 1550 } 1245 } 1551 1246 1552 } // end of IntegralMM 1247 } // end of IntegralMM 1553 1248 1554 ///////////////////////////////////////////// 1249 //////////////////////////////////////////////////////////////////////// 1555 // 1250 // 1556 // Calculation of the PAI Plasmon integral cr 1251 // Calculation of the PAI Plasmon integral cross-section 1557 // fIntegralPlasmon[1] = splasmon primary ion 1252 // fIntegralPlasmon[1] = splasmon primary ionisation, 1/cm 1558 // and fIntegralPlasmon[0] = mean plasmon los 1253 // and fIntegralPlasmon[0] = mean plasmon loss per cm in keV/cm 1559 1254 1560 void G4PAIxSection::IntegralPlasmon() 1255 void G4PAIxSection::IntegralPlasmon() 1561 { 1256 { 1562 fIntegralPlasmon[fSplineNumber] = 0; 1257 fIntegralPlasmon[fSplineNumber] = 0; 1563 fIntegralPlasmon[0] = 0; 1258 fIntegralPlasmon[0] = 0; 1564 G4int k = fIntervalNumber -1; 1259 G4int k = fIntervalNumber -1; 1565 for(G4int i=fSplineNumber-1;i>=1;i--) 1260 for(G4int i=fSplineNumber-1;i>=1;i--) 1566 { 1261 { 1567 if(fSplineEnergy[i] >= fEnergyInterval[ 1262 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1568 { 1263 { 1569 fIntegralPlasmon[i] = fIntegralPlasmo 1264 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + SumOverInterPlasmon(i); 1570 } 1265 } 1571 else 1266 else 1572 { 1267 { 1573 fIntegralPlasmon[i] = fIntegralPlasmo 1268 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + 1574 SumOverBor << 1269 SumOverBordPlasmon(i+1,fEnergyInterval[k]); 1575 k--; << 1270 k--; 1576 } 1271 } 1577 } 1272 } 1578 1273 1579 } // end of IntegralPlasmon 1274 } // end of IntegralPlasmon 1580 1275 1581 ///////////////////////////////////////////// 1276 //////////////////////////////////////////////////////////////////////// 1582 // 1277 // 1583 // Calculation of the PAI resonance integral 1278 // Calculation of the PAI resonance integral cross-section 1584 // fIntegralResonance[1] = resonance primary 1279 // fIntegralResonance[1] = resonance primary ionisation, 1/cm 1585 // and fIntegralResonance[0] = mean resonance 1280 // and fIntegralResonance[0] = mean resonance loss per cm in keV/cm 1586 1281 1587 void G4PAIxSection::IntegralResonance() 1282 void G4PAIxSection::IntegralResonance() 1588 { 1283 { 1589 fIntegralResonance[fSplineNumber] = 0; 1284 fIntegralResonance[fSplineNumber] = 0; 1590 fIntegralResonance[0] = 0; 1285 fIntegralResonance[0] = 0; 1591 G4int k = fIntervalNumber -1; 1286 G4int k = fIntervalNumber -1; 1592 for(G4int i=fSplineNumber-1;i>=1;i--) 1287 for(G4int i=fSplineNumber-1;i>=1;i--) 1593 { 1288 { 1594 if(fSplineEnergy[i] >= fEnergyInterval[ 1289 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1595 { 1290 { 1596 fIntegralResonance[i] = fIntegralReso 1291 fIntegralResonance[i] = fIntegralResonance[i+1] + SumOverInterResonance(i); 1597 } 1292 } 1598 else 1293 else 1599 { 1294 { 1600 fIntegralResonance[i] = fIntegralReso 1295 fIntegralResonance[i] = fIntegralResonance[i+1] + 1601 SumOverBor << 1296 SumOverBordResonance(i+1,fEnergyInterval[k]); 1602 k--; << 1297 k--; 1603 } 1298 } 1604 } 1299 } 1605 1300 1606 } // end of IntegralResonance 1301 } // end of IntegralResonance 1607 1302 1608 ///////////////////////////////////////////// 1303 ////////////////////////////////////////////////////////////////////// 1609 // 1304 // 1610 // Calculation the PAI integral cross-section 1305 // Calculation the PAI integral cross-section inside 1611 // of interval of continuous values of photo- 1306 // of interval of continuous values of photo-ionisation 1612 // cross-section. Parameter 'i' is the numbe 1307 // cross-section. Parameter 'i' is the number of interval. 1613 1308 1614 G4double G4PAIxSection::SumOverInterval( G4in 1309 G4double G4PAIxSection::SumOverInterval( G4int i ) 1615 { 1310 { 1616 G4double x0,x1,y0,yy1,a,b,c,result; 1311 G4double x0,x1,y0,yy1,a,b,c,result; 1617 1312 1618 x0 = fSplineEnergy[i]; 1313 x0 = fSplineEnergy[i]; 1619 x1 = fSplineEnergy[i+1]; 1314 x1 = fSplineEnergy[i+1]; 1620 if(fVerbose>0) G4cout<<"SumOverInterval i= << 1621 << 1622 if( x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/( << 1623 << 1624 y0 = fDifPAIxSection[i]; 1315 y0 = fDifPAIxSection[i]; 1625 yy1 = fDifPAIxSection[i+1]; 1316 yy1 = fDifPAIxSection[i+1]; 1626 << 1627 if(fVerbose>0) G4cout<<"x0 = "<<x0<<"; x1 << 1628 << 1629 c = x1/x0; 1317 c = x1/x0; 1630 a = log10(yy1/y0)/log10(c); 1318 a = log10(yy1/y0)/log10(c); 1631 << 1319 // b = log10(y0) - a*log10(x0); 1632 if(fVerbose>0) G4cout<<"SumOverInterval, a << 1320 b = y0/pow(x0,a); 1633 << 1634 b = 0.0; << 1635 if(a < 20.) b = y0/pow(x0,a); << 1636 << 1637 a += 1.; 1321 a += 1.; 1638 if( std::abs(a) < 1.e-6 ) << 1322 if( std::fabs(a) < 1.e-6 ) 1639 { 1323 { 1640 result = b*log(x1/x0); 1324 result = b*log(x1/x0); 1641 } 1325 } 1642 else 1326 else 1643 { 1327 { 1644 result = y0*(x1*pow(c,a-1) - x0)/a; 1328 result = y0*(x1*pow(c,a-1) - x0)/a; 1645 } 1329 } 1646 a += 1.; 1330 a += 1.; 1647 if( std::abs(a) < 1.e-6 ) << 1331 if( std::fabs(a) < 1.e-6 ) 1648 { 1332 { 1649 fIntegralPAIxSection[0] += b*log(x1/x0); << 1333 fIntegralPAIxSection[0] += b*log(x1/x0); 1650 } 1334 } 1651 else 1335 else 1652 { 1336 { 1653 fIntegralPAIxSection[0] += y0*(x1*x1*po 1337 fIntegralPAIxSection[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1654 } 1338 } 1655 if(fVerbose>0) G4cout<<"SumOverInterval, r << 1656 return result; 1339 return result; 1657 1340 1658 } // end of SumOverInterval 1341 } // end of SumOverInterval 1659 1342 1660 ///////////////////////////////// 1343 ///////////////////////////////// 1661 1344 1662 G4double G4PAIxSection::SumOverIntervaldEdx( 1345 G4double G4PAIxSection::SumOverIntervaldEdx( G4int i ) 1663 { 1346 { 1664 G4double x0,x1,y0,yy1,a,b,c,result; 1347 G4double x0,x1,y0,yy1,a,b,c,result; 1665 1348 1666 x0 = fSplineEnergy[i]; 1349 x0 = fSplineEnergy[i]; 1667 x1 = fSplineEnergy[i+1]; 1350 x1 = fSplineEnergy[i+1]; 1668 << 1669 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 1670 << 1671 y0 = fDifPAIxSection[i]; 1351 y0 = fDifPAIxSection[i]; 1672 yy1 = fDifPAIxSection[i+1]; 1352 yy1 = fDifPAIxSection[i+1]; 1673 c = x1/x0; 1353 c = x1/x0; 1674 a = log10(yy1/y0)/log10(c); 1354 a = log10(yy1/y0)/log10(c); 1675 << 1355 // b = log10(y0) - a*log10(x0); 1676 b = 0.0; << 1356 b = y0/pow(x0,a); 1677 if(a < 20.) b = y0/pow(x0,a); << 1678 << 1679 a += 2; 1357 a += 2; 1680 if(a == 0) 1358 if(a == 0) 1681 { 1359 { 1682 result = b*log(x1/x0); 1360 result = b*log(x1/x0); 1683 } 1361 } 1684 else 1362 else 1685 { 1363 { 1686 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a 1364 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1687 } 1365 } 1688 return result; 1366 return result; 1689 1367 1690 } // end of SumOverInterval 1368 } // end of SumOverInterval 1691 1369 1692 ///////////////////////////////////////////// 1370 ////////////////////////////////////////////////////////////////////// 1693 // 1371 // 1694 // Calculation the PAI Cerenkov integral cros 1372 // Calculation the PAI Cerenkov integral cross-section inside 1695 // of interval of continuous values of photo- 1373 // of interval of continuous values of photo-ionisation Cerenkov 1696 // cross-section. Parameter 'i' is the numbe 1374 // cross-section. Parameter 'i' is the number of interval. 1697 1375 1698 G4double G4PAIxSection::SumOverInterCerenkov( 1376 G4double G4PAIxSection::SumOverInterCerenkov( G4int i ) 1699 { 1377 { 1700 G4double x0,x1,y0,yy1,a,b,c,result; 1378 G4double x0,x1,y0,yy1,a,b,c,result; 1701 1379 1702 x0 = fSplineEnergy[i]; 1380 x0 = fSplineEnergy[i]; 1703 x1 = fSplineEnergy[i+1]; 1381 x1 = fSplineEnergy[i+1]; 1704 << 1705 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 1706 << 1707 y0 = fdNdxCerenkov[i]; 1382 y0 = fdNdxCerenkov[i]; 1708 yy1 = fdNdxCerenkov[i+1]; 1383 yy1 = fdNdxCerenkov[i+1]; 1709 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<< 1384 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<"; x1 = "<<x1 1710 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4e 1385 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1711 1386 1712 c = x1/x0; 1387 c = x1/x0; 1713 a = log10(yy1/y0)/log10(c); 1388 a = log10(yy1/y0)/log10(c); 1714 << 1389 b = y0/pow(x0,a); 1715 if(a > 20.0) b = 0.0; << 1716 else b = y0/pow(x0,a); << 1717 1390 1718 a += 1.0; 1391 a += 1.0; 1719 if(a == 0) result = b*log(c); 1392 if(a == 0) result = b*log(c); 1720 else result = y0*(x1*pow(c,a-1) - x0 1393 else result = y0*(x1*pow(c,a-1) - x0)/a; 1721 a += 1.0; 1394 a += 1.0; 1722 1395 1723 if( a == 0 ) fIntegralCerenkov[0] += b*log 1396 if( a == 0 ) fIntegralCerenkov[0] += b*log(x1/x0); 1724 else fIntegralCerenkov[0] += y0*(x 1397 else fIntegralCerenkov[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1725 // G4cout<<"a = "<<a<<"; b = "<<b<<"; res 1398 // G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1726 return result; 1399 return result; 1727 1400 1728 } // end of SumOverInterCerenkov 1401 } // end of SumOverInterCerenkov 1729 1402 1730 ///////////////////////////////////////////// 1403 ////////////////////////////////////////////////////////////////////// 1731 // 1404 // 1732 // Calculation the PAI MM-Cerenkov integral c 1405 // Calculation the PAI MM-Cerenkov integral cross-section inside 1733 // of interval of continuous values of photo- 1406 // of interval of continuous values of photo-ionisation Cerenkov 1734 // cross-section. Parameter 'i' is the numbe 1407 // cross-section. Parameter 'i' is the number of interval. 1735 1408 1736 G4double G4PAIxSection::SumOverInterMM( G4int 1409 G4double G4PAIxSection::SumOverInterMM( G4int i ) 1737 { 1410 { 1738 G4double x0,x1,y0,yy1,a,b,c,result; 1411 G4double x0,x1,y0,yy1,a,b,c,result; 1739 1412 1740 x0 = fSplineEnergy[i]; 1413 x0 = fSplineEnergy[i]; 1741 x1 = fSplineEnergy[i+1]; 1414 x1 = fSplineEnergy[i+1]; 1742 << 1743 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 1744 << 1745 y0 = fdNdxMM[i]; 1415 y0 = fdNdxMM[i]; 1746 yy1 = fdNdxMM[i+1]; 1416 yy1 = fdNdxMM[i+1]; 1747 //G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<" << 1417 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<"; x1 = "<<x1 1748 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4e 1418 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1749 1419 1750 c = x1/x0; 1420 c = x1/x0; 1751 //G4cout<<" c = "<<c<< " yy1/y0= " << yy1/ << 1752 a = log10(yy1/y0)/log10(c); 1421 a = log10(yy1/y0)/log10(c); 1753 << 1422 b = y0/pow(x0,a); 1754 b = 0.0; << 1755 if(a < 20.) b = y0/pow(x0,a); << 1756 1423 1757 a += 1.0; 1424 a += 1.0; 1758 if(a == 0) result = b*log(c); 1425 if(a == 0) result = b*log(c); 1759 else result = y0*(x1*pow(c,a-1) - x0 1426 else result = y0*(x1*pow(c,a-1) - x0)/a; 1760 a += 1.0; 1427 a += 1.0; 1761 1428 1762 if( a == 0 ) fIntegralMM[0] += b*log(c); << 1429 if( a == 0 ) fIntegralMM[0] += b*log(x1/x0); 1763 else fIntegralMM[0] += y0*(x1*x1*p 1430 else fIntegralMM[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1764 //G4cout<<"a = "<<a<<"; b = "<<b<<"; resul << 1431 // G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1765 return result; 1432 return result; 1766 1433 1767 } // end of SumOverInterMM 1434 } // end of SumOverInterMM 1768 1435 1769 ///////////////////////////////////////////// 1436 ////////////////////////////////////////////////////////////////////// 1770 // 1437 // 1771 // Calculation the PAI Plasmon integral cross 1438 // Calculation the PAI Plasmon integral cross-section inside 1772 // of interval of continuous values of photo- 1439 // of interval of continuous values of photo-ionisation Plasmon 1773 // cross-section. Parameter 'i' is the numbe 1440 // cross-section. Parameter 'i' is the number of interval. 1774 1441 1775 G4double G4PAIxSection::SumOverInterPlasmon( 1442 G4double G4PAIxSection::SumOverInterPlasmon( G4int i ) 1776 { 1443 { 1777 G4double x0,x1,y0,yy1,a,b,c,result; 1444 G4double x0,x1,y0,yy1,a,b,c,result; 1778 1445 1779 x0 = fSplineEnergy[i]; 1446 x0 = fSplineEnergy[i]; 1780 x1 = fSplineEnergy[i+1]; 1447 x1 = fSplineEnergy[i+1]; 1781 << 1782 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 1783 << 1784 y0 = fdNdxPlasmon[i]; 1448 y0 = fdNdxPlasmon[i]; 1785 yy1 = fdNdxPlasmon[i+1]; 1449 yy1 = fdNdxPlasmon[i+1]; 1786 c = x1/x0; << 1450 c =x1/x0; 1787 a = log10(yy1/y0)/log10(c); 1451 a = log10(yy1/y0)/log10(c); 1788 << 1452 // b = log10(y0) - a*log10(x0); 1789 b = 0.0; << 1453 b = y0/pow(x0,a); 1790 if(a < 20.) b = y0/pow(x0,a); << 1791 1454 1792 a += 1.0; 1455 a += 1.0; 1793 if(a == 0) result = b*log(x1/x0); 1456 if(a == 0) result = b*log(x1/x0); 1794 else result = y0*(x1*pow(c,a-1) - x0 1457 else result = y0*(x1*pow(c,a-1) - x0)/a; 1795 a += 1.0; 1458 a += 1.0; 1796 1459 1797 if( a == 0 ) fIntegralPlasmon[0] += b*log( 1460 if( a == 0 ) fIntegralPlasmon[0] += b*log(x1/x0); 1798 else fIntegralPlasmon[0] += y0*(x1 1461 else fIntegralPlasmon[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1799 1462 1800 return result; 1463 return result; 1801 1464 1802 } // end of SumOverInterPlasmon 1465 } // end of SumOverInterPlasmon 1803 1466 1804 ///////////////////////////////////////////// 1467 ////////////////////////////////////////////////////////////////////// 1805 // 1468 // 1806 // Calculation the PAI resonance integral cro 1469 // Calculation the PAI resonance integral cross-section inside 1807 // of interval of continuous values of photo- 1470 // of interval of continuous values of photo-ionisation resonance 1808 // cross-section. Parameter 'i' is the numbe 1471 // cross-section. Parameter 'i' is the number of interval. 1809 1472 1810 G4double G4PAIxSection::SumOverInterResonance 1473 G4double G4PAIxSection::SumOverInterResonance( G4int i ) 1811 { 1474 { 1812 G4double x0,x1,y0,yy1,a,b,c,result; 1475 G4double x0,x1,y0,yy1,a,b,c,result; 1813 1476 1814 x0 = fSplineEnergy[i]; 1477 x0 = fSplineEnergy[i]; 1815 x1 = fSplineEnergy[i+1]; 1478 x1 = fSplineEnergy[i+1]; 1816 << 1817 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 1818 << 1819 y0 = fdNdxResonance[i]; 1479 y0 = fdNdxResonance[i]; 1820 yy1 = fdNdxResonance[i+1]; 1480 yy1 = fdNdxResonance[i+1]; 1821 c =x1/x0; 1481 c =x1/x0; 1822 a = log10(yy1/y0)/log10(c); 1482 a = log10(yy1/y0)/log10(c); 1823 << 1483 // b = log10(y0) - a*log10(x0); 1824 b = 0.0; << 1484 b = y0/pow(x0,a); 1825 if(a < 20.) b = y0/pow(x0,a); << 1826 1485 1827 a += 1.0; 1486 a += 1.0; 1828 if(a == 0) result = b*log(x1/x0); 1487 if(a == 0) result = b*log(x1/x0); 1829 else result = y0*(x1*pow(c,a-1) - x0 1488 else result = y0*(x1*pow(c,a-1) - x0)/a; 1830 a += 1.0; 1489 a += 1.0; 1831 1490 1832 if( a == 0 ) fIntegralResonance[0] += b*lo 1491 if( a == 0 ) fIntegralResonance[0] += b*log(x1/x0); 1833 else fIntegralResonance[0] += y0*( 1492 else fIntegralResonance[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1834 1493 1835 return result; 1494 return result; 1836 1495 1837 } // end of SumOverInterResonance 1496 } // end of SumOverInterResonance 1838 1497 1839 ///////////////////////////////////////////// 1498 /////////////////////////////////////////////////////////////////////////////// 1840 // 1499 // 1841 // Integration of PAI cross-section for the c 1500 // Integration of PAI cross-section for the case of 1842 // passing across border between intervals 1501 // passing across border between intervals 1843 1502 1844 G4double G4PAIxSection::SumOverBorder( G4int 1503 G4double G4PAIxSection::SumOverBorder( G4int i , 1845 G4doub 1504 G4double en0 ) 1846 { 1505 { 1847 G4double x0,x1,y0,yy1,a,b,/*c,*/d,e0,result << 1506 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 1848 1507 1849 e0 = en0; 1508 e0 = en0; 1850 x0 = fSplineEnergy[i]; 1509 x0 = fSplineEnergy[i]; 1851 x1 = fSplineEnergy[i+1]; 1510 x1 = fSplineEnergy[i+1]; 1852 y0 = fDifPAIxSection[i]; 1511 y0 = fDifPAIxSection[i]; 1853 yy1 = fDifPAIxSection[i+1]; 1512 yy1 = fDifPAIxSection[i+1]; 1854 1513 1855 //c = x1/x0; << 1514 c = x1/x0; 1856 d = e0/x0; 1515 d = e0/x0; 1857 a = log10(yy1/y0)/log10(x1/x0); 1516 a = log10(yy1/y0)/log10(x1/x0); 1858 << 1517 // b0 = log10(y0) - a*log10(x0); 1859 if(fVerbose>0) G4cout<<"SumOverBorder, a = << 1518 b = y0/pow(x0,a); // pow(10.,b); 1860 << 1861 b = 0.0; << 1862 if(a < 20.) b = y0/pow(x0,a); << 1863 1519 1864 a += 1.; 1520 a += 1.; 1865 if( std::abs(a) < 1.e-6 ) << 1521 if( std::fabs(a) < 1.e-6 ) 1866 { 1522 { 1867 result = b*log(x0/e0); 1523 result = b*log(x0/e0); 1868 } 1524 } 1869 else 1525 else 1870 { 1526 { 1871 result = y0*(x0 - e0*pow(d,a-1))/a; 1527 result = y0*(x0 - e0*pow(d,a-1))/a; 1872 } 1528 } 1873 a += 1.; 1529 a += 1.; 1874 if( std::abs(a) < 1.e-6 ) << 1530 if( std::fabs(a) < 1.e-6 ) 1875 { 1531 { 1876 fIntegralPAIxSection[0] += b*log(x0/e0) 1532 fIntegralPAIxSection[0] += b*log(x0/e0); 1877 } 1533 } 1878 else 1534 else 1879 { 1535 { 1880 fIntegralPAIxSection[0] += y0*(x0*x0 - 1536 fIntegralPAIxSection[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1881 } 1537 } 1882 x0 = fSplineEnergy[i - 1]; 1538 x0 = fSplineEnergy[i - 1]; 1883 x1 = fSplineEnergy[i - 2]; 1539 x1 = fSplineEnergy[i - 2]; 1884 y0 = fDifPAIxSection[i - 1]; 1540 y0 = fDifPAIxSection[i - 1]; 1885 yy1 = fDifPAIxSection[i - 2]; 1541 yy1 = fDifPAIxSection[i - 2]; 1886 1542 >> 1543 c = x1/x0; 1887 d = e0/x0; 1544 d = e0/x0; 1888 a = log10(yy1/y0)/log10(x1/x0); 1545 a = log10(yy1/y0)/log10(x1/x0); 1889 << 1546 // b0 = log10(y0) - a*log10(x0); 1890 b = 0.0; << 1547 b = y0/pow(x0,a); 1891 if(a < 20.) b = y0/pow(x0,a); << 1892 << 1893 a += 1.; 1548 a += 1.; 1894 if( std::abs(a) < 1.e-6 ) << 1549 if( std::fabs(a) < 1.e-6 ) 1895 { 1550 { 1896 result += b*log(e0/x0); 1551 result += b*log(e0/x0); 1897 } 1552 } 1898 else 1553 else 1899 { 1554 { 1900 result += y0*(e0*pow(d,a-1) - x0)/a; 1555 result += y0*(e0*pow(d,a-1) - x0)/a; 1901 } 1556 } 1902 a += 1.; 1557 a += 1.; 1903 if( std::abs(a) < 1.e-6 ) << 1558 if( std::fabs(a) < 1.e-6 ) 1904 { 1559 { 1905 fIntegralPAIxSection[0] += b*log(e0/x0) 1560 fIntegralPAIxSection[0] += b*log(e0/x0); 1906 } 1561 } 1907 else 1562 else 1908 { 1563 { 1909 fIntegralPAIxSection[0] += y0*(e0*e0*po 1564 fIntegralPAIxSection[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1910 } 1565 } 1911 return result; 1566 return result; 1912 1567 1913 } 1568 } 1914 1569 1915 ///////////////////////////////////////////// 1570 /////////////////////////////////////////////////////////////////////// 1916 1571 1917 G4double G4PAIxSection::SumOverBorderdEdx( G4 << 1572 G4double G4PAIxSection::SumOverBorderdEdx( G4int i , >> 1573 G4double en0 ) 1918 { 1574 { 1919 G4double x0,x1,y0,yy1,a,b,d,e0,result; << 1575 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 1920 1576 1921 e0 = en0; 1577 e0 = en0; 1922 x0 = fSplineEnergy[i]; 1578 x0 = fSplineEnergy[i]; 1923 x1 = fSplineEnergy[i+1]; 1579 x1 = fSplineEnergy[i+1]; 1924 y0 = fDifPAIxSection[i]; 1580 y0 = fDifPAIxSection[i]; 1925 yy1 = fDifPAIxSection[i+1]; 1581 yy1 = fDifPAIxSection[i+1]; 1926 1582 >> 1583 c = x1/x0; 1927 d = e0/x0; 1584 d = e0/x0; 1928 a = log10(yy1/y0)/log10(x1/x0); 1585 a = log10(yy1/y0)/log10(x1/x0); 1929 << 1586 // b0 = log10(y0) - a*log10(x0); 1930 b = 0.0; << 1587 b = y0/pow(x0,a); // pow(10.,b); 1931 if(a < 20.) b = y0/pow(x0,a); << 1932 1588 1933 a += 2; 1589 a += 2; 1934 if(a == 0) 1590 if(a == 0) 1935 { 1591 { 1936 result = b*log(x0/e0); 1592 result = b*log(x0/e0); 1937 } 1593 } 1938 else 1594 else 1939 { 1595 { 1940 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/ 1596 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1941 } 1597 } 1942 x0 = fSplineEnergy[i - 1]; 1598 x0 = fSplineEnergy[i - 1]; 1943 x1 = fSplineEnergy[i - 2]; 1599 x1 = fSplineEnergy[i - 2]; 1944 y0 = fDifPAIxSection[i - 1]; 1600 y0 = fDifPAIxSection[i - 1]; 1945 yy1 = fDifPAIxSection[i - 2]; 1601 yy1 = fDifPAIxSection[i - 2]; 1946 1602 1947 // c = x1/x0; << 1603 c = x1/x0; 1948 d = e0/x0; 1604 d = e0/x0; 1949 a = log10(yy1/y0)/log10(x1/x0); 1605 a = log10(yy1/y0)/log10(x1/x0); 1950 << 1606 // b0 = log10(y0) - a*log10(x0); 1951 b = 0.0; << 1607 b = y0/pow(x0,a); 1952 if(a < 20.) b = y0/pow(x0,a); << 1953 << 1954 a += 2; 1608 a += 2; 1955 if(a == 0) 1609 if(a == 0) 1956 { 1610 { 1957 result += b*log(e0/x0); 1611 result += b*log(e0/x0); 1958 } 1612 } 1959 else 1613 else 1960 { 1614 { 1961 result += y0*(e0*e0*pow(d,a-2) - x0*x0) 1615 result += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1962 } 1616 } 1963 return result; 1617 return result; 1964 1618 1965 } 1619 } 1966 1620 1967 ///////////////////////////////////////////// 1621 /////////////////////////////////////////////////////////////////////////////// 1968 // 1622 // 1969 // Integration of Cerenkov cross-section for 1623 // Integration of Cerenkov cross-section for the case of 1970 // passing across border between intervals 1624 // passing across border between intervals 1971 1625 1972 G4double G4PAIxSection::SumOverBordCerenkov( << 1626 G4double G4PAIxSection::SumOverBordCerenkov( G4int i , >> 1627 G4double en0 ) 1973 { 1628 { 1974 G4double x0,x1,y0,yy1,a,b,e0,c,d,result; 1629 G4double x0,x1,y0,yy1,a,b,e0,c,d,result; 1975 1630 1976 e0 = en0; 1631 e0 = en0; 1977 x0 = fSplineEnergy[i]; 1632 x0 = fSplineEnergy[i]; 1978 x1 = fSplineEnergy[i+1]; 1633 x1 = fSplineEnergy[i+1]; 1979 y0 = fdNdxCerenkov[i]; 1634 y0 = fdNdxCerenkov[i]; 1980 yy1 = fdNdxCerenkov[i+1]; 1635 yy1 = fdNdxCerenkov[i+1]; 1981 1636 1982 //G4cout<<"SumBordC, i = "<<i<<"; en0 = "< << 1637 // G4cout<<G4endl; 1983 //<<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl << 1638 // G4cout<<"SumBordC, i = "<<i<<"; en0 = "<<en0<<"; x0 ="<<x0<<"; x1 = "<<x1 >> 1639 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1984 c = x1/x0; 1640 c = x1/x0; 1985 d = e0/x0; 1641 d = e0/x0; 1986 a = log10(yy1/y0)/log10(c); 1642 a = log10(yy1/y0)/log10(c); 1987 //G4cout << " a= " << a << " c=" << c < << 1643 // b0 = log10(y0) - a*log10(x0); 1988 << 1644 b = y0/pow(x0,a); // pow(10.,b0); 1989 b = 0.0; << 1990 if(a < 20.) b = y0/pow(x0,a); << 1991 1645 1992 a += 1.0; 1646 a += 1.0; 1993 if( a == 0 ) result = b*log(x0/e0); 1647 if( a == 0 ) result = b*log(x0/e0); 1994 else result = y0*(x0 - e0*pow(d,a- 1648 else result = y0*(x0 - e0*pow(d,a-1))/a; 1995 a += 1.0; 1649 a += 1.0; 1996 1650 1997 if( a == 0 ) fIntegralCerenkov[0] += b*log 1651 if( a == 0 ) fIntegralCerenkov[0] += b*log(x0/e0); 1998 else fIntegralCerenkov[0] += y0*(x 1652 else fIntegralCerenkov[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1999 1653 >> 1654 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = "<<b<<"; result = "<<result<<G4endl; >> 1655 2000 x0 = fSplineEnergy[i - 1]; 1656 x0 = fSplineEnergy[i - 1]; 2001 x1 = fSplineEnergy[i - 2]; 1657 x1 = fSplineEnergy[i - 2]; 2002 y0 = fdNdxCerenkov[i - 1]; 1658 y0 = fdNdxCerenkov[i - 1]; 2003 yy1 = fdNdxCerenkov[i - 2]; 1659 yy1 = fdNdxCerenkov[i - 2]; 2004 1660 2005 // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 1661 // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 2006 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4 1662 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 2007 1663 2008 c = x1/x0; 1664 c = x1/x0; 2009 d = e0/x0; 1665 d = e0/x0; 2010 a = log10(yy1/y0)/log10(c); << 1666 a = log10(yy1/y0)/log10(x1/x0); 2011 << 1667 // b0 = log10(y0) - a*log10(x0); 2012 b = 0.0; << 1668 b = y0/pow(x0,a); // pow(10.,b0); 2013 if(a < 20.) b = y0/pow(x0,a); << 2014 1669 2015 a += 1.0; 1670 a += 1.0; 2016 if( a == 0 ) result += b*log(e0/x0); 1671 if( a == 0 ) result += b*log(e0/x0); 2017 else result += y0*(e0*pow(d,a-1) - 1672 else result += y0*(e0*pow(d,a-1) - x0 )/a; 2018 a += 1.0; 1673 a += 1.0; 2019 1674 2020 if( a == 0 ) fIntegralCerenkov[0] += b*log << 1675 if( a == 0 ) fIntegralCerenkov[0] += b*log(e0/x0); 2021 else fIntegralCerenkov[0] += y0*(e << 1676 else fIntegralCerenkov[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; >> 1677 >> 1678 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = " >> 1679 // <<b<<"; result = "<<result<<G4endl; 2022 1680 2023 //G4cout<<" a="<< a <<" b="<< b <<" res << 2024 return result; 1681 return result; >> 1682 2025 } 1683 } 2026 1684 2027 ///////////////////////////////////////////// 1685 /////////////////////////////////////////////////////////////////////////////// 2028 // 1686 // 2029 // Integration of MM-Cerenkov cross-section f 1687 // Integration of MM-Cerenkov cross-section for the case of 2030 // passing across border between intervals 1688 // passing across border between intervals 2031 1689 2032 G4double G4PAIxSection::SumOverBordMM( G4int << 1690 G4double G4PAIxSection::SumOverBordMM( G4int i , >> 1691 G4double en0 ) 2033 { 1692 { 2034 G4double x0,x1,y0,yy1,a,b,e0,c,d,result; 1693 G4double x0,x1,y0,yy1,a,b,e0,c,d,result; 2035 1694 2036 e0 = en0; 1695 e0 = en0; 2037 x0 = fSplineEnergy[i]; 1696 x0 = fSplineEnergy[i]; 2038 x1 = fSplineEnergy[i+1]; 1697 x1 = fSplineEnergy[i+1]; 2039 y0 = fdNdxMM[i]; 1698 y0 = fdNdxMM[i]; 2040 yy1 = fdNdxMM[i+1]; 1699 yy1 = fdNdxMM[i+1]; 2041 1700 >> 1701 // G4cout<<G4endl; 2042 // G4cout<<"SumBordC, i = "<<i<<"; en0 = 1702 // G4cout<<"SumBordC, i = "<<i<<"; en0 = "<<en0<<"; x0 ="<<x0<<"; x1 = "<<x1 2043 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G 1703 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 2044 c = x1/x0; 1704 c = x1/x0; 2045 d = e0/x0; 1705 d = e0/x0; 2046 a = log10(yy1/y0)/log10(c); 1706 a = log10(yy1/y0)/log10(c); 2047 << 1707 // b0 = log10(y0) - a*log10(x0); 2048 if(a > 20.0) b = 0.0; << 1708 b = y0/pow(x0,a); // pow(10.,b0); 2049 else b = y0/pow(x0,a); << 2050 1709 2051 a += 1.0; 1710 a += 1.0; 2052 if( a == 0 ) result = b*log(x0/e0); 1711 if( a == 0 ) result = b*log(x0/e0); 2053 else result = y0*(x0 - e0*pow(d,a- 1712 else result = y0*(x0 - e0*pow(d,a-1))/a; 2054 a += 1.0; 1713 a += 1.0; 2055 1714 2056 if( a == 0 ) fIntegralMM[0] += b*log(x0/e0 1715 if( a == 0 ) fIntegralMM[0] += b*log(x0/e0); 2057 else fIntegralMM[0] += y0*(x0*x0 - 1716 else fIntegralMM[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 2058 1717 2059 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b << 1718 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = "<<b<<"; result = "<<result<<G4endl; 2060 1719 2061 x0 = fSplineEnergy[i - 1]; 1720 x0 = fSplineEnergy[i - 1]; 2062 x1 = fSplineEnergy[i - 2]; 1721 x1 = fSplineEnergy[i - 2]; 2063 y0 = fdNdxMM[i - 1]; 1722 y0 = fdNdxMM[i - 1]; 2064 yy1 = fdNdxMM[i - 2]; 1723 yy1 = fdNdxMM[i - 2]; 2065 1724 2066 // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 1725 // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 2067 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4 1726 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 2068 1727 2069 c = x1/x0; 1728 c = x1/x0; 2070 d = e0/x0; 1729 d = e0/x0; 2071 a = log10(yy1/y0)/log10(x1/x0); 1730 a = log10(yy1/y0)/log10(x1/x0); 2072 << 1731 // b0 = log10(y0) - a*log10(x0); 2073 if(a > 20.0) b = 0.0; << 1732 b = y0/pow(x0,a); // pow(10.,b0); 2074 else b = y0/pow(x0,a); << 2075 1733 2076 a += 1.0; 1734 a += 1.0; 2077 if( a == 0 ) result += b*log(e0/x0); 1735 if( a == 0 ) result += b*log(e0/x0); 2078 else result += y0*(e0*pow(d,a-1) - 1736 else result += y0*(e0*pow(d,a-1) - x0 )/a; 2079 a += 1.0; 1737 a += 1.0; 2080 1738 2081 if( a == 0 ) fIntegralMM[0] += b*log(e0/x0 << 1739 if( a == 0 ) fIntegralMM[0] += b*log(e0/x0); 2082 else fIntegralMM[0] += y0*(e0*e0*p << 1740 else fIntegralMM[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 2083 1741 2084 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b 1742 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = " 2085 // <<b<<"; result = "<<result<<G4endl; 1743 // <<b<<"; result = "<<result<<G4endl; 2086 1744 2087 return result; 1745 return result; 2088 1746 2089 } 1747 } 2090 1748 2091 ///////////////////////////////////////////// 1749 /////////////////////////////////////////////////////////////////////////////// 2092 // 1750 // 2093 // Integration of Plasmon cross-section for t 1751 // Integration of Plasmon cross-section for the case of 2094 // passing across border between intervals 1752 // passing across border between intervals 2095 1753 2096 G4double G4PAIxSection::SumOverBordPlasmon( G 1754 G4double G4PAIxSection::SumOverBordPlasmon( G4int i , 2097 1755 G4double en0 ) 2098 { 1756 { 2099 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 1757 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 2100 1758 2101 e0 = en0; 1759 e0 = en0; 2102 x0 = fSplineEnergy[i]; 1760 x0 = fSplineEnergy[i]; 2103 x1 = fSplineEnergy[i+1]; 1761 x1 = fSplineEnergy[i+1]; 2104 y0 = fdNdxPlasmon[i]; 1762 y0 = fdNdxPlasmon[i]; 2105 yy1 = fdNdxPlasmon[i+1]; 1763 yy1 = fdNdxPlasmon[i+1]; 2106 1764 2107 c = x1/x0; 1765 c = x1/x0; 2108 d = e0/x0; 1766 d = e0/x0; 2109 a = log10(yy1/y0)/log10(c); 1767 a = log10(yy1/y0)/log10(c); 2110 << 1768 // b0 = log10(y0) - a*log10(x0); 2111 if(a > 20.0) b = 0.0; << 1769 b = y0/pow(x0,a); //pow(10.,b); 2112 else b = y0/pow(x0,a); << 2113 1770 2114 a += 1.0; 1771 a += 1.0; 2115 if( a == 0 ) result = b*log(x0/e0); 1772 if( a == 0 ) result = b*log(x0/e0); 2116 else result = y0*(x0 - e0*pow(d,a- 1773 else result = y0*(x0 - e0*pow(d,a-1))/a; 2117 a += 1.0; 1774 a += 1.0; 2118 1775 2119 if( a == 0 ) fIntegralPlasmon[0] += b*log( 1776 if( a == 0 ) fIntegralPlasmon[0] += b*log(x0/e0); 2120 else fIntegralPlasmon[0] += y0*(x0 1777 else fIntegralPlasmon[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 2121 1778 2122 x0 = fSplineEnergy[i - 1]; 1779 x0 = fSplineEnergy[i - 1]; 2123 x1 = fSplineEnergy[i - 2]; 1780 x1 = fSplineEnergy[i - 2]; 2124 y0 = fdNdxPlasmon[i - 1]; 1781 y0 = fdNdxPlasmon[i - 1]; 2125 yy1 = fdNdxPlasmon[i - 2]; 1782 yy1 = fdNdxPlasmon[i - 2]; 2126 1783 2127 c = x1/x0; 1784 c = x1/x0; 2128 d = e0/x0; 1785 d = e0/x0; 2129 a = log10(yy1/y0)/log10(c); 1786 a = log10(yy1/y0)/log10(c); 2130 << 1787 // b0 = log10(y0) - a*log10(x0); 2131 if(a > 20.0) b = 0.0; << 1788 b = y0/pow(x0,a);// pow(10.,b0); 2132 else b = y0/pow(x0,a); << 2133 1789 2134 a += 1.0; 1790 a += 1.0; 2135 if( a == 0 ) result += b*log(e0/x0); 1791 if( a == 0 ) result += b*log(e0/x0); 2136 else result += y0*(e0*pow(d,a-1) - 1792 else result += y0*(e0*pow(d,a-1) - x0)/a; 2137 a += 1.0; 1793 a += 1.0; 2138 1794 2139 if( a == 0 ) fIntegralPlasmon[0] += b*lo 1795 if( a == 0 ) fIntegralPlasmon[0] += b*log(e0/x0); 2140 else fIntegralPlasmon[0] += y0*( 1796 else fIntegralPlasmon[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 2141 1797 2142 return result; 1798 return result; >> 1799 2143 } 1800 } 2144 1801 2145 ///////////////////////////////////////////// 1802 /////////////////////////////////////////////////////////////////////////////// 2146 // 1803 // 2147 // Integration of resonance cross-section for 1804 // Integration of resonance cross-section for the case of 2148 // passing across border between intervals 1805 // passing across border between intervals 2149 1806 2150 G4double G4PAIxSection::SumOverBordResonance( 1807 G4double G4PAIxSection::SumOverBordResonance( G4int i , 2151 1808 G4double en0 ) 2152 { 1809 { 2153 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 1810 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 2154 1811 2155 e0 = en0; 1812 e0 = en0; 2156 x0 = fSplineEnergy[i]; 1813 x0 = fSplineEnergy[i]; 2157 x1 = fSplineEnergy[i+1]; 1814 x1 = fSplineEnergy[i+1]; 2158 y0 = fdNdxResonance[i]; 1815 y0 = fdNdxResonance[i]; 2159 yy1 = fdNdxResonance[i+1]; 1816 yy1 = fdNdxResonance[i+1]; 2160 1817 2161 c = x1/x0; 1818 c = x1/x0; 2162 d = e0/x0; 1819 d = e0/x0; 2163 a = log10(yy1/y0)/log10(c); 1820 a = log10(yy1/y0)/log10(c); 2164 << 1821 // b0 = log10(y0) - a*log10(x0); 2165 if(a > 20.0) b = 0.0; << 1822 b = y0/pow(x0,a); //pow(10.,b); 2166 else b = y0/pow(x0,a); << 2167 1823 2168 a += 1.0; 1824 a += 1.0; 2169 if( a == 0 ) result = b*log(x0/e0); 1825 if( a == 0 ) result = b*log(x0/e0); 2170 else result = y0*(x0 - e0*pow(d,a- 1826 else result = y0*(x0 - e0*pow(d,a-1))/a; 2171 a += 1.0; 1827 a += 1.0; 2172 1828 2173 if( a == 0 ) fIntegralResonance[0] += b*lo 1829 if( a == 0 ) fIntegralResonance[0] += b*log(x0/e0); 2174 else fIntegralResonance[0] += y0*( 1830 else fIntegralResonance[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 2175 1831 2176 x0 = fSplineEnergy[i - 1]; 1832 x0 = fSplineEnergy[i - 1]; 2177 x1 = fSplineEnergy[i - 2]; 1833 x1 = fSplineEnergy[i - 2]; 2178 y0 = fdNdxResonance[i - 1]; 1834 y0 = fdNdxResonance[i - 1]; 2179 yy1 = fdNdxResonance[i - 2]; 1835 yy1 = fdNdxResonance[i - 2]; 2180 1836 2181 c = x1/x0; 1837 c = x1/x0; 2182 d = e0/x0; 1838 d = e0/x0; 2183 a = log10(yy1/y0)/log10(c); 1839 a = log10(yy1/y0)/log10(c); 2184 << 1840 // b0 = log10(y0) - a*log10(x0); 2185 if(a > 20.0) b = 0.0; << 1841 b = y0/pow(x0,a);// pow(10.,b0); 2186 else b = y0/pow(x0,a); << 2187 1842 2188 a += 1.0; 1843 a += 1.0; 2189 if( a == 0 ) result += b*log(e0/x0); 1844 if( a == 0 ) result += b*log(e0/x0); 2190 else result += y0*(e0*pow(d,a-1) - 1845 else result += y0*(e0*pow(d,a-1) - x0)/a; 2191 a += 1.0; 1846 a += 1.0; 2192 1847 2193 if( a == 0 ) fIntegralResonance[0] += b*lo << 1848 if( a == 0 ) fIntegralResonance[0] += b*log(e0/x0); 2194 else fIntegralResonance[0] += y0*( << 1849 else fIntegralResonance[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 2195 1850 2196 return result; 1851 return result; 2197 1852 2198 } 1853 } 2199 1854 2200 ///////////////////////////////////////////// 1855 ///////////////////////////////////////////////////////////////////////// 2201 // 1856 // 2202 // Returns random PAI-total energy loss over 1857 // Returns random PAI-total energy loss over step 2203 1858 2204 G4double G4PAIxSection::GetStepEnergyLoss( G4 1859 G4double G4PAIxSection::GetStepEnergyLoss( G4double step ) 2205 { 1860 { 2206 G4long numOfCollisions; 1861 G4long numOfCollisions; 2207 G4double meanNumber, loss = 0.0; 1862 G4double meanNumber, loss = 0.0; 2208 1863 2209 // G4cout<<" G4PAIxSection::GetStepEnergyLo 1864 // G4cout<<" G4PAIxSection::GetStepEnergyLoss "<<G4endl; 2210 1865 2211 meanNumber = fIntegralPAIxSection[1]*step; 1866 meanNumber = fIntegralPAIxSection[1]*step; 2212 numOfCollisions = G4Poisson(meanNumber); 1867 numOfCollisions = G4Poisson(meanNumber); 2213 1868 2214 // G4cout<<"numOfCollisions = "<<numOfColli << 1869 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2215 1870 2216 while(numOfCollisions) 1871 while(numOfCollisions) 2217 { 1872 { 2218 loss += GetEnergyTransfer(); << 1873 loss += GetEnergyTransfer(); 2219 numOfCollisions--; << 1874 numOfCollisions--; 2220 // Loop checking, 03-Aug-2015, Vladimir I << 2221 } 1875 } 2222 // G4cout<<"PAI energy loss = "<<loss/keV<< 1876 // G4cout<<"PAI energy loss = "<<loss/keV<<" keV"<<G4endl; 2223 1877 2224 return loss; 1878 return loss; 2225 } 1879 } 2226 1880 2227 ///////////////////////////////////////////// 1881 ///////////////////////////////////////////////////////////////////////// 2228 // 1882 // 2229 // Returns random PAI-total energy transfer i 1883 // Returns random PAI-total energy transfer in one collision 2230 1884 2231 G4double G4PAIxSection::GetEnergyTransfer() 1885 G4double G4PAIxSection::GetEnergyTransfer() 2232 { 1886 { 2233 G4int iTransfer ; 1887 G4int iTransfer ; 2234 1888 2235 G4double energyTransfer, position; 1889 G4double energyTransfer, position; 2236 1890 2237 position = fIntegralPAIxSection[1]*G4Unifor 1891 position = fIntegralPAIxSection[1]*G4UniformRand(); 2238 1892 2239 for( iTransfer = 1; iTransfer <= fSplineNum 1893 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2240 { 1894 { 2241 if( position >= fIntegralPAIxSection[iTra << 1895 if( position >= fIntegralPAIxSection[iTransfer] ) break; 2242 } 1896 } 2243 if(iTransfer > fSplineNumber) iTransfer--; 1897 if(iTransfer > fSplineNumber) iTransfer--; 2244 1898 2245 energyTransfer = fSplineEnergy[iTransfer]; 1899 energyTransfer = fSplineEnergy[iTransfer]; 2246 1900 2247 if(iTransfer > 1) 1901 if(iTransfer > 1) 2248 { 1902 { 2249 energyTransfer -= (fSplineEnergy[iTransfe 1903 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2250 } 1904 } 2251 return energyTransfer; 1905 return energyTransfer; 2252 } 1906 } 2253 1907 2254 ///////////////////////////////////////////// 1908 ///////////////////////////////////////////////////////////////////////// 2255 // 1909 // 2256 // Returns random Cerenkov energy loss over s 1910 // Returns random Cerenkov energy loss over step 2257 1911 2258 G4double G4PAIxSection::GetStepCerenkovLoss( 1912 G4double G4PAIxSection::GetStepCerenkovLoss( G4double step ) 2259 { 1913 { 2260 G4long numOfCollisions; 1914 G4long numOfCollisions; 2261 G4double meanNumber, loss = 0.0; 1915 G4double meanNumber, loss = 0.0; 2262 1916 2263 // G4cout<<" G4PAIxSection::GetStepCerenkov 1917 // G4cout<<" G4PAIxSection::GetStepCerenkovLoss "<<G4endl; 2264 1918 2265 meanNumber = fIntegralCerenkov[1]*step; 1919 meanNumber = fIntegralCerenkov[1]*step; 2266 numOfCollisions = G4Poisson(meanNumber); 1920 numOfCollisions = G4Poisson(meanNumber); 2267 1921 2268 // G4cout<<"numOfCollisions = "<<numOfCol 1922 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2269 1923 2270 while(numOfCollisions) 1924 while(numOfCollisions) 2271 { 1925 { 2272 loss += GetCerenkovEnergyTransfer(); 1926 loss += GetCerenkovEnergyTransfer(); 2273 numOfCollisions--; 1927 numOfCollisions--; 2274 // Loop checking, 03-Aug-2015, Vladimir I << 2275 } 1928 } 2276 // G4cout<<"PAI Cerenkov loss = "<<loss/keV 1929 // G4cout<<"PAI Cerenkov loss = "<<loss/keV<<" keV"<<G4endl; 2277 1930 2278 return loss; 1931 return loss; 2279 } 1932 } 2280 1933 2281 ///////////////////////////////////////////// 1934 ///////////////////////////////////////////////////////////////////////// 2282 // 1935 // 2283 // Returns random MM-Cerenkov energy loss ove 1936 // Returns random MM-Cerenkov energy loss over step 2284 1937 2285 G4double G4PAIxSection::GetStepMMLoss( G4doub 1938 G4double G4PAIxSection::GetStepMMLoss( G4double step ) 2286 { 1939 { 2287 G4long numOfCollisions; 1940 G4long numOfCollisions; 2288 G4double meanNumber, loss = 0.0; 1941 G4double meanNumber, loss = 0.0; 2289 1942 2290 // G4cout<<" G4PAIxSection::GetStepMMLoss " 1943 // G4cout<<" G4PAIxSection::GetStepMMLoss "<<G4endl; 2291 1944 2292 meanNumber = fIntegralMM[1]*step; 1945 meanNumber = fIntegralMM[1]*step; 2293 numOfCollisions = G4Poisson(meanNumber); 1946 numOfCollisions = G4Poisson(meanNumber); 2294 1947 2295 // G4cout<<"numOfCollisions = "<<numOfCol 1948 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2296 1949 2297 while(numOfCollisions) 1950 while(numOfCollisions) 2298 { 1951 { 2299 loss += GetMMEnergyTransfer(); 1952 loss += GetMMEnergyTransfer(); 2300 numOfCollisions--; 1953 numOfCollisions--; 2301 // Loop checking, 03-Aug-2015, Vladimir I << 2302 } 1954 } 2303 // G4cout<<"PAI MM-Cerenkov loss = "<<loss/ 1955 // G4cout<<"PAI MM-Cerenkov loss = "<<loss/keV<<" keV"<<G4endl; 2304 1956 2305 return loss; 1957 return loss; 2306 } 1958 } 2307 1959 2308 ///////////////////////////////////////////// 1960 ///////////////////////////////////////////////////////////////////////// 2309 // 1961 // 2310 // Returns Cerenkov energy transfer in one co 1962 // Returns Cerenkov energy transfer in one collision 2311 1963 2312 G4double G4PAIxSection::GetCerenkovEnergyTran 1964 G4double G4PAIxSection::GetCerenkovEnergyTransfer() 2313 { 1965 { 2314 G4int iTransfer ; 1966 G4int iTransfer ; 2315 1967 2316 G4double energyTransfer, position; 1968 G4double energyTransfer, position; 2317 1969 2318 position = fIntegralCerenkov[1]*G4UniformRa 1970 position = fIntegralCerenkov[1]*G4UniformRand(); 2319 1971 2320 for( iTransfer = 1; iTransfer <= fSplineNum 1972 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2321 { 1973 { 2322 if( position >= fIntegralCerenkov[iTr 1974 if( position >= fIntegralCerenkov[iTransfer] ) break; 2323 } 1975 } 2324 if(iTransfer > fSplineNumber) iTransfer--; 1976 if(iTransfer > fSplineNumber) iTransfer--; 2325 1977 2326 energyTransfer = fSplineEnergy[iTransfer]; 1978 energyTransfer = fSplineEnergy[iTransfer]; 2327 1979 2328 if(iTransfer > 1) 1980 if(iTransfer > 1) 2329 { 1981 { 2330 energyTransfer -= (fSplineEnergy[iTransfe 1982 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2331 } 1983 } 2332 return energyTransfer; 1984 return energyTransfer; 2333 } 1985 } 2334 1986 2335 ///////////////////////////////////////////// 1987 ///////////////////////////////////////////////////////////////////////// 2336 // 1988 // 2337 // Returns MM-Cerenkov energy transfer in one 1989 // Returns MM-Cerenkov energy transfer in one collision 2338 1990 2339 G4double G4PAIxSection::GetMMEnergyTransfer() 1991 G4double G4PAIxSection::GetMMEnergyTransfer() 2340 { 1992 { 2341 G4int iTransfer ; 1993 G4int iTransfer ; 2342 1994 2343 G4double energyTransfer, position; 1995 G4double energyTransfer, position; 2344 1996 2345 position = fIntegralMM[1]*G4UniformRand(); 1997 position = fIntegralMM[1]*G4UniformRand(); 2346 1998 2347 for( iTransfer = 1; iTransfer <= fSplineNum 1999 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2348 { 2000 { 2349 if( position >= fIntegralMM[iTransfer] ) << 2001 if( position >= fIntegralMM[iTransfer] ) break; 2350 } 2002 } 2351 if(iTransfer > fSplineNumber) iTransfer--; 2003 if(iTransfer > fSplineNumber) iTransfer--; 2352 2004 2353 energyTransfer = fSplineEnergy[iTransfer]; 2005 energyTransfer = fSplineEnergy[iTransfer]; 2354 2006 2355 if(iTransfer > 1) 2007 if(iTransfer > 1) 2356 { 2008 { 2357 energyTransfer -= (fSplineEnergy[iTransfe 2009 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2358 } 2010 } 2359 return energyTransfer; 2011 return energyTransfer; 2360 } 2012 } 2361 2013 2362 ///////////////////////////////////////////// 2014 ///////////////////////////////////////////////////////////////////////// 2363 // 2015 // 2364 // Returns random plasmon energy loss over st 2016 // Returns random plasmon energy loss over step 2365 2017 2366 G4double G4PAIxSection::GetStepPlasmonLoss( G 2018 G4double G4PAIxSection::GetStepPlasmonLoss( G4double step ) 2367 { 2019 { 2368 G4long numOfCollisions; 2020 G4long numOfCollisions; 2369 G4double meanNumber, loss = 0.0; 2021 G4double meanNumber, loss = 0.0; 2370 2022 2371 // G4cout<<" G4PAIxSection::GetStepPlasmonL 2023 // G4cout<<" G4PAIxSection::GetStepPlasmonLoss "<<G4endl; 2372 2024 2373 meanNumber = fIntegralPlasmon[1]*step; 2025 meanNumber = fIntegralPlasmon[1]*step; 2374 numOfCollisions = G4Poisson(meanNumber); 2026 numOfCollisions = G4Poisson(meanNumber); 2375 2027 2376 // G4cout<<"numOfCollisions = "<<numOfCol 2028 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2377 2029 2378 while(numOfCollisions) 2030 while(numOfCollisions) 2379 { 2031 { 2380 loss += GetPlasmonEnergyTransfer(); 2032 loss += GetPlasmonEnergyTransfer(); 2381 numOfCollisions--; 2033 numOfCollisions--; 2382 // Loop checking, 03-Aug-2015, Vladimir I << 2383 } 2034 } 2384 // G4cout<<"PAI Plasmon loss = "<<loss/keV< 2035 // G4cout<<"PAI Plasmon loss = "<<loss/keV<<" keV"<<G4endl; 2385 2036 2386 return loss; 2037 return loss; 2387 } 2038 } 2388 2039 2389 ///////////////////////////////////////////// 2040 ///////////////////////////////////////////////////////////////////////// 2390 // 2041 // 2391 // Returns plasmon energy transfer in one col 2042 // Returns plasmon energy transfer in one collision 2392 2043 2393 G4double G4PAIxSection::GetPlasmonEnergyTrans 2044 G4double G4PAIxSection::GetPlasmonEnergyTransfer() 2394 { 2045 { 2395 G4int iTransfer ; 2046 G4int iTransfer ; 2396 2047 2397 G4double energyTransfer, position; 2048 G4double energyTransfer, position; 2398 2049 2399 position = fIntegralPlasmon[1]*G4UniformRan 2050 position = fIntegralPlasmon[1]*G4UniformRand(); 2400 2051 2401 for( iTransfer = 1; iTransfer <= fSplineNum 2052 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2402 { 2053 { 2403 if( position >= fIntegralPlasmon[iTransfe << 2054 if( position >= fIntegralPlasmon[iTransfer] ) break; 2404 } 2055 } 2405 if(iTransfer > fSplineNumber) iTransfer--; 2056 if(iTransfer > fSplineNumber) iTransfer--; 2406 2057 2407 energyTransfer = fSplineEnergy[iTransfer]; 2058 energyTransfer = fSplineEnergy[iTransfer]; 2408 2059 2409 if(iTransfer > 1) 2060 if(iTransfer > 1) 2410 { 2061 { 2411 energyTransfer -= (fSplineEnergy[iTransfe 2062 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2412 } 2063 } 2413 return energyTransfer; 2064 return energyTransfer; 2414 } 2065 } 2415 2066 2416 ///////////////////////////////////////////// 2067 ///////////////////////////////////////////////////////////////////////// 2417 // 2068 // 2418 // Returns random resonance energy loss over 2069 // Returns random resonance energy loss over step 2419 2070 2420 G4double G4PAIxSection::GetStepResonanceLoss( 2071 G4double G4PAIxSection::GetStepResonanceLoss( G4double step ) 2421 { 2072 { 2422 G4long numOfCollisions; 2073 G4long numOfCollisions; 2423 G4double meanNumber, loss = 0.0; 2074 G4double meanNumber, loss = 0.0; 2424 2075 2425 // G4cout<<" G4PAIxSection::GetStepCreLosnk 2076 // G4cout<<" G4PAIxSection::GetStepCreLosnkovs "<<G4endl; 2426 2077 2427 meanNumber = fIntegralResonance[1]*step; 2078 meanNumber = fIntegralResonance[1]*step; 2428 numOfCollisions = G4Poisson(meanNumber); 2079 numOfCollisions = G4Poisson(meanNumber); 2429 2080 2430 // G4cout<<"numOfCollisions = "<<numOfCol 2081 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2431 2082 2432 while(numOfCollisions) 2083 while(numOfCollisions) 2433 { 2084 { 2434 loss += GetResonanceEnergyTransfer(); 2085 loss += GetResonanceEnergyTransfer(); 2435 numOfCollisions--; 2086 numOfCollisions--; 2436 // Loop checking, 03-Aug-2015, Vladimir I << 2437 } 2087 } 2438 // G4cout<<"PAI resonance loss = "<<loss/ke 2088 // G4cout<<"PAI resonance loss = "<<loss/keV<<" keV"<<G4endl; 2439 2089 2440 return loss; 2090 return loss; 2441 } 2091 } 2442 2092 2443 2093 2444 ///////////////////////////////////////////// 2094 ///////////////////////////////////////////////////////////////////////// 2445 // 2095 // 2446 // Returns resonance energy transfer in one c 2096 // Returns resonance energy transfer in one collision 2447 2097 2448 G4double G4PAIxSection::GetResonanceEnergyTra 2098 G4double G4PAIxSection::GetResonanceEnergyTransfer() 2449 { 2099 { 2450 G4int iTransfer ; 2100 G4int iTransfer ; 2451 2101 2452 G4double energyTransfer, position; 2102 G4double energyTransfer, position; 2453 2103 2454 position = fIntegralResonance[1]*G4UniformR 2104 position = fIntegralResonance[1]*G4UniformRand(); 2455 2105 2456 for( iTransfer = 1; iTransfer <= fSplineNum 2106 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2457 { 2107 { 2458 if( position >= fIntegralResonance[iTrans << 2108 if( position >= fIntegralResonance[iTransfer] ) break; 2459 } 2109 } 2460 if(iTransfer > fSplineNumber) iTransfer--; 2110 if(iTransfer > fSplineNumber) iTransfer--; 2461 2111 2462 energyTransfer = fSplineEnergy[iTransfer]; 2112 energyTransfer = fSplineEnergy[iTransfer]; 2463 2113 2464 if(iTransfer > 1) 2114 if(iTransfer > 1) 2465 { 2115 { 2466 energyTransfer -= (fSplineEnergy[iTransfe 2116 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2467 } 2117 } 2468 return energyTransfer; 2118 return energyTransfer; 2469 } 2119 } 2470 2120 2471 2121 2472 ///////////////////////////////////////////// 2122 ///////////////////////////////////////////////////////////////////////// 2473 // 2123 // 2474 // Returns Rutherford energy transfer in one 2124 // Returns Rutherford energy transfer in one collision 2475 2125 2476 G4double G4PAIxSection::GetRutherfordEnergyTr 2126 G4double G4PAIxSection::GetRutherfordEnergyTransfer() 2477 { 2127 { 2478 G4int iTransfer ; 2128 G4int iTransfer ; 2479 2129 2480 G4double energyTransfer, position; 2130 G4double energyTransfer, position; 2481 2131 2482 position = (fIntegralPlasmon[1]-fIntegralRe 2132 position = (fIntegralPlasmon[1]-fIntegralResonance[1])*G4UniformRand(); 2483 2133 2484 for( iTransfer = 1; iTransfer <= fSplineNum 2134 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2485 { 2135 { 2486 if( position >= (fIntegralPlasmon[iTransf << 2136 if( position >= (fIntegralPlasmon[iTransfer]-fIntegralResonance[iTransfer]) ) break; 2487 } 2137 } 2488 if(iTransfer > fSplineNumber) iTransfer--; 2138 if(iTransfer > fSplineNumber) iTransfer--; 2489 2139 2490 energyTransfer = fSplineEnergy[iTransfer]; 2140 energyTransfer = fSplineEnergy[iTransfer]; 2491 2141 2492 if(iTransfer > 1) 2142 if(iTransfer > 1) 2493 { 2143 { 2494 energyTransfer -= (fSplineEnergy[iTransfe 2144 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2495 } 2145 } 2496 return energyTransfer; 2146 return energyTransfer; 2497 } 2147 } 2498 2148 2499 ///////////////////////////////////////////// << 2500 // << 2501 << 2502 void G4PAIxSection::CallError(G4int i, const << 2503 { << 2504 G4String head = "G4PAIxSection::" + methodN << 2505 G4ExceptionDescription ed; << 2506 ed << "Wrong index " << i << " fSplineNumbe << 2507 G4Exception(head,"pai001",FatalException,ed << 2508 } << 2509 2149 2510 ///////////////////////////////////////////// 2150 ///////////////////////////////////////////////////////////////////////////// 2511 // 2151 // 2512 // Init array of Lorentz factors 2152 // Init array of Lorentz factors 2513 // 2153 // 2514 2154 2515 G4int G4PAIxSection::fNumberOfGammas = 111; 2155 G4int G4PAIxSection::fNumberOfGammas = 111; 2516 2156 2517 const G4double G4PAIxSection::fLorentzFactor[ 2157 const G4double G4PAIxSection::fLorentzFactor[112] = // fNumberOfGammas+1 2518 { 2158 { 2519 0.0, 2159 0.0, 2520 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.1 2160 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.138890e+00, 1.157642e+00, 2521 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.2 2161 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.261620e+00, 1.296942e+00, // 10 2522 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.4 2162 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.492800e+00, 1.559334e+00, 2523 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.9 2163 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.928263e+00, 2.053589e+00, // 20 2524 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.7 2164 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.748522e+00, 2.984591e+00, 2525 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.2 2165 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.293602e+00, 4.738274e+00, // 30 2526 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.2 2166 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.203990e+00, 8.041596e+00, 2527 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.2 2167 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.268614e+01, 1.426390e+01, // 40 2528 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.3 2168 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.301259e+01, 2.598453e+01, 2529 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.2 2169 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.246399e+01, 4.806208e+01, // 50 2530 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.9 2170 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.910361e+01, 8.964844e+01, 2531 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.4 2171 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.481198e+02, 1.679826e+02, // 60 2532 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.7 2172 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.781221e+02, 3.155365e+02, 2533 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.2 2173 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.230007e+02, 5.934765e+02, // 70 2534 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.8 2174 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.842662e+02, 1.117018e+03, 2535 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.8 2175 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.853128e+03, 2.103186e+03, // 80 2536 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.4 2176 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.489760e+03, 3.960780e+03, 2537 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.5 2177 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.572600e+03, 7.459837e+03, // 90 2538 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.2 2178 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.237959e+04, 1.405083e+04, 2539 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.3 2179 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.331792e+04, 2.646595e+04, // 100 2540 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.3 2180 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.392189e+04, 4.985168e+04, 2541 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.2 2181 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.273254e+04, 9.390219e+04, // 110 2542 1.065799e+05 2182 1.065799e+05 2543 }; 2183 }; 2544 2184 2545 ///////////////////////////////////////////// 2185 /////////////////////////////////////////////////////////////////////// 2546 // 2186 // 2547 // The number of gamma for creation of splin 2187 // The number of gamma for creation of spline (near ion-min , G ~ 4 ) 2548 // 2188 // 2549 2189 2550 const 2190 const 2551 G4int G4PAIxSection::fRefGammaNumber = 29; 2191 G4int G4PAIxSection::fRefGammaNumber = 29; 2552 2192 2553 2193 2554 // 2194 // 2555 // end of G4PAIxSection implementation file 2195 // end of G4PAIxSection implementation file 2556 // 2196 // 2557 ///////////////////////////////////////////// 2197 //////////////////////////////////////////////////////////////////////////// 2558 2198 2559 2199