Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4PAIxSection.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4PAIxSection.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4PAIxSection.cc (Version 9.4.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4PAIxSection.cc,v 1.24 2008/05/30 16:04:40 grichine Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-03-ref-06 $
 27 //                                                 29 //
 28 //                                                 30 // 
 29 // G4PAIxSection.cc -- class implementation fi     31 // G4PAIxSection.cc -- class implementation file
 30 //                                                 32 //
 31 // GEANT 4 class implementation file               33 // GEANT 4 class implementation file
 32 //                                                 34 //
 33 // For information related to this code, pleas     35 // For information related to this code, please, contact
 34 // the Geant4 Collaboration.                       36 // the Geant4 Collaboration.
 35 //                                                 37 //
 36 // R&D: Vladimir.Grichine@cern.ch                  38 // R&D: Vladimir.Grichine@cern.ch
 37 //                                                 39 //
 38 // History:                                        40 // History:
 39 //                                                 41 //
 40 // 13.05.03 V. Grichine, bug fixed for maxEner     42 // 13.05.03 V. Grichine, bug fixed for maxEnergyTransfer > max interval energy
 41 // 28.05.01 V.Ivanchenko minor changes to prov     43 // 28.05.01 V.Ivanchenko minor changes to provide ANSI -wall compilation 
 42 // 17.05.01 V. Grichine, low energy extension      44 // 17.05.01 V. Grichine, low energy extension down to 10*keV of proton
 43 // 20.11.98 adapted to a new Material/SandiaTa     45 // 20.11.98 adapted to a new Material/SandiaTable interface, mma 
 44 // 11.06.97 V. Grichine, 1st version               46 // 11.06.97 V. Grichine, 1st version 
 45 //                                                 47 //
 46                                                    48 
                                                   >>  49 
                                                   >>  50 
 47 #include "G4PAIxSection.hh"                        51 #include "G4PAIxSection.hh"
 48                                                    52 
 49 #include "globals.hh"                              53 #include "globals.hh"
 50 #include "G4PhysicalConstants.hh"              << 
 51 #include "G4SystemOfUnits.hh"                  << 
 52 #include "G4ios.hh"                                54 #include "G4ios.hh"
 53 #include "G4Poisson.hh"                            55 #include "G4Poisson.hh"
 54 #include "G4Material.hh"                           56 #include "G4Material.hh"
 55 #include "G4MaterialCutsCouple.hh"                 57 #include "G4MaterialCutsCouple.hh"
 56 #include "G4SandiaTable.hh"                        58 #include "G4SandiaTable.hh"
 57                                                    59 
 58 using namespace std;                               60 using namespace std;
 59                                                    61 
 60 /* *******************************************     62 /* ******************************************************************
 61                                                    63 
 62 // Init  array of Lorentz factors                  64 // Init  array of Lorentz factors
 63                                                    65 
 64 const G4double G4PAIxSection::fLorentzFactor[2     66 const G4double G4PAIxSection::fLorentzFactor[22] =
 65 {                                                  67 {
 66           0.0 ,     1.1 ,   1.2 ,   1.3 ,    1     68           0.0 ,     1.1 ,   1.2 ,   1.3 ,    1.5 ,    1.8 ,  2.0 ,
 67           2.5 ,     3.0 ,   4.0 ,   7.0 ,   10     69           2.5 ,     3.0 ,   4.0 ,   7.0 ,   10.0 ,   20.0 , 40.0 ,
 68          70.0 ,   100.0 , 300.0 , 600.0 , 1000     70          70.0 ,   100.0 , 300.0 , 600.0 , 1000.0 , 3000.0 ,
 69       10000.0 , 50000.0                            71       10000.0 , 50000.0
 70 };                                                 72 };
 71                                                    73 
 72 const G4int G4PAIxSection::                        74 const G4int G4PAIxSection::
 73 fRefGammaNumber = 29;         // The number of     75 fRefGammaNumber = 29;         // The number of gamma for creation of 
 74                                // spline (9)       76                                // spline (9)
 75                                                    77 
 76 **********************************************     78 ***************************************************************** */ 
 77                                                    79 
 78 // Local class constants                           80 // Local class constants
 79                                                    81 
 80 const G4double G4PAIxSection::fDelta = 0.005;      82 const G4double G4PAIxSection::fDelta = 0.005; // 0.005 energy shift from interval border
 81 const G4double G4PAIxSection::fError = 0.005;      83 const G4double G4PAIxSection::fError = 0.005; // 0.005 error in lin-log approximation
 82                                                    84 
 83 const G4int G4PAIxSection::fMaxSplineSize = 10 <<  85 const G4int G4PAIxSection::fMaxSplineSize = 500;  // Max size of output spline
 84                                                    86                                                     // arrays
 85 ////////////////////////////////////////////// << 
 86 //                                             << 
 87 // Constructor                                 << 
 88 //                                             << 
 89                                                << 
 90 G4PAIxSection::G4PAIxSection()                 << 
 91 {                                              << 
 92   fSandia = nullptr;                           << 
 93   fMatSandiaMatrix = nullptr;                  << 
 94   fDensity = fElectronDensity = fNormalization << 
 95   fIntervalNumber = fSplineNumber = 0;         << 
 96   fVerbose = 0;                                << 
 97                                                << 
 98   fSplineEnergy          = G4DataVector(fMaxSp << 
 99   fRePartDielectricConst = G4DataVector(fMaxSp << 
100   fImPartDielectricConst = G4DataVector(fMaxSp << 
101   fIntegralTerm          = G4DataVector(fMaxSp << 
102   fDifPAIxSection        = G4DataVector(fMaxSp << 
103   fdNdxCerenkov          = G4DataVector(fMaxSp << 
104   fdNdxPlasmon           = G4DataVector(fMaxSp << 
105   fdNdxMM                = G4DataVector(fMaxSp << 
106   fdNdxResonance         = G4DataVector(fMaxSp << 
107   fIntegralPAIxSection   = G4DataVector(fMaxSp << 
108   fIntegralPAIdEdx       = G4DataVector(fMaxSp << 
109   fIntegralCerenkov      = G4DataVector(fMaxSp << 
110   fIntegralPlasmon       = G4DataVector(fMaxSp << 
111   fIntegralMM            = G4DataVector(fMaxSp << 
112   fIntegralResonance     = G4DataVector(fMaxSp << 
113                                                << 
114   fMaterialIndex = 0;                          << 
115                                                << 
116   for( G4int i = 0; i < 500; ++i )             << 
117   {                                            << 
118     for( G4int j = 0; j < 112; ++j )  fPAItabl << 
119   }                                            << 
120 }                                              << 
121                                                    87 
122 //////////////////////////////////////////////     88 //////////////////////////////////////////////////////////////////
123 //                                                 89 //
124 // Constructor                                     90 // Constructor
125 //                                                 91 //
126                                                    92 
127 G4PAIxSection::G4PAIxSection(G4MaterialCutsCou     93 G4PAIxSection::G4PAIxSection(G4MaterialCutsCouple* matCC)
128 {                                                  94 {
129   fDensity       = matCC->GetMaterial()->GetDe     95   fDensity       = matCC->GetMaterial()->GetDensity();
130   G4int matIndex = (G4int)matCC->GetMaterial() <<  96   G4int matIndex = matCC->GetMaterial()->GetIndex();
131   fMaterialIndex = matIndex;                       97   fMaterialIndex = matIndex;   
132                                                <<  98   fSandia        = new G4SandiaTable(matIndex);
133   const G4MaterialTable* theMaterialTable = G4 << 
134   fSandia = (*theMaterialTable)[matIndex]->Get << 
135                                                << 
136   fVerbose = 0;                                << 
137                                                    99 
138   G4int i, j;                                     100   G4int i, j; 
139   fMatSandiaMatrix = new G4OrderedTable();        101   fMatSandiaMatrix = new G4OrderedTable();
140                                                   102  
141   for (i = 0; i < fSandia->GetMaxInterval()-1; << 103   for (i = 0; i < fSandia->GetMaxInterval()-1; i++)
142   {                                               104   {
143      fMatSandiaMatrix->push_back(new G4DataVec    105      fMatSandiaMatrix->push_back(new G4DataVector(5,0.));
144   }                                            << 106   }           
145   for (i = 0; i < fSandia->GetMaxInterval()-1; << 107   for (i = 0; i < fSandia->GetMaxInterval()-1; i++)
146   {                                               108   {
147     (*(*fMatSandiaMatrix)[i])[0] = fSandia->Ge    109     (*(*fMatSandiaMatrix)[i])[0] = fSandia->GetSandiaMatTable(i,0);
148                                                   110 
149     for(j = 1; j < 5; ++j)                     << 111     for(j = 1; j < 5; j++)
150     {                                             112     {
151       (*(*fMatSandiaMatrix)[i])[j] = fSandia->    113       (*(*fMatSandiaMatrix)[i])[j] = fSandia->GetSandiaMatTable(i,j)*fDensity;
152     }                                             114     }     
153   }                                            << 115   }           
154   ComputeLowEnergyCof();                       << 
155   //  fEnergyInterval = fA1 = fA2 = fA3 = fA4  << 
156 }                                                 116 }
157                                                   117 
158 //////////////////////////////////////////////    118 ////////////////////////////////////////////////////////////////
159                                                   119 
160 G4PAIxSection::G4PAIxSection(G4int materialInd    120 G4PAIxSection::G4PAIxSection(G4int materialIndex,
161                              G4double maxEnerg << 121            G4double maxEnergyTransfer)
162 {                                                 122 {
163   fSandia = nullptr;                           << 123    const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
164   fMatSandiaMatrix = nullptr;                  << 124    G4int i, j;   
165   fVerbose = 0;                                << 
166   const G4MaterialTable* theMaterialTable = G4 << 
167   G4int i, j;                                  << 
168                                                   125 
169   fMaterialIndex   = materialIndex;            << 126       fMaterialIndex   = materialIndex;   
170   fDensity                = (*theMaterialTable << 127       fDensity                = (*theMaterialTable)[materialIndex]->GetDensity();
171   fElectronDensity        = (*theMaterialTable << 128       fElectronDensity        = (*theMaterialTable)[materialIndex]->
172                              GetElectronDensit    129                              GetElectronDensity();
173   fIntervalNumber         = (*theMaterialTable << 130       fIntervalNumber         = (*theMaterialTable)[materialIndex]->
174                              GetSandiaTable()-    131                              GetSandiaTable()->GetMatNbOfIntervals();
175   fIntervalNumber--;                           << 132       fIntervalNumber--;      
176   // G4cout<<fDensity<<"\t"<<fElectronDensity< << 133       // G4cout<<fDensity<<"\t"<<fElectronDensity<<"\t"<<fIntervalNumber<<G4endl;
177                                                   134 
178   fEnergyInterval = G4DataVector(fIntervalNumb << 135       fEnergyInterval = new G4double[fIntervalNumber+2];
179   fA1             = G4DataVector(fIntervalNumb << 136       fA1             = new G4double[fIntervalNumber+2];
180   fA2             = G4DataVector(fIntervalNumb << 137       fA2             = new G4double[fIntervalNumber+2];
181   fA3             = G4DataVector(fIntervalNumb << 138       fA3             = new G4double[fIntervalNumber+2];
182   fA4             = G4DataVector(fIntervalNumb << 139       fA4             = new G4double[fIntervalNumber+2];
183                                                   140 
184   for(i = 1; i <= fIntervalNumber; i++ )       << 141       for(i = 1; i <= fIntervalNumber; i++ )
185     {                                          << 142       {
186       if(((*theMaterialTable)[materialIndex]-> << 143          if(((*theMaterialTable)[materialIndex]->
187     GetSandiaTable()->GetSandiaCofForMaterial(    144     GetSandiaTable()->GetSandiaCofForMaterial(i-1,0) >= maxEnergyTransfer) ||
188               i > fIntervalNumber                 145               i > fIntervalNumber               )
189         {                                      << 146          {
190           fEnergyInterval[i] = maxEnergyTransf << 147             fEnergyInterval[i] = maxEnergyTransfer;
191           fIntervalNumber = i;                 << 148       fIntervalNumber = i;
192           break;                               << 149       break;
193         }                                      << 150          }
194          fEnergyInterval[i] = (*theMaterialTab    151          fEnergyInterval[i] = (*theMaterialTable)[materialIndex]->
195                               GetSandiaTable() << 152                         GetSandiaTable()->GetSandiaCofForMaterial(i-1,0);
196          fA1[i]             = (*theMaterialTab    153          fA1[i]             = (*theMaterialTable)[materialIndex]->
197                               GetSandiaTable() << 154                         GetSandiaTable()->GetSandiaCofForMaterial(i-1,1);
198          fA2[i]             = (*theMaterialTab    155          fA2[i]             = (*theMaterialTable)[materialIndex]->
199                               GetSandiaTable() << 156                         GetSandiaTable()->GetSandiaCofForMaterial(i-1,2);
200          fA3[i]             = (*theMaterialTab    157          fA3[i]             = (*theMaterialTable)[materialIndex]->
201                               GetSandiaTable() << 158                         GetSandiaTable()->GetSandiaCofForMaterial(i-1,3);
202          fA4[i]             = (*theMaterialTab    159          fA4[i]             = (*theMaterialTable)[materialIndex]->
203                               GetSandiaTable() << 160                         GetSandiaTable()->GetSandiaCofForMaterial(i-1,4);
204          // G4cout<<i<<"\t"<<fEnergyInterval[i << 161    // G4cout<<i<<"\t"<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t"
205          //                               <<fA << 162    //                               <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl;
206     }                                          << 163       }   
207   if(fEnergyInterval[fIntervalNumber] != maxEn << 164       if(fEnergyInterval[fIntervalNumber] != maxEnergyTransfer)
208     {                                          << 165       {
209          fIntervalNumber++;                       166          fIntervalNumber++;
210          fEnergyInterval[fIntervalNumber] = ma    167          fEnergyInterval[fIntervalNumber] = maxEnergyTransfer;
211     }                                          << 168       }
212                                                   169 
213   // Now checking, if two borders are too clos << 170       // Now checking, if two borders are too close together
214                                                   171 
215   for(i=1;i<fIntervalNumber;i++)               << 172       for(i=1;i<fIntervalNumber;i++)
216     {                                          << 173       {
217         if(fEnergyInterval[i+1]-fEnergyInterva    174         if(fEnergyInterval[i+1]-fEnergyInterval[i] >
218            1.5*fDelta*(fEnergyInterval[i+1]+fE    175            1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i]))
219         {                                      << 176   {
220           continue;                               177           continue;
221         }                                      << 178   }
222         else                                      179         else
223         {                                      << 180   {
224           for(j=i;j<fIntervalNumber;j++)          181           for(j=i;j<fIntervalNumber;j++)
225           {                                    << 182     {
226             fEnergyInterval[j] = fEnergyInterv    183             fEnergyInterval[j] = fEnergyInterval[j+1];
227                         fA1[j] = fA1[j+1];        184                         fA1[j] = fA1[j+1];
228                         fA2[j] = fA2[j+1];        185                         fA2[j] = fA2[j+1];
229                         fA3[j] = fA3[j+1];        186                         fA3[j] = fA3[j+1];
230                         fA4[j] = fA4[j+1];        187                         fA4[j] = fA4[j+1];
231           }                                    << 188     }
232           fIntervalNumber--;                      189           fIntervalNumber--;
233           i--;                                    190           i--;
234         }                                      << 191   }
235     }                                          << 192       }
236                                                   193 
237                                                   194 
238       /* *********************************        195       /* *********************************
239                                                   196 
240       fSplineEnergy          = new G4double[fM    197       fSplineEnergy          = new G4double[fMaxSplineSize];   
241       fRePartDielectricConst = new G4double[fM    198       fRePartDielectricConst = new G4double[fMaxSplineSize];   
242       fImPartDielectricConst = new G4double[fM    199       fImPartDielectricConst = new G4double[fMaxSplineSize];   
243       fIntegralTerm          = new G4double[fM    200       fIntegralTerm          = new G4double[fMaxSplineSize];   
244       fDifPAIxSection        = new G4double[fM    201       fDifPAIxSection        = new G4double[fMaxSplineSize];   
245       fIntegralPAIxSection   = new G4double[fM    202       fIntegralPAIxSection   = new G4double[fMaxSplineSize];   
246                                                   203       
247       for(i=0;i<fMaxSplineSize;i++)               204       for(i=0;i<fMaxSplineSize;i++)
248       {                                           205       {
249          fSplineEnergy[i]          = 0.0;         206          fSplineEnergy[i]          = 0.0;   
250          fRePartDielectricConst[i] = 0.0;         207          fRePartDielectricConst[i] = 0.0;   
251          fImPartDielectricConst[i] = 0.0;         208          fImPartDielectricConst[i] = 0.0;   
252          fIntegralTerm[i]          = 0.0;         209          fIntegralTerm[i]          = 0.0;   
253          fDifPAIxSection[i]        = 0.0;         210          fDifPAIxSection[i]        = 0.0;   
254          fIntegralPAIxSection[i]   = 0.0;         211          fIntegralPAIxSection[i]   = 0.0;   
255       }                                           212       }
256       ****************************************    213       **************************************************  */   
257       ComputeLowEnergyCof();                   << 214 
258       InitPAI();  // create arrays allocated a    215       InitPAI();  // create arrays allocated above
259       /*                                       << 216       
260       delete[] fEnergyInterval;                   217       delete[] fEnergyInterval;
261       delete[] fA1;                               218       delete[] fA1;
262       delete[] fA2;                               219       delete[] fA2;
263       delete[] fA3;                               220       delete[] fA3;
264       delete[] fA4;                            << 221       delete[] fA4;    
265       */                                       << 
266 }                                                 222 }
267                                                   223 
268 //////////////////////////////////////////////    224 ////////////////////////////////////////////////////////////////////////
269 //                                                225 //
270 // Constructor called from G4PAIPhotonModel !! << 226 // Constructor with beta*gamma square value
271                                                   227 
272 G4PAIxSection::G4PAIxSection( G4int materialIn    228 G4PAIxSection::G4PAIxSection( G4int materialIndex,
273                               G4double maxEner << 229             G4double maxEnergyTransfer,
274                               G4double betaGam << 230             G4double betaGammaSq,
275                               G4double** photo    231                               G4double** photoAbsCof, 
276                               G4int intNumber     232                               G4int intNumber                   )
277 {                                                 233 {
278   fSandia = nullptr;                           << 234    const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
279   fDensity = fElectronDensity = fNormalization << 235    G4int i, j; 
280   fIntervalNumber = fSplineNumber = 0;         << 
281   fVerbose = 0;                                << 
282                                                << 
283   fSplineEnergy          = G4DataVector(500,0. << 
284   fRePartDielectricConst = G4DataVector(500,0. << 
285   fImPartDielectricConst = G4DataVector(500,0. << 
286   fIntegralTerm          = G4DataVector(500,0. << 
287   fDifPAIxSection        = G4DataVector(500,0. << 
288   fdNdxCerenkov          = G4DataVector(500,0. << 
289   fdNdxPlasmon           = G4DataVector(500,0. << 
290   fdNdxMM                = G4DataVector(500,0. << 
291   fdNdxResonance         = G4DataVector(500,0. << 
292   fIntegralPAIxSection   = G4DataVector(500,0. << 
293   fIntegralPAIdEdx       = G4DataVector(500,0. << 
294   fIntegralCerenkov      = G4DataVector(500,0. << 
295   fIntegralPlasmon       = G4DataVector(500,0. << 
296   fIntegralMM            = G4DataVector(500,0. << 
297   fIntegralResonance     = G4DataVector(500,0. << 
298                                                << 
299   for( G4int i = 0; i < 500; ++i )             << 
300   {                                            << 
301     for( G4int j = 0; j < 112; ++j )  fPAItabl << 
302   }                                            << 
303                                                << 
304   fSandia = nullptr;                           << 
305   fMatSandiaMatrix = nullptr;                  << 
306   const G4MaterialTable* theMaterialTable = G4 << 
307   G4int i, j;                                  << 
308                                                << 
309   fMaterialIndex   = materialIndex;            << 
310   fDensity         = (*theMaterialTable)[mater << 
311   fElectronDensity = (*theMaterialTable)[mater << 
312                                                << 
313   fIntervalNumber         = intNumber;         << 
314   fIntervalNumber--;                           << 
315   //   G4cout<<fDensity<<"\t"<<fElectronDensit << 
316                                                   236   
317   fEnergyInterval = G4DataVector(fIntervalNumb << 237       fMaterialIndex   = materialIndex;      
318   fA1             = G4DataVector(fIntervalNumb << 238       fDensity                = (*theMaterialTable)[materialIndex]->GetDensity();
319   fA2             = G4DataVector(fIntervalNumb << 239       fElectronDensity        = (*theMaterialTable)[materialIndex]->
320   fA3             = G4DataVector(fIntervalNumb << 240                              GetElectronDensity();
321   fA4             = G4DataVector(fIntervalNumb << 
322                                                << 
323                                                   241 
324   /*                                           << 242       fIntervalNumber         = intNumber;
                                                   >> 243       fIntervalNumber--;
                                                   >> 244       //   G4cout<<fDensity<<"\t"<<fElectronDensity<<"\t"<<fIntervalNumber<<G4endl;
                                                   >> 245   
325       fEnergyInterval = new G4double[fInterval    246       fEnergyInterval = new G4double[fIntervalNumber+2];
326       fA1             = new G4double[fInterval    247       fA1             = new G4double[fIntervalNumber+2];
327       fA2             = new G4double[fInterval    248       fA2             = new G4double[fIntervalNumber+2];
328       fA3             = new G4double[fInterval    249       fA3             = new G4double[fIntervalNumber+2];
329       fA4             = new G4double[fInterval    250       fA4             = new G4double[fIntervalNumber+2];
330   */                                           << 251 
331   for( i = 1; i <= fIntervalNumber; i++ )      << 252       for( i = 1; i <= fIntervalNumber; i++ )
332     {                                          << 253       {
333          if( ( photoAbsCof[i-1][0] >= maxEnerg    254          if( ( photoAbsCof[i-1][0] >= maxEnergyTransfer ) ||
334              i > fIntervalNumber )                255              i > fIntervalNumber )
335          {                                        256          {
336             fEnergyInterval[i] = maxEnergyTran    257             fEnergyInterval[i] = maxEnergyTransfer;
337             fIntervalNumber = i;               << 258       fIntervalNumber = i;
338             break;                             << 259       break;
339          }                                        260          }
340          fEnergyInterval[i] = photoAbsCof[i-1]    261          fEnergyInterval[i] = photoAbsCof[i-1][0];
341          fA1[i]             = photoAbsCof[i-1]    262          fA1[i]             = photoAbsCof[i-1][1];
342          fA2[i]             = photoAbsCof[i-1]    263          fA2[i]             = photoAbsCof[i-1][2];
343          fA3[i]             = photoAbsCof[i-1]    264          fA3[i]             = photoAbsCof[i-1][3];
344          fA4[i]             = photoAbsCof[i-1]    265          fA4[i]             = photoAbsCof[i-1][4];
345          // G4cout<<i<<"\t"<<fEnergyInterval[i << 266    // G4cout<<i<<"\t"<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t"
346          //      <<fA3[i]<<"\t"<<fA4[i]<<"\t"< << 267    //        <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl;
347     }                                          << 268       }
348       // G4cout<<"i last = "<<i<<"; "<<"fInter << 269   // G4cout<<"i last = "<<i<<"; "<<"fIntervalNumber = "<<fIntervalNumber<<G4endl;   
349                                                << 270       if(fEnergyInterval[fIntervalNumber] != maxEnergyTransfer)
350   if(fEnergyInterval[fIntervalNumber] != maxEn << 271       {
351     {                                          << 
352          fIntervalNumber++;                       272          fIntervalNumber++;
353          fEnergyInterval[fIntervalNumber] = ma    273          fEnergyInterval[fIntervalNumber] = maxEnergyTransfer;
354     }                                          << 274       }
355       // G4cout<<"after check of max energy tr << 275       for(i=1;i<=fIntervalNumber;i++)
356                                                << 276       {
357   for( i = 1; i <= fIntervalNumber; i++ )      << 277   //  G4cout<<i<<"\t"<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t"
358     {                                          << 278   //    <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl;
359         // G4cout<<i<<"\t"<<fEnergyInterval[i] << 279       }
360         //   <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4e << 
361     }                                          << 
362       // Now checking, if two borders are too     280       // Now checking, if two borders are too close together
363                                                   281 
364   for( i = 1; i < fIntervalNumber; i++ )       << 282       for( i = 1; i < fIntervalNumber; i++ )
365     {                                          << 283       {
366         if(fEnergyInterval[i+1]-fEnergyInterva    284         if(fEnergyInterval[i+1]-fEnergyInterval[i] >
367            1.5*fDelta*(fEnergyInterval[i+1]+fE    285            1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i]))
368         {                                      << 286   {
369           continue;                               287           continue;
370         }                                      << 288   }
371         else                                      289         else
372         {                                      << 290   {
373           for(j=i;j<fIntervalNumber;j++)          291           for(j=i;j<fIntervalNumber;j++)
374           {                                    << 292     {
375             fEnergyInterval[j] = fEnergyInterv    293             fEnergyInterval[j] = fEnergyInterval[j+1];
376                         fA1[j] = fA1[j+1];        294                         fA1[j] = fA1[j+1];
377                         fA2[j] = fA2[j+1];        295                         fA2[j] = fA2[j+1];
378                         fA3[j] = fA3[j+1];        296                         fA3[j] = fA3[j+1];
379                         fA4[j] = fA4[j+1];        297                         fA4[j] = fA4[j+1];
380           }                                    << 298     }
381           fIntervalNumber--;                      299           fIntervalNumber--;
382           i--;                                    300           i--;
383         }                                      << 301   }
384     }                                          << 302       }
385   // G4cout<<"after check of close borders"<<G << 
386                                                << 
387   for( i = 1; i <= fIntervalNumber; i++ )      << 
388     {                                          << 
389         // G4cout<<i<<"\t"<<fEnergyInterval[i] << 
390         //  <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4en << 
391     }                                          << 
392                                                << 
393   // Preparation of fSplineEnergy array corres << 
394                                                   303 
395   ComputeLowEnergyCof();                       << 304       // Preparation of fSplineEnergy array corresponding to min ionisation, G~4
396   G4double   betaGammaSqRef =                  << 305       
397     fLorentzFactor[fRefGammaNumber]*fLorentzFa << 306       G4double   betaGammaSqRef = 
                                                   >> 307       fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1;
398                                                   308 
399   NormShift(betaGammaSqRef);                   << 309       NormShift(betaGammaSqRef);             
400   SplainPAI(betaGammaSqRef);                   << 310       SplainPAI(betaGammaSqRef);
401                                                   311       
402   // Preparation of integral PAI cross section << 312       // Preparation of integral PAI cross section for input betaGammaSq
403                                                   313    
404   for(i = 1; i <= fSplineNumber; i++)          << 314       for(i = 1; i <= fSplineNumber; i++)
405     {                                          << 315       {
406          fdNdxCerenkov[i]   = PAIdNdxCerenkov(    316          fdNdxCerenkov[i]   = PAIdNdxCerenkov(i,betaGammaSq);
407          fdNdxMM[i]   = PAIdNdxMM(i,betaGammaS    317          fdNdxMM[i]   = PAIdNdxMM(i,betaGammaSq);
408          fdNdxPlasmon[i]    = PAIdNdxPlasmon(i    318          fdNdxPlasmon[i]    = PAIdNdxPlasmon(i,betaGammaSq);
409          fdNdxResonance[i]  = PAIdNdxResonance    319          fdNdxResonance[i]  = PAIdNdxResonance(i,betaGammaSq);
410          fDifPAIxSection[i] = DifPAIxSection(i    320          fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq);
411                                                   321 
412          // G4cout<<i<<"; dNdxC = "<<fdNdxCere << 322    // G4cout<<i<<"; dNdxC = "<<fdNdxCerenkov[i]<<"; dNdxP = "<<fdNdxPlasmon[i]
413          //    <<"; dNdxPAI = "<<fDifPAIxSecti << 323    //    <<"; dNdxPAI = "<<fDifPAIxSection[i]<<G4endl;
414     }                                          << 324       }
415   IntegralCerenkov();                          << 325       IntegralCerenkov();
416   IntegralMM();                                << 326       IntegralMM();
417   IntegralPlasmon();                           << 327       IntegralPlasmon();
418   IntegralResonance();                         << 328       IntegralResonance();
419   IntegralPAIxSection();                       << 329       IntegralPAIxSection();
420   /*                                           << 330       
421       delete[] fEnergyInterval;                   331       delete[] fEnergyInterval;
422       delete[] fA1;                               332       delete[] fA1;
423       delete[] fA2;                               333       delete[] fA2;
424       delete[] fA3;                               334       delete[] fA3;
425       delete[] fA4;                            << 335       delete[] fA4;    
426   */                                           << 
427 }                                                 336 }
428                                                   337 
429 //////////////////////////////////////////////    338 ////////////////////////////////////////////////////////////////////////
430 //                                                339 //
431 // Test Constructor with beta*gamma square val    340 // Test Constructor with beta*gamma square value
432                                                   341 
433 G4PAIxSection::G4PAIxSection( G4int materialIn    342 G4PAIxSection::G4PAIxSection( G4int materialIndex,
434                               G4double maxEner << 343             G4double maxEnergyTransfer,
435                               G4double betaGam << 344             G4double betaGammaSq          )
436 {                                                 345 {
437   fSandia = nullptr;                           << 346    const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
438   fMatSandiaMatrix = nullptr;                  << 
439   fVerbose = 0;                                << 
440   const G4MaterialTable* theMaterialTable = G4 << 
441                                                   347 
442   G4int i, j, numberOfElements;                << 348    G4int i, j, numberOfElements;   
443                                                   349 
444   fMaterialIndex   = materialIndex;            << 350    fMaterialIndex   = materialIndex;   
445   fDensity         = (*theMaterialTable)[mater << 351    fDensity         = (*theMaterialTable)[materialIndex]->GetDensity();
446   fElectronDensity = (*theMaterialTable)[mater << 352    fElectronDensity = (*theMaterialTable)[materialIndex]->GetElectronDensity();
447   numberOfElements = (G4int)(*theMaterialTable << 353    numberOfElements = (*theMaterialTable)[materialIndex]->GetNumberOfElements();
448                                                   354 
449   G4int* thisMaterialZ = new G4int[numberOfEle << 355    G4int* thisMaterialZ = new G4int[numberOfElements];
450                                                   356    
451   for( i = 0; i < numberOfElements; ++i )      << 357    for( i = 0; i < numberOfElements; i++ )
452    {                                              358    {
453          thisMaterialZ[i] = (G4int)(*theMateri    359          thisMaterialZ[i] = (G4int)(*theMaterialTable)[materialIndex]->
454                                       GetEleme    360                                       GetElement(i)->GetZ();
455    }                                              361    }
456   // fSandia = new G4SandiaTable(materialIndex << 362    // fSandia = new G4SandiaTable(materialIndex);
457   fSandia = (*theMaterialTable)[materialIndex] << 363    fSandia = (*theMaterialTable)[materialIndex]->
458   G4SandiaTable     thisMaterialSandiaTable(ma << 364      GetSandiaTable();
459   fIntervalNumber = thisMaterialSandiaTable.Sa << 365    G4SandiaTable     thisMaterialSandiaTable(materialIndex);
460                                                << 366    fIntervalNumber = thisMaterialSandiaTable.SandiaIntervals
461   fIntervalNumber = thisMaterialSandiaTable.Sa << 367                            (thisMaterialZ,numberOfElements);   
                                                   >> 368    fIntervalNumber = thisMaterialSandiaTable.SandiaMixing
462                            ( thisMaterialZ ,      369                            ( thisMaterialZ ,
463                       (*theMaterialTable)[mate    370                       (*theMaterialTable)[materialIndex]->GetFractionVector() ,
464                              numberOfElements, << 371                  numberOfElements,fIntervalNumber);
465                                                   372 
466   fIntervalNumber--;                           << 373    fIntervalNumber--;
467                                                   374 
468   fEnergyInterval = G4DataVector(fIntervalNumb << 
469   fA1             = G4DataVector(fIntervalNumb << 
470   fA2             = G4DataVector(fIntervalNumb << 
471   fA3             = G4DataVector(fIntervalNumb << 
472   fA4             = G4DataVector(fIntervalNumb << 
473                                                << 
474   /*                                           << 
475       fEnergyInterval = new G4double[fInterval    375       fEnergyInterval = new G4double[fIntervalNumber+2];
476       fA1             = new G4double[fInterval    376       fA1             = new G4double[fIntervalNumber+2];
477       fA2             = new G4double[fInterval    377       fA2             = new G4double[fIntervalNumber+2];
478       fA3             = new G4double[fInterval    378       fA3             = new G4double[fIntervalNumber+2];
479       fA4             = new G4double[fInterval    379       fA4             = new G4double[fIntervalNumber+2];
480   */                                           << 380 
481   for( i = 1; i <= fIntervalNumber; i++ )      << 381       for( i = 1; i <= fIntervalNumber; i++ )
482     {                                          << 382       {
483   if((thisMaterialSandiaTable.GetPhotoAbsorpCo    383   if((thisMaterialSandiaTable.GetPhotoAbsorpCof(i,0) >= maxEnergyTransfer) ||
484           i > fIntervalNumber)                    384           i > fIntervalNumber)
485          {                                        385          {
486             fEnergyInterval[i] = maxEnergyTran    386             fEnergyInterval[i] = maxEnergyTransfer;
487             fIntervalNumber = i;               << 387       fIntervalNumber = i;
488             break;                             << 388       break;
489          }                                        389          }
490    fEnergyInterval[i] = thisMaterialSandiaTabl    390    fEnergyInterval[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,0);
491    fA1[i]             = thisMaterialSandiaTabl    391    fA1[i]             = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,1)*fDensity;
492    fA2[i]             = thisMaterialSandiaTabl    392    fA2[i]             = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,2)*fDensity;
493    fA3[i]             = thisMaterialSandiaTabl    393    fA3[i]             = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,3)*fDensity;
494    fA4[i]             = thisMaterialSandiaTabl    394    fA4[i]             = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,4)*fDensity;
495                                                   395 
496     }                                          << 396       }   
497   if(fEnergyInterval[fIntervalNumber] != maxEn << 397       if(fEnergyInterval[fIntervalNumber] != maxEnergyTransfer)
498     {                                          << 398       {
499          fIntervalNumber++;                       399          fIntervalNumber++;
500          fEnergyInterval[fIntervalNumber] = ma    400          fEnergyInterval[fIntervalNumber] = maxEnergyTransfer;
501          fA1[fIntervalNumber] = fA1[fIntervalN    401          fA1[fIntervalNumber] = fA1[fIntervalNumber-1];
502          fA2[fIntervalNumber] = fA2[fIntervalN    402          fA2[fIntervalNumber] = fA2[fIntervalNumber-1];
503          fA3[fIntervalNumber] = fA3[fIntervalN    403          fA3[fIntervalNumber] = fA3[fIntervalNumber-1];
504          fA4[fIntervalNumber] = fA4[fIntervalN    404          fA4[fIntervalNumber] = fA4[fIntervalNumber-1];
505     }                                          << 405       }
506   for(i=1;i<=fIntervalNumber;i++)              << 406       for(i=1;i<=fIntervalNumber;i++)
507     {                                          << 407       {
508         // G4cout<<fEnergyInterval[i]<<"\t"<<f << 408   // G4cout<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t"
509         //   <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4e << 409   //   <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl;
510     }                                          << 410       }
511   // Now checking, if two borders are too clos << 411       // Now checking, if two borders are too close together
512                                                   412 
513   for( i = 1; i < fIntervalNumber; i++ )       << 413       for( i = 1; i < fIntervalNumber; i++ )
514     {                                          << 414       {
515         if(fEnergyInterval[i+1]-fEnergyInterva    415         if(fEnergyInterval[i+1]-fEnergyInterval[i] >
516            1.5*fDelta*(fEnergyInterval[i+1]+fE    416            1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i]))
517         {                                      << 417   {
518           continue;                               418           continue;
519         }                                      << 419   }
520         else                                      420         else
521         {                                      << 421   {
522           for( j = i; j < fIntervalNumber; j++    422           for( j = i; j < fIntervalNumber; j++ )
523           {                                    << 423     {
524             fEnergyInterval[j] = fEnergyInterv    424             fEnergyInterval[j] = fEnergyInterval[j+1];
525                         fA1[j] = fA1[j+1];        425                         fA1[j] = fA1[j+1];
526                         fA2[j] = fA2[j+1];        426                         fA2[j] = fA2[j+1];
527                         fA3[j] = fA3[j+1];        427                         fA3[j] = fA3[j+1];
528                         fA4[j] = fA4[j+1];        428                         fA4[j] = fA4[j+1];
529           }                                    << 429     }
530           fIntervalNumber--;                      430           fIntervalNumber--;
531           i--;                                    431           i--;
532         }                                      << 432   }
533     }                                          << 433       }
534                                                   434 
535       /* *********************************        435       /* *********************************
536       fSplineEnergy          = new G4double[fM    436       fSplineEnergy          = new G4double[fMaxSplineSize];   
537       fRePartDielectricConst = new G4double[fM    437       fRePartDielectricConst = new G4double[fMaxSplineSize];   
538       fImPartDielectricConst = new G4double[fM    438       fImPartDielectricConst = new G4double[fMaxSplineSize];   
539       fIntegralTerm          = new G4double[fM    439       fIntegralTerm          = new G4double[fMaxSplineSize];   
540       fDifPAIxSection        = new G4double[fM    440       fDifPAIxSection        = new G4double[fMaxSplineSize];   
541       fIntegralPAIxSection   = new G4double[fM    441       fIntegralPAIxSection   = new G4double[fMaxSplineSize];   
542                                                   442       
543       for(i=0;i<fMaxSplineSize;i++)               443       for(i=0;i<fMaxSplineSize;i++)
544       {                                           444       {
545          fSplineEnergy[i]          = 0.0;         445          fSplineEnergy[i]          = 0.0;   
546          fRePartDielectricConst[i] = 0.0;         446          fRePartDielectricConst[i] = 0.0;   
547          fImPartDielectricConst[i] = 0.0;         447          fImPartDielectricConst[i] = 0.0;   
548          fIntegralTerm[i]          = 0.0;         448          fIntegralTerm[i]          = 0.0;   
549          fDifPAIxSection[i]        = 0.0;         449          fDifPAIxSection[i]        = 0.0;   
550          fIntegralPAIxSection[i]   = 0.0;         450          fIntegralPAIxSection[i]   = 0.0;   
551       }                                           451       }
552       */ ////////////////////////                 452       */ ////////////////////////
553                                                   453 
554       // Preparation of fSplineEnergy array co    454       // Preparation of fSplineEnergy array corresponding to min ionisation, G~4
                                                   >> 455       
                                                   >> 456       G4double   betaGammaSqRef = 
                                                   >> 457       fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1;
555                                                   458 
556   ComputeLowEnergyCof();                       << 459       NormShift(betaGammaSqRef);             
557   G4double   betaGammaSqRef =                  << 460       SplainPAI(betaGammaSqRef);
558     fLorentzFactor[fRefGammaNumber]*fLorentzFa << 
559                                                << 
560   NormShift(betaGammaSqRef);                   << 
561   SplainPAI(betaGammaSqRef);                   << 
562                                                   461       
563   // Preparation of integral PAI cross section << 462       // Preparation of integral PAI cross section for input betaGammaSq
564                                                   463    
565   for(i = 1; i <= fSplineNumber; i++)          << 464       for(i = 1; i <= fSplineNumber; i++)
566     {                                          << 465       {
567          fDifPAIxSection[i] = DifPAIxSection(i    466          fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq);
568          fdNdxCerenkov[i]   = PAIdNdxCerenkov(    467          fdNdxCerenkov[i]   = PAIdNdxCerenkov(i,betaGammaSq);
569          fdNdxMM[i]   = PAIdNdxMM(i,betaGammaS    468          fdNdxMM[i]   = PAIdNdxMM(i,betaGammaSq);
570          fdNdxPlasmon[i]    = PAIdNdxPlasmon(i    469          fdNdxPlasmon[i]    = PAIdNdxPlasmon(i,betaGammaSq);
571          fdNdxResonance[i]  = PAIdNdxResonance    470          fdNdxResonance[i]  = PAIdNdxResonance(i,betaGammaSq);
572     }                                          << 471       }
573   IntegralPAIxSection();                       << 472       IntegralPAIxSection();
574   IntegralCerenkov();                          << 473       IntegralCerenkov();
575   IntegralMM();                                << 474       IntegralMM();
576   IntegralPlasmon();                           << 475       IntegralPlasmon();
577   IntegralResonance();                         << 476       IntegralResonance();
                                                   >> 477       
                                                   >> 478       //   delete[] fEnergyInterval;
                                                   >> 479       delete[] fA1;
                                                   >> 480       delete[] fA2;
                                                   >> 481       delete[] fA3;
                                                   >> 482       delete[] fA4;    
578 }                                                 483 }
579                                                   484 
                                                   >> 485 
580 //////////////////////////////////////////////    486 ////////////////////////////////////////////////////////////////////////////
581 //                                                487 //
582 // Destructor                                     488 // Destructor
583                                                   489 
584 G4PAIxSection::~G4PAIxSection()                   490 G4PAIxSection::~G4PAIxSection()
585 {                                                 491 {
586    /* ************************                    492    /* ************************
587    delete[] fSplineEnergy         ;               493    delete[] fSplineEnergy         ;   
588    delete[] fRePartDielectricConst;               494    delete[] fRePartDielectricConst;   
589    delete[] fImPartDielectricConst;               495    delete[] fImPartDielectricConst;   
590    delete[] fIntegralTerm         ;               496    delete[] fIntegralTerm         ;   
591    delete[] fDifPAIxSection       ;               497    delete[] fDifPAIxSection       ;   
592    delete[] fIntegralPAIxSection  ;               498    delete[] fIntegralPAIxSection  ;
593    */ ////////////////////////                    499    */ ////////////////////////
594   delete fMatSandiaMatrix;                     << 
595 }                                              << 
596                                                << 
597 G4double G4PAIxSection::GetLorentzFactor(G4int << 
598 {                                              << 
599    return fLorentzFactor[j];                   << 
600 }                                              << 
601                                                << 
602 ////////////////////////////////////////////// << 
603 //                                             << 
604 // Constructor with beta*gamma square value ca << 
605                                                << 
606 void G4PAIxSection::Initialize( const G4Materi << 
607                                 G4double maxEn << 
608                                 G4double betaG << 
609                                 G4SandiaTable* << 
610 {                                              << 
611   if(fVerbose > 0)                             << 
612   {                                            << 
613     G4cout<<G4endl;                            << 
614     G4cout<<"G4PAIxSection::Initialize(...,G4S << 
615     G4cout<<G4endl;                            << 
616   }                                            << 
617   G4int i, j;                                  << 
618                                                << 
619   fSandia          = sandia;                   << 
620   fIntervalNumber  = sandia->GetMaxInterval(); << 
621   fDensity         = material->GetDensity();   << 
622   fElectronDensity = material->GetElectronDens << 
623                                                << 
624   // fIntervalNumber--;                        << 
625                                                << 
626   if( fVerbose > 0 )                           << 
627   {                                            << 
628     G4cout<<"fDensity = "<<fDensity<<"\t"<<fEl << 
629   }                                            << 
630   fEnergyInterval = G4DataVector(fIntervalNumb << 
631   fA1             = G4DataVector(fIntervalNumb << 
632   fA2             = G4DataVector(fIntervalNumb << 
633   fA3             = G4DataVector(fIntervalNumb << 
634   fA4             = G4DataVector(fIntervalNumb << 
635                                                << 
636   for( i = 1; i <= fIntervalNumber; i++ )      << 
637   {                                            << 
638     if ( sandia->GetSandiaMatTablePAI(i-1,0) < << 
639     {                                          << 
640       fIntervalNumber--;                       << 
641       continue;                                << 
642     }                                          << 
643     if( ( sandia->GetSandiaMatTablePAI(i-1,0)  << 
644     {                                          << 
645       fEnergyInterval[i] = maxEnergyTransfer;  << 
646       fIntervalNumber = i;                     << 
647       break;                                   << 
648     }                                          << 
649     fEnergyInterval[i] = sandia->GetSandiaMatT << 
650     fA1[i]             = sandia->GetSandiaMatT << 
651     fA2[i]             = sandia->GetSandiaMatT << 
652     fA3[i]             = sandia->GetSandiaMatT << 
653     fA4[i]             = sandia->GetSandiaMatT << 
654                                                << 
655       if( fVerbose > 0 )                       << 
656       {                                        << 
657         G4cout<<i<<"\t"<<fEnergyInterval[i]/ke << 
658              <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4e << 
659       }                                        << 
660   }                                            << 
661   if( fVerbose > 0 ) G4cout<<"last i = "<<i<<" << 
662                                                << 
663   if( fEnergyInterval[fIntervalNumber] != maxE << 
664   {                                            << 
665       fIntervalNumber++;                       << 
666       fEnergyInterval[fIntervalNumber] = maxEn << 
667   }                                            << 
668   if( fVerbose > 0 )                           << 
669   {                                            << 
670     for( i = 1; i <= fIntervalNumber; i++ )    << 
671     {                                          << 
672       G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 
673         <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl;  << 
674     }                                          << 
675   }                                            << 
676   if( fVerbose > 0 )    G4cout<<"Now checking, << 
677                                                << 
678   for( i = 1; i < fIntervalNumber; i++ )       << 
679   {                                            << 
680     if( fEnergyInterval[i+1]-fEnergyInterval[i << 
681          1.5*fDelta*(fEnergyInterval[i+1]+fEne << 
682     else                                       << 
683     {                                          << 
684       if( fVerbose > 0 )  G4cout<<i<<"\t"<<fEn << 
685                                                << 
686       for( j = i; j < fIntervalNumber; j++ )   << 
687       {                                        << 
688               fEnergyInterval[j] = fEnergyInte << 
689               fA1[j]             = fA1[j+1];   << 
690               fA2[j]             = fA2[j+1];   << 
691               fA3[j]             = fA3[j+1];   << 
692               fA4[j]             = fA4[j+1];   << 
693       }                                        << 
694       fIntervalNumber--;                       << 
695       i--;                                     << 
696     }                                          << 
697   }                                            << 
698   if( fVerbose > 0 )                           << 
699   {                                            << 
700     for( i = 1; i <= fIntervalNumber; i++ )    << 
701     {                                          << 
702       G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< << 
703         <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl;  << 
704     }                                          << 
705   }                                            << 
706   // Preparation of fSplineEnergy array corres << 
707                                                << 
708   ComputeLowEnergyCof(material);               << 
709                                                << 
710   G4double   betaGammaSqRef =                  << 
711     fLorentzFactor[fRefGammaNumber]*fLorentzFa << 
712                                                << 
713   NormShift(betaGammaSqRef);                   << 
714   SplainPAI(betaGammaSqRef);                   << 
715                                                << 
716   // Preparation of integral PAI cross section << 
717                                                << 
718   for( i = 1; i <= fSplineNumber; i++ )        << 
719   {                                            << 
720      fDifPAIxSection[i] = DifPAIxSection(i,bet << 
721                                                << 
722                                                << 
723      fdNdxCerenkov[i]   = PAIdNdxCerenkov(i,be << 
724      fdNdxMM[i]   = PAIdNdxMM(i,betaGammaSq);  << 
725      fdNdxPlasmon[i]    = PAIdNdxPlasmon(i,bet << 
726      fdNdxResonance[i]  = PAIdNdxResonance(i,b << 
727   }                                            << 
728   IntegralPAIxSection();                       << 
729   IntegralCerenkov();                          << 
730   IntegralMM();                                << 
731   IntegralPlasmon();                           << 
732   IntegralResonance();                         << 
733                                                << 
734   for( i = 1; i <= fSplineNumber; i++ )        << 
735   {                                            << 
736     if(fVerbose>0) G4cout<<i<<"; w = "<<fSplin << 
737   }                                            << 
738 }                                              << 
739                                                << 
740                                                << 
741 ////////////////////////////////////////////// << 
742 //                                             << 
743 // Compute low energy cof. It reduces PAI xsc  << 
744 //                                             << 
745                                                << 
746 void G4PAIxSection::ComputeLowEnergyCof(const  << 
747 {                                              << 
748   G4int i, numberOfElements = (G4int)material- << 
749   G4double sumZ = 0., sumCof = 0.;             << 
750                                                << 
751   static const G4double p0 =  1.20923e+00;     << 
752   static const G4double p1 =  3.53256e-01;     << 
753   static const G4double p2 = -1.45052e-03;     << 
754                                                << 
755   G4double* thisMaterialZ   = new G4double[num << 
756   G4double* thisMaterialCof = new G4double[num << 
757                                                << 
758   for( i = 0; i < numberOfElements; ++i )      << 
759   {                                            << 
760     thisMaterialZ[i] = material->GetElement(i) << 
761     sumZ += thisMaterialZ[i];                  << 
762     thisMaterialCof[i] = p0+p1*thisMaterialZ[i << 
763   }                                            << 
764   for( i = 0; i < numberOfElements; ++i )      << 
765   {                                            << 
766     sumCof += thisMaterialCof[i]*thisMaterialZ << 
767   }                                            << 
768   fLowEnergyCof = sumCof;                      << 
769   delete [] thisMaterialZ;                     << 
770   delete [] thisMaterialCof;                   << 
771   // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof << 
772 }                                              << 
773                                                << 
774 ////////////////////////////////////////////// << 
775 //                                             << 
776 // Compute low energy cof. It reduces PAI xsc  << 
777 //                                             << 
778                                                << 
779 void G4PAIxSection::ComputeLowEnergyCof()      << 
780 {                                              << 
781   const G4MaterialTable* theMaterialTable = G4 << 
782   G4int i, numberOfElements = (G4int)(*theMate << 
783   G4double sumZ = 0., sumCof = 0.;             << 
784                                                << 
785   const G4double p0 =  1.20923e+00;            << 
786   const G4double p1 =  3.53256e-01;            << 
787   const G4double p2 = -1.45052e-03;            << 
788                                                << 
789   G4double* thisMaterialZ   = new G4double[num << 
790   G4double* thisMaterialCof = new G4double[num << 
791                                                << 
792   for( i = 0; i < numberOfElements; ++i )      << 
793   {                                            << 
794     thisMaterialZ[i] = (*theMaterialTable)[fMa << 
795     sumZ += thisMaterialZ[i];                  << 
796     thisMaterialCof[i] = p0+p1*thisMaterialZ[i << 
797   }                                            << 
798   for( i = 0; i < numberOfElements; ++i )      << 
799   {                                            << 
800     sumCof += thisMaterialCof[i]*thisMaterialZ << 
801   }                                            << 
802   fLowEnergyCof = sumCof;                      << 
803   // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof << 
804   delete [] thisMaterialZ;                     << 
805   delete [] thisMaterialCof;                   << 
806 }                                                 500 }
807                                                   501 
808 //////////////////////////////////////////////    502 /////////////////////////////////////////////////////////////////////////
809 //                                                503 //
810 // General control function for class G4PAIxSe    504 // General control function for class G4PAIxSection
811 //                                                505 //
812                                                   506 
813 void G4PAIxSection::InitPAI()                     507 void G4PAIxSection::InitPAI()
814 {                                                 508 {    
815    G4int i;                                       509    G4int i;
816    G4double betaGammaSq = fLorentzFactor[fRefG    510    G4double betaGammaSq = fLorentzFactor[fRefGammaNumber]*
817                           fLorentzFactor[fRefG    511                           fLorentzFactor[fRefGammaNumber] - 1;
818                                                   512 
819    // Preparation of integral PAI cross sectio    513    // Preparation of integral PAI cross section for reference gamma
820                                                   514    
821    NormShift(betaGammaSq);                        515    NormShift(betaGammaSq);             
822    SplainPAI(betaGammaSq);                        516    SplainPAI(betaGammaSq);
823                                                   517 
824    IntegralPAIxSection();                         518    IntegralPAIxSection();
825    IntegralCerenkov();                            519    IntegralCerenkov();
826    IntegralMM();                                  520    IntegralMM();
827    IntegralPlasmon();                             521    IntegralPlasmon();
828    IntegralResonance();                           522    IntegralResonance();
829                                                   523 
830    for(i = 0; i<= fSplineNumber; i++)             524    for(i = 0; i<= fSplineNumber; i++)
831    {                                              525    {
832       fPAItable[i][fRefGammaNumber] = fIntegra    526       fPAItable[i][fRefGammaNumber] = fIntegralPAIxSection[i];
833       if(i != 0)                                  527       if(i != 0) 
834       {                                           528       {
835          fPAItable[i][0] = fSplineEnergy[i];   << 529    fPAItable[i][0] = fSplineEnergy[i];
836       }                                           530       }
837    }                                              531    }
838    fPAItable[0][0] = fSplineNumber;               532    fPAItable[0][0] = fSplineNumber;
839                                                   533    
840    for(G4int j = 1; j < 112; j++)       // for    534    for(G4int j = 1; j < 112; j++)       // for other gammas
841    {                                              535    {
842       if( j == fRefGammaNumber ) continue;        536       if( j == fRefGammaNumber ) continue;
843                                                   537       
844       betaGammaSq = fLorentzFactor[j]*fLorentz    538       betaGammaSq = fLorentzFactor[j]*fLorentzFactor[j] - 1;
845                                                   539       
846       for(i = 1; i <= fSplineNumber; i++)         540       for(i = 1; i <= fSplineNumber; i++)
847       {                                           541       {
848          fDifPAIxSection[i] = DifPAIxSection(i    542          fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq);
849          fdNdxCerenkov[i]   = PAIdNdxCerenkov(    543          fdNdxCerenkov[i]   = PAIdNdxCerenkov(i,betaGammaSq);
850          fdNdxMM[i]   = PAIdNdxMM(i,betaGammaS    544          fdNdxMM[i]   = PAIdNdxMM(i,betaGammaSq);
851          fdNdxPlasmon[i]    = PAIdNdxPlasmon(i    545          fdNdxPlasmon[i]    = PAIdNdxPlasmon(i,betaGammaSq);
852          fdNdxResonance[i]  = PAIdNdxResonance    546          fdNdxResonance[i]  = PAIdNdxResonance(i,betaGammaSq);
853       }                                           547       }
854       IntegralPAIxSection();                      548       IntegralPAIxSection();
855       IntegralCerenkov();                         549       IntegralCerenkov();
856       IntegralMM();                               550       IntegralMM();
857       IntegralPlasmon();                          551       IntegralPlasmon();
858       IntegralResonance();                        552       IntegralResonance();
859                                                   553       
860       for(i = 0; i <= fSplineNumber; i++)         554       for(i = 0; i <= fSplineNumber; i++)
861       {                                           555       {
862          fPAItable[i][j] = fIntegralPAIxSectio    556          fPAItable[i][j] = fIntegralPAIxSection[i];
863       }                                           557       }
864    }                                              558    } 
865                                                   559 
866 }                                                 560 }  
867                                                   561 
868 //////////////////////////////////////////////    562 ///////////////////////////////////////////////////////////////////////
869 //                                                563 //
870 // Shifting from borders to intervals Creation    564 // Shifting from borders to intervals Creation of first energy points
871 //                                                565 //
872                                                   566 
873 void G4PAIxSection::NormShift(G4double betaGam    567 void G4PAIxSection::NormShift(G4double betaGammaSq)
874 {                                                 568 {
875   G4int i, j;                                     569   G4int i, j;
876                                                   570 
877   if(fVerbose>0) G4cout<<"      G4PAIxSection: << 
878                                                << 
879                                                << 
880   for( i = 1; i <= fIntervalNumber-1; i++ )       571   for( i = 1; i <= fIntervalNumber-1; i++ )
881   {                                               572   {
882     for( j = 1; j <= 2; j++ )                     573     for( j = 1; j <= 2; j++ )
883     {                                             574     {
884       fSplineNumber = (i-1)*2 + j;                575       fSplineNumber = (i-1)*2 + j;
885                                                   576 
886       if( j == 1 ) fSplineEnergy[fSplineNumber    577       if( j == 1 ) fSplineEnergy[fSplineNumber] = fEnergyInterval[i  ]*(1+fDelta);
887       else         fSplineEnergy[fSplineNumber    578       else         fSplineEnergy[fSplineNumber] = fEnergyInterval[i+1]*(1-fDelta); 
888       if(fVerbose>0) G4cout<<"cn = "<<fSplineN << 579       //    G4cout<<"cn = "<<fSplineNumber<<"; "<<"energy = "
                                                   >> 580       //  <<fSplineEnergy[fSplineNumber]<<G4endl;
889     }                                             581     }
890   }                                               582   }
891   fIntegralTerm[1]=RutherfordIntegral(1,fEnerg    583   fIntegralTerm[1]=RutherfordIntegral(1,fEnergyInterval[1],fSplineEnergy[1]);
892                                                   584 
893   j = 1;                                          585   j = 1;
894                                                   586 
895   for( i = 2; i <= fSplineNumber; i++ )           587   for( i = 2; i <= fSplineNumber; i++ )
896   {                                               588   {
897     if( fSplineEnergy[i]<fEnergyInterval[j+1]  << 589     if(fSplineEnergy[i]<fEnergyInterval[j+1])
898     {                                             590     {
899          fIntegralTerm[i] = fIntegralTerm[i-1]    591          fIntegralTerm[i] = fIntegralTerm[i-1] + 
900                             RutherfordIntegral << 592                       RutherfordIntegral(j,fSplineEnergy[i-1],
901                                                   593                                                  fSplineEnergy[i]   );
902     }                                             594     }
903     else                                          595     else
904     {                                             596     {
905        G4double x = RutherfordIntegral(j,fSpli    597        G4double x = RutherfordIntegral(j,fSplineEnergy[i-1],
906                                            fEn    598                                            fEnergyInterval[j+1]   );
907          j++;                                     599          j++;
908          fIntegralTerm[i] = fIntegralTerm[i-1]    600          fIntegralTerm[i] = fIntegralTerm[i-1] + x + 
909                             RutherfordIntegral << 601                       RutherfordIntegral(j,fEnergyInterval[j],
910                                                   602                                                  fSplineEnergy[i]    );
911     }                                             603     }
912    if(fVerbose>0)  G4cout<<i<<"  Shift: w = "< << 604     // G4cout<<i<<"\t"<<fSplineEnergy[i]<<"\t"<<fIntegralTerm[i]<<"\n"<<G4endl;
913   }                                               605   } 
914   fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine    606   fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine_structure_const/electron_mass_c2;
915   fNormalizationCof *= fElectronDensity/fInteg    607   fNormalizationCof *= fElectronDensity/fIntegralTerm[fSplineNumber];
916                                                   608 
917   // G4cout<<"fNormalizationCof = "<<fNormaliz    609   // G4cout<<"fNormalizationCof = "<<fNormalizationCof<<G4endl;
918                                                   610 
919           // Calculation of PAI differrential  << 611     // Calculation of PAI differrential cross-section (1/(keV*cm))
920           // in the energy points near borders << 612     // in the energy points near borders of energy intervals
921                                                   613 
922    for(G4int k = 1; k <= fIntervalNumber-1; k+    614    for(G4int k = 1; k <= fIntervalNumber-1; k++ )
923    {                                              615    {
924       for( j = 1; j <= 2; j++ )                   616       for( j = 1; j <= 2; j++ )
925       {                                           617       {
926          i = (k-1)*2 + j;                         618          i = (k-1)*2 + j;
927          fImPartDielectricConst[i] = fNormaliz    619          fImPartDielectricConst[i] = fNormalizationCof*
928                                      ImPartDie << 620                                ImPartDielectricConst(k,fSplineEnergy[i]);
929          fRePartDielectricConst[i] = fNormaliz    621          fRePartDielectricConst[i] = fNormalizationCof*
930                                      RePartDie << 622                                RePartDielectricConst(fSplineEnergy[i]);
931          fIntegralTerm[i] *= fNormalizationCof    623          fIntegralTerm[i] *= fNormalizationCof;
932                                                   624 
933          fDifPAIxSection[i] = DifPAIxSection(i    625          fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq);
934          fdNdxCerenkov[i]   = PAIdNdxCerenkov(    626          fdNdxCerenkov[i]   = PAIdNdxCerenkov(i,betaGammaSq);
935          fdNdxMM[i]   = PAIdNdxMM(i,betaGammaS    627          fdNdxMM[i]   = PAIdNdxMM(i,betaGammaSq);
936          fdNdxPlasmon[i]    = PAIdNdxPlasmon(i    628          fdNdxPlasmon[i]    = PAIdNdxPlasmon(i,betaGammaSq);
937          fdNdxResonance[i]    = PAIdNdxResonan    629          fdNdxResonance[i]    = PAIdNdxResonance(i,betaGammaSq);
938    if(fVerbose>0)  G4cout<<i<<"  Shift: w = "< << 
939       }                                           630       }
940    }                                              631    }
941                                                   632 
942 }  // end of NormShift                            633 }  // end of NormShift 
943                                                   634 
944 //////////////////////////////////////////////    635 /////////////////////////////////////////////////////////////////////////
945 //                                                636 //
946 // Creation of new energy points as geometrica    637 // Creation of new energy points as geometrical mean of existing
947 // one, calculation PAI_cs for them, while the    638 // one, calculation PAI_cs for them, while the error of logarithmic
948 // linear approximation would be smaller than     639 // linear approximation would be smaller than 'fError'
949                                                   640 
950 void G4PAIxSection::SplainPAI(G4double betaGam    641 void G4PAIxSection::SplainPAI(G4double betaGammaSq)
951 {                                                 642 {
952   G4int j, k = 1, i = 1;                       << 643    G4int k = 1;
953                                                << 644    G4int i = 1;
954   if(fVerbose>0) G4cout<<"                   G << 
955                                                   645 
956   while ( (i < fSplineNumber) && (fSplineNumbe << 646    while ( (i < fSplineNumber) && (fSplineNumber < fMaxSplineSize-1) )
957   {                                            << 647    {
958      // if( std::abs(fSplineEnergy[i+1]-fEnerg << 648       if(fSplineEnergy[i+1] > fEnergyInterval[k+1])
959      if( fSplineEnergy[i+1] > fEnergyInterval[ << 649       {
960      {                                         << 
961           k++;   // Here next energy point is     650           k++;   // Here next energy point is in next energy interval
962           i++;                                 << 651     i++;
963           if(fVerbose>0) G4cout<<"             << 
964           continue;                               652           continue;
965      }                                         << 653       }
966      if(fVerbose>0) G4cout<<"       out if: i  << 654                  // Shifting of arrayes for inserting the geometrical 
967                                                << 655            // average of 'i' and 'i+1' energy points to 'i+1' place
968                         // Shifting of arrayes << 656       fSplineNumber++;
969                        // average of 'i' and ' << 
970      fSplineNumber++;                          << 
971                                                   657 
972      for( j = fSplineNumber; j >= i+2; j-- )   << 658       for(G4int j = fSplineNumber; j >= i+2; j-- )
973      {                                         << 659       {
974          fSplineEnergy[j]          = fSplineEn    660          fSplineEnergy[j]          = fSplineEnergy[j-1];
975          fImPartDielectricConst[j] = fImPartDi    661          fImPartDielectricConst[j] = fImPartDielectricConst[j-1];
976          fRePartDielectricConst[j] = fRePartDi << 662    fRePartDielectricConst[j] = fRePartDielectricConst[j-1];
977          fIntegralTerm[j]          = fIntegral << 663    fIntegralTerm[j]          = fIntegralTerm[j-1];
978                                                   664 
979          fDifPAIxSection[j] = fDifPAIxSection[ << 665    fDifPAIxSection[j] = fDifPAIxSection[j-1];
980          fdNdxCerenkov[j]   = fdNdxCerenkov[j-    666          fdNdxCerenkov[j]   = fdNdxCerenkov[j-1];
981          fdNdxMM[j]         = fdNdxMM[j-1];    << 667          fdNdxMM[j]   = fdNdxMM[j-1];
982          fdNdxPlasmon[j]    = fdNdxPlasmon[j-1    668          fdNdxPlasmon[j]    = fdNdxPlasmon[j-1];
983          fdNdxResonance[j]  = fdNdxResonance[j    669          fdNdxResonance[j]  = fdNdxResonance[j-1];
984      }                                         << 670       }
985       G4double x1  = fSplineEnergy[i];            671       G4double x1  = fSplineEnergy[i];
986       G4double x2  = fSplineEnergy[i+1];          672       G4double x2  = fSplineEnergy[i+1];
987       G4double yy1 = fDifPAIxSection[i];          673       G4double yy1 = fDifPAIxSection[i];
988       G4double y2  = fDifPAIxSection[i+1];        674       G4double y2  = fDifPAIxSection[i+1];
989                                                   675 
990       if(fVerbose>0) G4cout<<"Spline: x1 = "<< << 
991                                                << 
992                                                << 
993       G4double en1 = sqrt(x1*x2);                 676       G4double en1 = sqrt(x1*x2);
994       // G4double    en1 = 0.5*(x1 + x2);      << 
995                                                << 
996                                                << 
997       fSplineEnergy[i+1] = en1;                   677       fSplineEnergy[i+1] = en1;
998                                                   678 
999                  // Calculation of logarithmic << 679      // Calculation of logarithmic linear approximation
1000                  // in this (enr) energy poin << 680      // in this (enr) energy point, which number is 'i+1' now
1001                                                  681 
1002       G4double a = log10(y2/yy1)/log10(x2/x1)    682       G4double a = log10(y2/yy1)/log10(x2/x1);
1003       G4double b = log10(yy1) - a*log10(x1);     683       G4double b = log10(yy1) - a*log10(x1);
1004       G4double y = a*log10(en1) + b;             684       G4double y = a*log10(en1) + b;
1005                                               << 
1006       y = pow(10.,y);                            685       y = pow(10.,y);
1007                                                  686 
1008                  // Calculation of the PAI di << 687      // Calculation of the PAI dif. cross-section at this point
1009                                                  688 
1010       fImPartDielectricConst[i+1] = fNormaliz    689       fImPartDielectricConst[i+1] = fNormalizationCof*
1011                                     ImPartDie << 690                               ImPartDielectricConst(k,fSplineEnergy[i+1]);
1012       fRePartDielectricConst[i+1] = fNormaliz    691       fRePartDielectricConst[i+1] = fNormalizationCof*
1013                                     RePartDie << 692                               RePartDielectricConst(fSplineEnergy[i+1]);
1014       fIntegralTerm[i+1] = fIntegralTerm[i] +    693       fIntegralTerm[i+1] = fIntegralTerm[i] + fNormalizationCof*
1015                            RutherfordIntegral << 694                      RutherfordIntegral(k,fSplineEnergy[i],
1016                                                  695                                                 fSplineEnergy[i+1]);
1017                                                  696 
1018       fDifPAIxSection[i+1] = DifPAIxSection(i    697       fDifPAIxSection[i+1] = DifPAIxSection(i+1,betaGammaSq);
1019       fdNdxCerenkov[i+1]   = PAIdNdxCerenkov(    698       fdNdxCerenkov[i+1]   = PAIdNdxCerenkov(i+1,betaGammaSq);
1020       fdNdxMM[i+1]         = PAIdNdxMM(i+1,be << 699       fdNdxMM[i+1]   = PAIdNdxMM(i+1,betaGammaSq);
1021       fdNdxPlasmon[i+1]    = PAIdNdxPlasmon(i    700       fdNdxPlasmon[i+1]    = PAIdNdxPlasmon(i+1,betaGammaSq);
1022       fdNdxResonance[i+1]  = PAIdNdxResonance    701       fdNdxResonance[i+1]  = PAIdNdxResonance(i+1,betaGammaSq);
1023                                                  702 
1024                   // Condition for next divis << 703       // Condition for next division of this segment or to pass
1025                                               << 704       // to higher energies
1026     if(fVerbose>0) G4cout<<"Spline, a = "<<a< << 
1027                                               << 
1028                   // to higher energies       << 
1029                                                  705 
1030       G4double x = 2*(fDifPAIxSection[i+1] -     706       G4double x = 2*(fDifPAIxSection[i+1] - y)/(fDifPAIxSection[i+1] + y);
1031                                                  707 
1032       G4double delta = 2.*(fSplineEnergy[i+1] << 
1033                                               << 
1034       if( x < 0 )                                708       if( x < 0 ) 
1035       {                                          709       {
1036          x = -x;                              << 710    x = -x;
1037       }                                          711       }
1038       if( x > fError && fSplineNumber < fMaxS << 712       if( x > fError && fSplineNumber < fMaxSplineSize-1 )
1039       {                                          713       {
1040          continue;  // next division          << 714    continue;  // next division
1041       }                                          715       }
1042       i += 2;  // pass to next segment           716       i += 2;  // pass to next segment
1043                                                  717 
1044       // Loop checking, 03-Aug-2015, Vladimir << 718    }   // close 'while'
1045   }   // close 'while'                        << 
1046                                                  719 
1047 }  // end of SplainPAI                           720 }  // end of SplainPAI 
1048                                                  721 
1049                                                  722 
1050 /////////////////////////////////////////////    723 ////////////////////////////////////////////////////////////////////
1051 //                                               724 //
1052 // Integration over electrons that could be c    725 // Integration over electrons that could be considered
1053 // quasi-free at energy transfer of interest     726 // quasi-free at energy transfer of interest
1054                                                  727 
1055 G4double G4PAIxSection::RutherfordIntegral( G    728 G4double G4PAIxSection::RutherfordIntegral( G4int k,
1056                                             G << 729                     G4double x1,
1057                                               << 730                       G4double x2   )
1058 {                                                731 {
1059    G4double  c1, c2, c3;                         732    G4double  c1, c2, c3;
1060    // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<    733    // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;   
1061    c1 = (x2 - x1)/x1/x2;                         734    c1 = (x2 - x1)/x1/x2;
1062    c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2;         735    c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2;
1063    c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/    736    c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2;
1064    // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "    737    // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "<<c2<<"; "<<"c3 = "<<c3<<G4endl;   
1065                                                  738    
1066    return  fA1[k]*log(x2/x1) + fA2[k]*c1 + fA    739    return  fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3[k]*c2/2 + fA4[k]*c3/3;
1067                                                  740 
1068 }   // end of RutherfordIntegral                 741 }   // end of RutherfordIntegral 
1069                                                  742 
1070                                                  743 
1071 /////////////////////////////////////////////    744 /////////////////////////////////////////////////////////////////
1072 //                                               745 //
1073 // Imaginary part of dielectric constant         746 // Imaginary part of dielectric constant
1074 // (G4int k - interval number, G4double en1 -    747 // (G4int k - interval number, G4double en1 - energy point)
1075                                                  748 
1076 G4double G4PAIxSection::ImPartDielectricConst    749 G4double G4PAIxSection::ImPartDielectricConst( G4int    k ,
1077                                               << 750                              G4double energy1 )
1078 {                                                751 {
1079    G4double energy2,energy3,energy4,result;      752    G4double energy2,energy3,energy4,result;
1080                                                  753 
1081    energy2 = energy1*energy1;                    754    energy2 = energy1*energy1;
1082    energy3 = energy2*energy1;                    755    energy3 = energy2*energy1;
1083    energy4 = energy3*energy1;                    756    energy4 = energy3*energy1;
1084                                                  757    
1085    result = fA1[k]/energy1+fA2[k]/energy2+fA3    758    result = fA1[k]/energy1+fA2[k]/energy2+fA3[k]/energy3+fA4[k]/energy4;  
1086    result *=hbarc/energy1;                       759    result *=hbarc/energy1;
1087                                                  760    
1088    return result;                                761    return result;
1089                                                  762 
1090 }  // end of ImPartDielectricConst               763 }  // end of ImPartDielectricConst 
1091                                                  764 
1092 /////////////////////////////////////////////    765 /////////////////////////////////////////////////////////////////
1093 //                                               766 //
1094 // Returns lambda of photon with energy1 in c    767 // Returns lambda of photon with energy1 in current material 
1095                                                  768 
1096 G4double G4PAIxSection::GetPhotonRange( G4dou    769 G4double G4PAIxSection::GetPhotonRange( G4double energy1 )
1097 {                                                770 {
1098   G4int i;                                       771   G4int i;
1099   G4double energy2, energy3, energy4, result,    772   G4double energy2, energy3, energy4, result, lambda;
1100                                                  773 
1101   energy2 = energy1*energy1;                     774   energy2 = energy1*energy1;
1102   energy3 = energy2*energy1;                     775   energy3 = energy2*energy1;
1103   energy4 = energy3*energy1;                     776   energy4 = energy3*energy1;
1104                                                  777 
                                                   >> 778   // G4double* SandiaCof = fSandia->GetSandiaCofForMaterialPAI(energy1);
                                                   >> 779   // result = SandiaCof[0]/energy1+SandiaCof[1]/energy2+SandiaCof[2]/energy3+SandiaCof[3]/energy4;
                                                   >> 780   // result *= fDensity;
                                                   >> 781 
1105   for( i = 1; i <= fIntervalNumber; i++ )        782   for( i = 1; i <= fIntervalNumber; i++ )
1106   {                                              783   {
1107      if( energy1 < fEnergyInterval[i]) break;    784      if( energy1 < fEnergyInterval[i]) break;
1108   }                                              785   }
1109   i--;                                           786   i--;
1110   if(i == 0) i = 1;                              787   if(i == 0) i = 1;
1111                                                  788 
1112   result = fA1[i]/energy1+fA2[i]/energy2+fA3[    789   result = fA1[i]/energy1+fA2[i]/energy2+fA3[i]/energy3+fA4[i]/energy4;  
1113                                                  790 
1114   if( result > DBL_MIN ) lambda = 1./result;     791   if( result > DBL_MIN ) lambda = 1./result;
1115   else                   lambda = DBL_MAX;       792   else                   lambda = DBL_MAX;
1116                                                  793    
1117   return lambda;                                 794   return lambda;
1118 }                                                795 }  
1119                                                  796 
1120 /////////////////////////////////////////////    797 /////////////////////////////////////////////////////////////////
1121 //                                               798 //
1122 // Return lambda of electron with energy1 in     799 // Return lambda of electron with energy1 in current material
1123 // parametrisation from NIM A554(2005)474-493    800 // parametrisation from NIM A554(2005)474-493 
1124                                                  801 
1125 G4double G4PAIxSection::GetElectronRange( G4d    802 G4double G4PAIxSection::GetElectronRange( G4double energy )
1126 {                                                803 {
1127   G4double range;                                804   G4double range;
1128   /*                                             805   /*
1129   const G4MaterialTable* theMaterialTable = G    806   const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
1130                                                  807 
1131   G4double Z = (*theMaterialTable)[fMaterialI    808   G4double Z = (*theMaterialTable)[fMaterialIndex]->GetIonisation()->GetZeffective();
1132   G4double A = (*theMaterialTable)[fMaterialI    809   G4double A = (*theMaterialTable)[fMaterialIndex]->GetA();
1133                                                  810 
1134   energy /= keV; // energy in keV in parametr    811   energy /= keV; // energy in keV in parametrised formula
1135                                                  812 
1136   if (energy < 10.)                              813   if (energy < 10.)
1137   {                                              814   {
1138     range = 3.872e-3*A/Z;                        815     range = 3.872e-3*A/Z;
1139     range *= pow(energy,1.492);                  816     range *= pow(energy,1.492);
1140   }                                              817   }
1141   else                                           818   else
1142   {                                              819   {
1143     range = 6.97e-3*pow(energy,1.6);             820     range = 6.97e-3*pow(energy,1.6);
1144   }                                              821   }
1145   */                                             822   */
1146   // Blum&Rolandi Particle Detection with Dri    823   // Blum&Rolandi Particle Detection with Drift Chambers, p. 7
1147                                                  824 
1148   G4double cofA = 5.37e-4*g/cm2/keV;             825   G4double cofA = 5.37e-4*g/cm2/keV;
1149   G4double cofB = 0.9815;                        826   G4double cofB = 0.9815;
1150   G4double cofC = 3.123e-3/keV;                  827   G4double cofC = 3.123e-3/keV;
1151   // energy /= keV;                              828   // energy /= keV;
1152                                                  829 
1153   range = cofA*energy*( 1 - cofB/(1 + cofC*en    830   range = cofA*energy*( 1 - cofB/(1 + cofC*energy) ); 
1154                                                  831 
1155   // range *= g/cm2;                             832   // range *= g/cm2;
1156   range /= fDensity;                             833   range /= fDensity;
1157                                                  834 
1158   return range;                                  835   return range;
1159 }                                                836 }
1160                                                  837 
1161 /////////////////////////////////////////////    838 //////////////////////////////////////////////////////////////////////////////
1162 //                                               839 //
1163 // Real part of dielectric constant minus uni    840 // Real part of dielectric constant minus unit: epsilon_1 - 1
1164 // (G4double enb - energy point)                 841 // (G4double enb - energy point)
1165 //                                               842 //
1166                                                  843 
1167 G4double G4PAIxSection::RePartDielectricConst    844 G4double G4PAIxSection::RePartDielectricConst(G4double enb)
1168 {                                                845 {       
1169    G4double x0, x02, x03, x04, x05, x1, x2, x    846    G4double x0, x02, x03, x04, x05, x1, x2, xx1 ,xx2 , xx12,
1170             c1, c2, c3, cof1, cof2, xln1, xln    847             c1, c2, c3, cof1, cof2, xln1, xln2, xln3, result;
1171                                                  848 
1172    x0 = enb;                                     849    x0 = enb;
1173    result = 0;                                   850    result = 0;
1174                                                  851    
1175    for(G4int i=1;i<=fIntervalNumber-1;i++)       852    for(G4int i=1;i<=fIntervalNumber-1;i++)
1176    {                                             853    {
1177       x1 = fEnergyInterval[i];                   854       x1 = fEnergyInterval[i];
1178       x2 = fEnergyInterval[i+1];                 855       x2 = fEnergyInterval[i+1];
1179       xx1 = x1 - x0;                             856       xx1 = x1 - x0;
1180       xx2 = x2 - x0;                             857       xx2 = x2 - x0;
1181       xx12 = xx2/xx1;                            858       xx12 = xx2/xx1;
1182                                                  859       
1183       if(xx12<0)                                 860       if(xx12<0)
1184       {                                          861       {
1185          xx12 = -xx12;                        << 862    xx12 = -xx12;
1186       }                                          863       }
1187       xln1 = log(x2/x1);                         864       xln1 = log(x2/x1);
1188       xln2 = log(xx12);                          865       xln2 = log(xx12);
1189       xln3 = log((x2 + x0)/(x1 + x0));           866       xln3 = log((x2 + x0)/(x1 + x0));
1190       x02 = x0*x0;                               867       x02 = x0*x0;
1191       x03 = x02*x0;                              868       x03 = x02*x0;
1192       x04 = x03*x0;                              869       x04 = x03*x0;
1193       x05 = x04*x0;                              870       x05 = x04*x0;
1194       c1  = (x2 - x1)/x1/x2;                     871       c1  = (x2 - x1)/x1/x2;
1195       c2  = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2;      872       c2  = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2;
1196       c3  = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/    873       c3  = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2;
1197                                                  874 
1198       result -= (fA1[i]/x02 + fA3[i]/x04)*xln    875       result -= (fA1[i]/x02 + fA3[i]/x04)*xln1;
1199       result -= (fA2[i]/x02 + fA4[i]/x04)*c1;    876       result -= (fA2[i]/x02 + fA4[i]/x04)*c1;
1200       result -= fA3[i]*c2/2/x02;                 877       result -= fA3[i]*c2/2/x02;
1201       result -= fA4[i]*c3/3/x02;                 878       result -= fA4[i]*c3/3/x02;
1202                                                  879 
1203       cof1 = fA1[i]/x02 + fA3[i]/x04;            880       cof1 = fA1[i]/x02 + fA3[i]/x04;
1204       cof2 = fA2[i]/x03 + fA4[i]/x05;            881       cof2 = fA2[i]/x03 + fA4[i]/x05;
1205                                                  882 
1206       result += 0.5*(cof1 +cof2)*xln2;           883       result += 0.5*(cof1 +cof2)*xln2;
1207       result += 0.5*(cof1 - cof2)*xln3;          884       result += 0.5*(cof1 - cof2)*xln3;
1208    }                                             885    } 
1209    result *= 2*hbarc/pi;                         886    result *= 2*hbarc/pi;
1210                                                  887    
1211    return result;                                888    return result;
1212                                                  889 
1213 }   // end of RePartDielectricConst              890 }   // end of RePartDielectricConst 
1214                                                  891 
1215 /////////////////////////////////////////////    892 //////////////////////////////////////////////////////////////////////
1216 //                                               893 //
1217 // PAI differential cross-section in terms of    894 // PAI differential cross-section in terms of
1218 // simplified Allison's equation                 895 // simplified Allison's equation
1219 //                                               896 //
1220                                                  897 
1221 G4double G4PAIxSection::DifPAIxSection( G4int << 898 G4double G4PAIxSection::DifPAIxSection( G4int              i ,
                                                   >> 899                                         G4double betaGammaSq  )
1222 {                                                900 {        
1223    G4double cof,x1,x2,x3,x4,x5,x6,x7,x8,resul    901    G4double cof,x1,x2,x3,x4,x5,x6,x7,x8,result;
1224                                                  902 
1225    G4double betaBohr  = fine_structure_const;    903    G4double betaBohr  = fine_structure_const;
                                                   >> 904    // G4double betaBohr2 = fine_structure_const*fine_structure_const;
                                                   >> 905    // G4double betaBohr3 = betaBohr*betaBohr2; // *4.0;
                                                   >> 906 
1226    G4double be2  = betaGammaSq/(1 + betaGamma    907    G4double be2  = betaGammaSq/(1 + betaGammaSq);
1227    G4double beta = std::sqrt(be2);            << 908    G4double beta = sqrt(be2);
                                                   >> 909    // G4double be3 = beta*be2;
1228                                                  910 
1229    cof = 1.;                                     911    cof = 1.;
1230    x1  = std::log(2*electron_mass_c2/fSplineE << 912    x1  = log(2*electron_mass_c2/fSplineEnergy[i]);
1231                                                  913 
1232    if( betaGammaSq < 0.01 ) x2 = std::log(be2 << 914    if( betaGammaSq < 0.01 ) x2 = log(be2);
1233    else                                          915    else
1234    {                                             916    {
1235      x2 = -log( (1/betaGammaSq - fRePartDiele    917      x2 = -log( (1/betaGammaSq - fRePartDielectricConst[i])*
1236                 (1/betaGammaSq - fRePartDiele << 918           (1/betaGammaSq - fRePartDielectricConst[i]) + 
1237                 fImPartDielectricConst[i]*fIm << 919           fImPartDielectricConst[i]*fImPartDielectricConst[i] )/2;
1238    }                                             920    }
1239    if( fImPartDielectricConst[i] == 0.0 ||bet    921    if( fImPartDielectricConst[i] == 0.0 ||betaGammaSq < 0.01 )
1240    {                                             922    {
1241      x6 = 0.;                                    923      x6 = 0.;
1242    }                                             924    }
1243    else                                          925    else
1244    {                                             926    {
1245      x3 = -fRePartDielectricConst[i] + 1/beta    927      x3 = -fRePartDielectricConst[i] + 1/betaGammaSq;
1246      x5 = -1 - fRePartDielectricConst[i] +       928      x5 = -1 - fRePartDielectricConst[i] +
1247           be2*((1 +fRePartDielectricConst[i])    929           be2*((1 +fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) +
1248           fImPartDielectricConst[i]*fImPartDi << 930     fImPartDielectricConst[i]*fImPartDielectricConst[i]);
1249                                                  931 
1250      x7 = atan2(fImPartDielectricConst[i],x3)    932      x7 = atan2(fImPartDielectricConst[i],x3);
1251      x6 = x5 * x7;                               933      x6 = x5 * x7;
1252    }                                             934    }
                                                   >> 935     // if(fImPartDielectricConst[i] == 0) x6 = 0.;
1253                                                  936    
1254    x4 = ((x1 + x2)*fImPartDielectricConst[i]     937    x4 = ((x1 + x2)*fImPartDielectricConst[i] + x6)/hbarc;
1255                                                  938 
                                                   >> 939    //   if( x4 < 0.0 ) x4 = 0.0;
                                                   >> 940 
1256    x8 = (1 + fRePartDielectricConst[i])*(1 +     941    x8 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 
1257         fImPartDielectricConst[i]*fImPartDiel    942         fImPartDielectricConst[i]*fImPartDielectricConst[i];
1258                                                  943 
1259    result = (x4 + cof*fIntegralTerm[i]/fSplin    944    result = (x4 + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i]);
1260                                                  945 
1261    if( result < 1.0e-8 ) result = 1.0e-8;        946    if( result < 1.0e-8 ) result = 1.0e-8;
1262                                                  947 
1263    result *= fine_structure_const/be2/pi;        948    result *= fine_structure_const/be2/pi;
1264                                                  949 
1265    // low energy correction                      950    // low energy correction
1266                                                  951 
1267    G4double lowCof = fLowEnergyCof; // 6.0 ;  << 952    G4double lowCof = 4.0 ; // Ar ~ 4.; -> fLowCof as f(Z1,Z2)? 
                                                   >> 953 
                                                   >> 954    result *= (1 - exp(-beta/betaBohr/lowCof));
                                                   >> 955 
                                                   >> 956    // result *= (1 - exp(-be2/betaBohr2/lowCof));
                                                   >> 957 
                                                   >> 958    // result *= (1 - exp(-be3/betaBohr3/lowCof)); // ~ be for be<<betaBohr
                                                   >> 959 
                                                   >> 960    // result *= (1 - exp(-be4/betaBohr4/lowCof));
1268                                                  961 
1269    result *= (1 - std::exp(-beta/betaBohr/low << 962    if(fDensity >= 0.1)
1270    if(x8 >= 0.0)                              << 
1271    {                                             963    { 
1272      result /= x8;                            << 964       result /= x8;
1273    }                                             965    }
1274    return result;                                966    return result;
1275                                                  967 
1276 } // end of DifPAIxSection                       968 } // end of DifPAIxSection 
1277                                                  969 
1278 /////////////////////////////////////////////    970 //////////////////////////////////////////////////////////////////////////
1279 //                                               971 //
1280 // Calculation od dN/dx of collisions with cr    972 // Calculation od dN/dx of collisions with creation of Cerenkov pseudo-photons
1281                                                  973 
1282 G4double G4PAIxSection::PAIdNdxCerenkov( G4in    974 G4double G4PAIxSection::PAIdNdxCerenkov( G4int    i ,
1283                                          G4do    975                                          G4double betaGammaSq  )
1284 {                                                976 {        
1285    G4double logarithm, x3, x5, argument, modu    977    G4double logarithm, x3, x5, argument, modul2, dNdxC; 
1286    G4double be2, betaBohr2, cofBetaBohr;      << 978    G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr;
1287                                                  979 
1288    cofBetaBohr = 4.0;                            980    cofBetaBohr = 4.0;
1289    betaBohr2 = fine_structure_const*fine_stru << 981    betaBohr2   = fine_structure_const*fine_structure_const;
1290    G4double betaBohr4 = betaBohr2*betaBohr2*c << 982    betaBohr4   = betaBohr2*betaBohr2*cofBetaBohr;
1291                                                  983 
1292    be2 = betaGammaSq/(1 + betaGammaSq);          984    be2 = betaGammaSq/(1 + betaGammaSq);
1293    G4double be4 = be2*be2;                    << 985    be4 = be2*be2;
1294                                                  986 
1295    if( betaGammaSq < 0.01 ) logarithm = std:: << 987    if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq); // 0.0;
1296    else                                          988    else
1297    {                                             989    {
1298      logarithm  = -log( (1/betaGammaSq - fReP    990      logarithm  = -log( (1/betaGammaSq - fRePartDielectricConst[i])*
1299                         (1/betaGammaSq - fReP << 991                   (1/betaGammaSq - fRePartDielectricConst[i]) + 
1300                         fImPartDielectricCons << 992                   fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5;
1301      logarithm += log(1+1.0/betaGammaSq);        993      logarithm += log(1+1.0/betaGammaSq);
1302    }                                             994    }
1303                                                  995 
1304    if( fImPartDielectricConst[i] == 0.0 || be    996    if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 )
1305    {                                             997    {
1306      argument = 0.0;                             998      argument = 0.0;
1307    }                                             999    }
1308    else                                          1000    else
1309    {                                             1001    {
1310      x3 = -fRePartDielectricConst[i] + 1.0/be    1002      x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq;
1311      x5 = -1.0 - fRePartDielectricConst[i] +     1003      x5 = -1.0 - fRePartDielectricConst[i] +
1312           be2*((1.0 +fRePartDielectricConst[i    1004           be2*((1.0 +fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) +
1313           fImPartDielectricConst[i]*fImPartDi << 1005     fImPartDielectricConst[i]*fImPartDielectricConst[i]);
1314      if( x3 == 0.0 ) argument = 0.5*pi;          1006      if( x3 == 0.0 ) argument = 0.5*pi;
1315      else            argument = std::atan2(fI << 1007      else            argument = atan2(fImPartDielectricConst[i],x3);
1316      argument *= x5 ;                            1008      argument *= x5 ;
1317    }                                             1009    }   
1318    dNdxC = ( logarithm*fImPartDielectricConst    1010    dNdxC = ( logarithm*fImPartDielectricConst[i] + argument )/hbarc;
1319                                                  1011   
1320    if(dNdxC < 1.0e-8) dNdxC = 1.0e-8;            1012    if(dNdxC < 1.0e-8) dNdxC = 1.0e-8;
1321                                                  1013 
1322    dNdxC *= fine_structure_const/be2/pi;         1014    dNdxC *= fine_structure_const/be2/pi;
1323                                                  1015 
1324    dNdxC *= (1-std::exp(-be4/betaBohr4));     << 1016    dNdxC *= (1-exp(-be4/betaBohr4));
1325                                                  1017 
1326    modul2 = (1.0 + fRePartDielectricConst[i]) << 1018    if(fDensity >= 0.1)
1327      fImPartDielectricConst[i]*fImPartDielect << 
1328    if(modul2 >= 0.0)                          << 
1329    {                                             1019    { 
1330      dNdxC /= modul2;                         << 1020       modul2 = (1.0 + fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + 
                                                   >> 1021                     fImPartDielectricConst[i]*fImPartDielectricConst[i];
                                                   >> 1022       dNdxC /= modul2;
1331    }                                             1023    }
1332    return dNdxC;                                 1024    return dNdxC;
1333                                                  1025 
1334 } // end of PAIdNdxCerenkov                      1026 } // end of PAIdNdxCerenkov 
1335                                                  1027 
1336 /////////////////////////////////////////////    1028 //////////////////////////////////////////////////////////////////////////
1337 //                                               1029 //
1338 // Calculation od dN/dx of collisions of MM w    1030 // Calculation od dN/dx of collisions of MM with creation of Cerenkov pseudo-photons
1339                                                  1031 
1340 G4double G4PAIxSection::PAIdNdxMM( G4int    i    1032 G4double G4PAIxSection::PAIdNdxMM( G4int    i ,
1341                                          G4do    1033                                          G4double betaGammaSq  )
1342 {                                                1034 {        
1343    G4double logarithm, x3, x5, argument, dNdx    1035    G4double logarithm, x3, x5, argument, dNdxC; 
1344    G4double be2, be4, betaBohr2,betaBohr4,cof    1036    G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr;
1345                                                  1037 
1346    cofBetaBohr = 4.0;                            1038    cofBetaBohr = 4.0;
1347    betaBohr2   = fine_structure_const*fine_st    1039    betaBohr2   = fine_structure_const*fine_structure_const;
1348    betaBohr4   = betaBohr2*betaBohr2*cofBetaB    1040    betaBohr4   = betaBohr2*betaBohr2*cofBetaBohr;
1349                                                  1041 
1350    be2 = betaGammaSq/(1 + betaGammaSq);          1042    be2 = betaGammaSq/(1 + betaGammaSq);
1351    be4 = be2*be2;                                1043    be4 = be2*be2;
1352                                                  1044 
1353    if( betaGammaSq < 0.01 ) logarithm = log(1    1045    if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq); // 0.0;
1354    else                                          1046    else
1355    {                                             1047    {
1356      logarithm  = -log( (1/betaGammaSq - fReP    1048      logarithm  = -log( (1/betaGammaSq - fRePartDielectricConst[i])*
1357                         (1/betaGammaSq - fReP << 1049                   (1/betaGammaSq - fRePartDielectricConst[i]) + 
1358                         fImPartDielectricCons << 1050                   fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5;
1359      logarithm += log(1+1.0/betaGammaSq);        1051      logarithm += log(1+1.0/betaGammaSq);
1360    }                                             1052    }
1361                                                  1053 
1362    if( fImPartDielectricConst[i] == 0.0 || be    1054    if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 )
1363    {                                             1055    {
1364      argument = 0.0;                             1056      argument = 0.0;
1365    }                                             1057    }
1366    else                                          1058    else
1367    {                                             1059    {
1368      x3 = -fRePartDielectricConst[i] + 1.0/be    1060      x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq;
1369      x5 = be2*( 1.0 + fRePartDielectricConst[    1061      x5 = be2*( 1.0 + fRePartDielectricConst[i] ) - 1.0;
1370      if( x3 == 0.0 ) argument = 0.5*pi;          1062      if( x3 == 0.0 ) argument = 0.5*pi;
1371      else            argument = atan2(fImPart    1063      else            argument = atan2(fImPartDielectricConst[i],x3);
1372      argument *= x5 ;                            1064      argument *= x5 ;
1373    }                                             1065    }   
1374    dNdxC = ( logarithm*fImPartDielectricConst    1066    dNdxC = ( logarithm*fImPartDielectricConst[i]*be2 + argument )/hbarc;
1375                                                  1067   
1376    if(dNdxC < 1.0e-8) dNdxC = 1.0e-8;            1068    if(dNdxC < 1.0e-8) dNdxC = 1.0e-8;
1377                                                  1069 
1378    dNdxC *= fine_structure_const/be2/pi;         1070    dNdxC *= fine_structure_const/be2/pi;
1379                                                  1071 
1380    dNdxC *= (1-std::exp(-be4/betaBohr4));     << 1072    dNdxC *= (1-exp(-be4/betaBohr4));
1381    return dNdxC;                                 1073    return dNdxC;
1382                                                  1074 
1383 } // end of PAIdNdxMM                            1075 } // end of PAIdNdxMM 
1384                                                  1076 
1385 /////////////////////////////////////////////    1077 //////////////////////////////////////////////////////////////////////////
1386 //                                               1078 //
1387 // Calculation od dN/dx of collisions with cr    1079 // Calculation od dN/dx of collisions with creation of longitudinal EM
1388 // excitations (plasmons, delta-electrons)       1080 // excitations (plasmons, delta-electrons)
1389                                                  1081 
1390 G4double G4PAIxSection::PAIdNdxPlasmon( G4int    1082 G4double G4PAIxSection::PAIdNdxPlasmon( G4int    i ,
1391                                         G4dou    1083                                         G4double betaGammaSq  )
1392 {                                                1084 {        
1393    G4double resonance, modul2, dNdxP, cof = 1    1085    G4double resonance, modul2, dNdxP, cof = 1.;
1394    G4double be2, betaBohr;                    << 1086    G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr;
                                                   >> 1087 
1395                                                  1088   
1396    betaBohr   = fine_structure_const;         << 1089    cofBetaBohr = 4.0;
1397    be2 = betaGammaSq/(1 + betaGammaSq);       << 1090    betaBohr2   = fine_structure_const*fine_structure_const;
                                                   >> 1091    betaBohr4   = betaBohr2*betaBohr2*cofBetaBohr;
1398                                                  1092 
1399    G4double beta = std::sqrt(be2);            << 1093    be2 = betaGammaSq/(1 + betaGammaSq);
                                                   >> 1094    be4 = be2*be2;
1400                                                  1095  
1401    resonance = std::log(2*electron_mass_c2*be << 1096    resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]);  
1402    resonance *= fImPartDielectricConst[i]/hba    1097    resonance *= fImPartDielectricConst[i]/hbarc;
1403                                                  1098 
                                                   >> 1099 
1404    dNdxP = ( resonance + cof*fIntegralTerm[i]    1100    dNdxP = ( resonance + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i] );
1405                                                  1101 
1406    if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8;          1102    if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8;
1407                                                  1103 
1408    dNdxP *= fine_structure_const/be2/pi;         1104    dNdxP *= fine_structure_const/be2/pi;
                                                   >> 1105    dNdxP *= (1-exp(-be4/betaBohr4));
1409                                                  1106 
1410    dNdxP  *= (1 - std::exp(-beta/betaBohr/fLo << 1107    if( fDensity >= 0.1 )
1411                                               << 
1412    modul2 = (1 + fRePartDielectricConst[i])*( << 
1413      fImPartDielectricConst[i]*fImPartDielect << 
1414    if( modul2 >= 0.0 )                        << 
1415    {                                             1108    { 
                                                   >> 1109      modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 
                                                   >> 1110         fImPartDielectricConst[i]*fImPartDielectricConst[i];
1416      dNdxP /= modul2;                            1111      dNdxP /= modul2;
1417    }                                             1112    }
1418    return dNdxP;                                 1113    return dNdxP;
1419                                                  1114 
1420 } // end of PAIdNdxPlasmon                       1115 } // end of PAIdNdxPlasmon 
1421                                                  1116 
1422 /////////////////////////////////////////////    1117 //////////////////////////////////////////////////////////////////////////
1423 //                                               1118 //
1424 // Calculation od dN/dx of collisions with cr    1119 // Calculation od dN/dx of collisions with creation of longitudinal EM
1425 // resonance excitations (plasmons, delta-ele    1120 // resonance excitations (plasmons, delta-electrons)
1426                                                  1121 
1427 G4double G4PAIxSection::PAIdNdxResonance( G4i    1122 G4double G4PAIxSection::PAIdNdxResonance( G4int    i ,
1428                                         G4dou    1123                                         G4double betaGammaSq  )
1429 {                                                1124 {        
1430    G4double resonance, modul2, dNdxP;            1125    G4double resonance, modul2, dNdxP;
1431    G4double be2, be4, betaBohr2, betaBohr4, c    1126    G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr;
1432                                                  1127 
1433    cofBetaBohr = 4.0;                            1128    cofBetaBohr = 4.0;
1434    betaBohr2   = fine_structure_const*fine_st    1129    betaBohr2   = fine_structure_const*fine_structure_const;
1435    betaBohr4   = betaBohr2*betaBohr2*cofBetaB    1130    betaBohr4   = betaBohr2*betaBohr2*cofBetaBohr;
1436                                                  1131 
1437    be2 = betaGammaSq/(1 + betaGammaSq);          1132    be2 = betaGammaSq/(1 + betaGammaSq);
1438    be4 = be2*be2;                                1133    be4 = be2*be2;
1439                                                  1134  
1440    resonance = log(2*electron_mass_c2*be2/fSp    1135    resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]);  
1441    resonance *= fImPartDielectricConst[i]/hba    1136    resonance *= fImPartDielectricConst[i]/hbarc;
1442                                                  1137 
                                                   >> 1138 
1443    dNdxP = resonance;                            1139    dNdxP = resonance;
1444                                                  1140 
1445    if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8;          1141    if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8;
1446                                                  1142 
1447    dNdxP *= fine_structure_const/be2/pi;         1143    dNdxP *= fine_structure_const/be2/pi;
1448    dNdxP *= (1 - std::exp(-be4/betaBohr4));   << 1144    dNdxP *= (1-exp(-be4/betaBohr4));
1449                                                  1145 
1450    modul2 = (1 + fRePartDielectricConst[i])*( << 1146    if( fDensity >= 0.1 )
1451      fImPartDielectricConst[i]*fImPartDielect << 
1452    if( modul2 >= 0.0 )                        << 
1453    {                                             1147    { 
                                                   >> 1148      modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 
                                                   >> 1149         fImPartDielectricConst[i]*fImPartDielectricConst[i];
1454      dNdxP /= modul2;                            1150      dNdxP /= modul2;
1455    }                                             1151    }
1456    return dNdxP;                                 1152    return dNdxP;
1457                                                  1153 
1458 } // end of PAIdNdxResonance                     1154 } // end of PAIdNdxResonance 
1459                                                  1155 
1460 /////////////////////////////////////////////    1156 ////////////////////////////////////////////////////////////////////////
1461 //                                               1157 //
1462 // Calculation of the PAI integral cross-sect    1158 // Calculation of the PAI integral cross-section
1463 // fIntegralPAIxSection[1] = specific primary    1159 // fIntegralPAIxSection[1] = specific primary ionisation, 1/cm
1464 // and fIntegralPAIxSection[0] = mean energy     1160 // and fIntegralPAIxSection[0] = mean energy loss per cm  in keV/cm
1465                                                  1161 
1466 void G4PAIxSection::IntegralPAIxSection()        1162 void G4PAIxSection::IntegralPAIxSection()
1467 {                                                1163 {
1468   fIntegralPAIxSection[fSplineNumber] = 0;       1164   fIntegralPAIxSection[fSplineNumber] = 0;
1469   fIntegralPAIdEdx[fSplineNumber]     = 0;       1165   fIntegralPAIdEdx[fSplineNumber]     = 0;
1470   fIntegralPAIxSection[0]             = 0;       1166   fIntegralPAIxSection[0]             = 0;
1471   G4int i, k = fIntervalNumber -1;            << 1167   G4int k = fIntervalNumber -1;
1472                                                  1168 
1473   for( i = fSplineNumber-1; i >= 1; i--)      << 1169   for(G4int i = fSplineNumber-1; i >= 1; i--)
1474   {                                              1170   {
1475     if(fSplineEnergy[i] >= fEnergyInterval[k]    1171     if(fSplineEnergy[i] >= fEnergyInterval[k])
1476     {                                            1172     {
1477       fIntegralPAIxSection[i] = fIntegralPAIx    1173       fIntegralPAIxSection[i] = fIntegralPAIxSection[i+1] + SumOverInterval(i);
1478       fIntegralPAIdEdx[i] = fIntegralPAIdEdx[    1174       fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + SumOverIntervaldEdx(i);
1479     }                                            1175     }
1480     else                                         1176     else
1481     {                                            1177     {
1482       fIntegralPAIxSection[i] = fIntegralPAIx    1178       fIntegralPAIxSection[i] = fIntegralPAIxSection[i+1] + 
1483                                    SumOverBor << 1179                              SumOverBorder(i+1,fEnergyInterval[k]);
1484       fIntegralPAIdEdx[i] = fIntegralPAIdEdx[    1180       fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + 
1485                                    SumOverBor << 1181                              SumOverBorderdEdx(i+1,fEnergyInterval[k]);
1486       k--;                                       1182       k--;
1487     }                                            1183     }
1488     if(fVerbose>0) G4cout<<"i = "<<i<<"; k =  << 
1489   }                                              1184   }
1490 }   // end of IntegralPAIxSection                1185 }   // end of IntegralPAIxSection 
1491                                                  1186 
1492 /////////////////////////////////////////////    1187 ////////////////////////////////////////////////////////////////////////
1493 //                                               1188 //
1494 // Calculation of the PAI Cerenkov integral c    1189 // Calculation of the PAI Cerenkov integral cross-section
1495 // fIntegralCrenkov[1] = specific Crenkov ion    1190 // fIntegralCrenkov[1] = specific Crenkov ionisation, 1/cm
1496 // and fIntegralCerenkov[0] = mean Cerenkov l    1191 // and fIntegralCerenkov[0] = mean Cerenkov loss per cm  in keV/cm
1497                                                  1192 
1498 void G4PAIxSection::IntegralCerenkov()           1193 void G4PAIxSection::IntegralCerenkov()
1499 {                                                1194 {
1500   G4int i, k;                                    1195   G4int i, k;
1501    fIntegralCerenkov[fSplineNumber] = 0;         1196    fIntegralCerenkov[fSplineNumber] = 0;
1502    fIntegralCerenkov[0] = 0;                     1197    fIntegralCerenkov[0] = 0;
1503    k = fIntervalNumber -1;                       1198    k = fIntervalNumber -1;
1504                                                  1199 
1505    for( i = fSplineNumber-1; i >= 1; i-- )       1200    for( i = fSplineNumber-1; i >= 1; i-- )
1506    {                                             1201    {
1507       if(fSplineEnergy[i] >= fEnergyInterval[    1202       if(fSplineEnergy[i] >= fEnergyInterval[k])
1508       {                                          1203       {
1509         fIntegralCerenkov[i] = fIntegralCeren    1204         fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + SumOverInterCerenkov(i);
1510         // G4cout<<"int: i = "<<i<<"; sumC =  << 1205   // G4cout<<"int: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl;
1511       }                                          1206       }
1512       else                                       1207       else
1513       {                                          1208       {
1514         fIntegralCerenkov[i] = fIntegralCeren    1209         fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + 
1515                                    SumOverBor << 1210                              SumOverBordCerenkov(i+1,fEnergyInterval[k]);
1516         k--;                                  << 1211   k--;
1517         // G4cout<<"bord: i = "<<i<<"; sumC = << 1212   // G4cout<<"bord: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl;
1518       }                                          1213       }
1519    }                                             1214    }
1520                                                  1215 
1521 }   // end of IntegralCerenkov                   1216 }   // end of IntegralCerenkov 
1522                                                  1217 
1523 /////////////////////////////////////////////    1218 ////////////////////////////////////////////////////////////////////////
1524 //                                               1219 //
1525 // Calculation of the PAI MM-Cerenkov integra    1220 // Calculation of the PAI MM-Cerenkov integral cross-section
1526 // fIntegralMM[1] = specific MM-Cerenkov ioni    1221 // fIntegralMM[1] = specific MM-Cerenkov ionisation, 1/cm
1527 // and fIntegralMM[0] = mean MM-Cerenkov loss    1222 // and fIntegralMM[0] = mean MM-Cerenkov loss per cm  in keV/cm
1528                                                  1223 
1529 void G4PAIxSection::IntegralMM()                 1224 void G4PAIxSection::IntegralMM()
1530 {                                                1225 {
1531   G4int i, k;                                    1226   G4int i, k;
1532    fIntegralMM[fSplineNumber] = 0;               1227    fIntegralMM[fSplineNumber] = 0;
1533    fIntegralMM[0] = 0;                           1228    fIntegralMM[0] = 0;
1534    k = fIntervalNumber -1;                       1229    k = fIntervalNumber -1;
1535                                                  1230 
1536    for( i = fSplineNumber-1; i >= 1; i-- )       1231    for( i = fSplineNumber-1; i >= 1; i-- )
1537    {                                             1232    {
1538       if(fSplineEnergy[i] >= fEnergyInterval[    1233       if(fSplineEnergy[i] >= fEnergyInterval[k])
1539       {                                          1234       {
1540         fIntegralMM[i] = fIntegralMM[i+1] + S    1235         fIntegralMM[i] = fIntegralMM[i+1] + SumOverInterMM(i);
1541         // G4cout<<"int: i = "<<i<<"; sumC =  << 1236   // G4cout<<"int: i = "<<i<<"; sumC = "<<fIntegralMM[i]<<G4endl;
1542       }                                          1237       }
1543       else                                       1238       else
1544       {                                          1239       {
1545         fIntegralMM[i] = fIntegralMM[i+1] +      1240         fIntegralMM[i] = fIntegralMM[i+1] + 
1546                                    SumOverBor << 1241                              SumOverBordMM(i+1,fEnergyInterval[k]);
1547         k--;                                  << 1242   k--;
1548         // G4cout<<"bord: i = "<<i<<"; sumC = << 1243   // G4cout<<"bord: i = "<<i<<"; sumC = "<<fIntegralMM[i]<<G4endl;
1549       }                                          1244       }
1550    }                                             1245    }
1551                                                  1246 
1552 }   // end of IntegralMM                         1247 }   // end of IntegralMM 
1553                                                  1248 
1554 /////////////////////////////////////////////    1249 ////////////////////////////////////////////////////////////////////////
1555 //                                               1250 //
1556 // Calculation of the PAI Plasmon integral cr    1251 // Calculation of the PAI Plasmon integral cross-section
1557 // fIntegralPlasmon[1] = splasmon primary ion    1252 // fIntegralPlasmon[1] = splasmon primary ionisation, 1/cm
1558 // and fIntegralPlasmon[0] = mean plasmon los    1253 // and fIntegralPlasmon[0] = mean plasmon loss per cm  in keV/cm
1559                                                  1254 
1560 void G4PAIxSection::IntegralPlasmon()            1255 void G4PAIxSection::IntegralPlasmon()
1561 {                                                1256 {
1562    fIntegralPlasmon[fSplineNumber] = 0;          1257    fIntegralPlasmon[fSplineNumber] = 0;
1563    fIntegralPlasmon[0] = 0;                      1258    fIntegralPlasmon[0] = 0;
1564    G4int k = fIntervalNumber -1;                 1259    G4int k = fIntervalNumber -1;
1565    for(G4int i=fSplineNumber-1;i>=1;i--)         1260    for(G4int i=fSplineNumber-1;i>=1;i--)
1566    {                                             1261    {
1567       if(fSplineEnergy[i] >= fEnergyInterval[    1262       if(fSplineEnergy[i] >= fEnergyInterval[k])
1568       {                                          1263       {
1569         fIntegralPlasmon[i] = fIntegralPlasmo    1264         fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + SumOverInterPlasmon(i);
1570       }                                          1265       }
1571       else                                       1266       else
1572       {                                          1267       {
1573         fIntegralPlasmon[i] = fIntegralPlasmo    1268         fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + 
1574                                    SumOverBor << 1269                              SumOverBordPlasmon(i+1,fEnergyInterval[k]);
1575         k--;                                  << 1270   k--;
1576       }                                          1271       }
1577    }                                             1272    }
1578                                                  1273 
1579 }   // end of IntegralPlasmon                    1274 }   // end of IntegralPlasmon
1580                                                  1275 
1581 /////////////////////////////////////////////    1276 ////////////////////////////////////////////////////////////////////////
1582 //                                               1277 //
1583 // Calculation of the PAI resonance integral     1278 // Calculation of the PAI resonance integral cross-section
1584 // fIntegralResonance[1] = resonance primary     1279 // fIntegralResonance[1] = resonance primary ionisation, 1/cm
1585 // and fIntegralResonance[0] = mean resonance    1280 // and fIntegralResonance[0] = mean resonance loss per cm  in keV/cm
1586                                                  1281 
1587 void G4PAIxSection::IntegralResonance()          1282 void G4PAIxSection::IntegralResonance()
1588 {                                                1283 {
1589    fIntegralResonance[fSplineNumber] = 0;        1284    fIntegralResonance[fSplineNumber] = 0;
1590    fIntegralResonance[0] = 0;                    1285    fIntegralResonance[0] = 0;
1591    G4int k = fIntervalNumber -1;                 1286    G4int k = fIntervalNumber -1;
1592    for(G4int i=fSplineNumber-1;i>=1;i--)         1287    for(G4int i=fSplineNumber-1;i>=1;i--)
1593    {                                             1288    {
1594       if(fSplineEnergy[i] >= fEnergyInterval[    1289       if(fSplineEnergy[i] >= fEnergyInterval[k])
1595       {                                          1290       {
1596         fIntegralResonance[i] = fIntegralReso    1291         fIntegralResonance[i] = fIntegralResonance[i+1] + SumOverInterResonance(i);
1597       }                                          1292       }
1598       else                                       1293       else
1599       {                                          1294       {
1600         fIntegralResonance[i] = fIntegralReso    1295         fIntegralResonance[i] = fIntegralResonance[i+1] + 
1601                                    SumOverBor << 1296                              SumOverBordResonance(i+1,fEnergyInterval[k]);
1602         k--;                                  << 1297   k--;
1603       }                                          1298       }
1604    }                                             1299    }
1605                                                  1300 
1606 }   // end of IntegralResonance                  1301 }   // end of IntegralResonance
1607                                                  1302 
1608 /////////////////////////////////////////////    1303 //////////////////////////////////////////////////////////////////////
1609 //                                               1304 //
1610 // Calculation the PAI integral cross-section    1305 // Calculation the PAI integral cross-section inside
1611 // of interval of continuous values of photo-    1306 // of interval of continuous values of photo-ionisation
1612 // cross-section. Parameter  'i' is the numbe    1307 // cross-section. Parameter  'i' is the number of interval.
1613                                                  1308 
1614 G4double G4PAIxSection::SumOverInterval( G4in    1309 G4double G4PAIxSection::SumOverInterval( G4int i )
1615 {                                                1310 {         
1616    G4double x0,x1,y0,yy1,a,b,c,result;           1311    G4double x0,x1,y0,yy1,a,b,c,result;
1617                                                  1312 
1618    x0 = fSplineEnergy[i];                        1313    x0 = fSplineEnergy[i];
1619    x1 = fSplineEnergy[i+1];                      1314    x1 = fSplineEnergy[i+1];
1620    if(fVerbose>0) G4cout<<"SumOverInterval i= << 
1621                                               << 
1622    if( x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/( << 
1623                                               << 
1624    y0 = fDifPAIxSection[i];                      1315    y0 = fDifPAIxSection[i];
1625    yy1 = fDifPAIxSection[i+1];                   1316    yy1 = fDifPAIxSection[i+1];
1626                                               << 
1627    if(fVerbose>0) G4cout<<"x0 = "<<x0<<"; x1  << 
1628                                               << 
1629    c = x1/x0;                                    1317    c = x1/x0;
1630    a = log10(yy1/y0)/log10(c);                   1318    a = log10(yy1/y0)/log10(c);
1631                                               << 1319    // b = log10(y0) - a*log10(x0);
1632    if(fVerbose>0) G4cout<<"SumOverInterval, a << 1320    b = y0/pow(x0,a);
1633                                               << 
1634    b = 0.0;                                   << 
1635    if(a < 20.) b = y0/pow(x0,a);              << 
1636                                               << 
1637    a += 1.;                                      1321    a += 1.;
1638    if( std::abs(a) < 1.e-6 )                  << 1322    if( std::fabs(a) < 1.e-6 ) 
1639    {                                             1323    {
1640       result = b*log(x1/x0);                     1324       result = b*log(x1/x0);
1641    }                                             1325    }
1642    else                                          1326    else
1643    {                                             1327    {
1644       result = y0*(x1*pow(c,a-1) - x0)/a;        1328       result = y0*(x1*pow(c,a-1) - x0)/a;
1645    }                                             1329    }
1646    a += 1.;                                      1330    a += 1.;
1647    if( std::abs(a) < 1.e-6 )                  << 1331    if( std::fabs(a) < 1.e-6 ) 
1648    {                                             1332    {
1649      fIntegralPAIxSection[0] += b*log(x1/x0); << 1333       fIntegralPAIxSection[0] += b*log(x1/x0);
1650    }                                             1334    }
1651    else                                          1335    else
1652    {                                             1336    {
1653       fIntegralPAIxSection[0] += y0*(x1*x1*po    1337       fIntegralPAIxSection[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
1654    }                                             1338    }
1655    if(fVerbose>0) G4cout<<"SumOverInterval, r << 
1656    return result;                                1339    return result;
1657                                                  1340 
1658 } //  end of SumOverInterval                     1341 } //  end of SumOverInterval
1659                                                  1342 
1660 /////////////////////////////////                1343 /////////////////////////////////
1661                                                  1344 
1662 G4double G4PAIxSection::SumOverIntervaldEdx(     1345 G4double G4PAIxSection::SumOverIntervaldEdx( G4int i )
1663 {                                                1346 {         
1664    G4double x0,x1,y0,yy1,a,b,c,result;           1347    G4double x0,x1,y0,yy1,a,b,c,result;
1665                                                  1348 
1666    x0 = fSplineEnergy[i];                        1349    x0 = fSplineEnergy[i];
1667    x1 = fSplineEnergy[i+1];                      1350    x1 = fSplineEnergy[i+1];
1668                                               << 
1669    if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 
1670                                               << 
1671    y0 = fDifPAIxSection[i];                      1351    y0 = fDifPAIxSection[i];
1672    yy1 = fDifPAIxSection[i+1];                   1352    yy1 = fDifPAIxSection[i+1];
1673    c = x1/x0;                                    1353    c = x1/x0;
1674    a = log10(yy1/y0)/log10(c);                   1354    a = log10(yy1/y0)/log10(c);
1675                                               << 1355    // b = log10(y0) - a*log10(x0);
1676    b = 0.0;                                   << 1356    b = y0/pow(x0,a);
1677    if(a < 20.) b = y0/pow(x0,a);              << 
1678                                               << 
1679    a += 2;                                       1357    a += 2;
1680    if(a == 0)                                    1358    if(a == 0) 
1681    {                                             1359    {
1682      result = b*log(x1/x0);                      1360      result = b*log(x1/x0);
1683    }                                             1361    }
1684    else                                          1362    else
1685    {                                             1363    {
1686      result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a    1364      result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
1687    }                                             1365    }
1688    return result;                                1366    return result;
1689                                                  1367 
1690 } //  end of SumOverInterval                     1368 } //  end of SumOverInterval
1691                                                  1369 
1692 /////////////////////////////////////////////    1370 //////////////////////////////////////////////////////////////////////
1693 //                                               1371 //
1694 // Calculation the PAI Cerenkov integral cros    1372 // Calculation the PAI Cerenkov integral cross-section inside
1695 // of interval of continuous values of photo-    1373 // of interval of continuous values of photo-ionisation Cerenkov
1696 // cross-section. Parameter  'i' is the numbe    1374 // cross-section. Parameter  'i' is the number of interval.
1697                                                  1375 
1698 G4double G4PAIxSection::SumOverInterCerenkov(    1376 G4double G4PAIxSection::SumOverInterCerenkov( G4int i )
1699 {                                                1377 {         
1700    G4double x0,x1,y0,yy1,a,b,c,result;           1378    G4double x0,x1,y0,yy1,a,b,c,result;
1701                                                  1379 
1702    x0  = fSplineEnergy[i];                       1380    x0  = fSplineEnergy[i];
1703    x1  = fSplineEnergy[i+1];                     1381    x1  = fSplineEnergy[i+1];
1704                                               << 
1705    if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 
1706                                               << 
1707    y0  = fdNdxCerenkov[i];                       1382    y0  = fdNdxCerenkov[i];
1708    yy1 = fdNdxCerenkov[i+1];                     1383    yy1 = fdNdxCerenkov[i+1];
1709    // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<    1384    // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<"; x1 = "<<x1
1710    //   <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4e    1385    //   <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl;
1711                                                  1386 
1712    c = x1/x0;                                    1387    c = x1/x0;
1713    a = log10(yy1/y0)/log10(c);                   1388    a = log10(yy1/y0)/log10(c);
1714                                               << 1389    b = y0/pow(x0,a);
1715    if(a > 20.0) b = 0.0;                      << 
1716    else         b = y0/pow(x0,a);             << 
1717                                                  1390 
1718    a += 1.0;                                     1391    a += 1.0;
1719    if(a == 0) result = b*log(c);                 1392    if(a == 0) result = b*log(c);
1720    else       result = y0*(x1*pow(c,a-1) - x0    1393    else       result = y0*(x1*pow(c,a-1) - x0)/a;   
1721    a += 1.0;                                     1394    a += 1.0;
1722                                                  1395 
1723    if( a == 0 ) fIntegralCerenkov[0] += b*log    1396    if( a == 0 ) fIntegralCerenkov[0] += b*log(x1/x0);
1724    else         fIntegralCerenkov[0] += y0*(x    1397    else         fIntegralCerenkov[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
1725    //  G4cout<<"a = "<<a<<"; b = "<<b<<"; res    1398    //  G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl;   
1726    return result;                                1399    return result;
1727                                                  1400 
1728 } //  end of SumOverInterCerenkov                1401 } //  end of SumOverInterCerenkov
1729                                                  1402 
1730 /////////////////////////////////////////////    1403 //////////////////////////////////////////////////////////////////////
1731 //                                               1404 //
1732 // Calculation the PAI MM-Cerenkov integral c    1405 // Calculation the PAI MM-Cerenkov integral cross-section inside
1733 // of interval of continuous values of photo-    1406 // of interval of continuous values of photo-ionisation Cerenkov
1734 // cross-section. Parameter  'i' is the numbe    1407 // cross-section. Parameter  'i' is the number of interval.
1735                                                  1408 
1736 G4double G4PAIxSection::SumOverInterMM( G4int    1409 G4double G4PAIxSection::SumOverInterMM( G4int i )
1737 {                                                1410 {         
1738    G4double x0,x1,y0,yy1,a,b,c,result;           1411    G4double x0,x1,y0,yy1,a,b,c,result;
1739                                                  1412 
1740    x0  = fSplineEnergy[i];                       1413    x0  = fSplineEnergy[i];
1741    x1  = fSplineEnergy[i+1];                     1414    x1  = fSplineEnergy[i+1];
1742                                               << 
1743    if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 
1744                                               << 
1745    y0  = fdNdxMM[i];                             1415    y0  = fdNdxMM[i];
1746    yy1 = fdNdxMM[i+1];                           1416    yy1 = fdNdxMM[i+1];
1747    //G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<" << 1417    // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<"; x1 = "<<x1
1748    //   <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4e    1418    //   <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl;
1749                                                  1419 
1750    c = x1/x0;                                    1420    c = x1/x0;
1751    //G4cout<<" c = "<<c<< " yy1/y0= " << yy1/ << 
1752    a = log10(yy1/y0)/log10(c);                   1421    a = log10(yy1/y0)/log10(c);
1753                                               << 1422    b = y0/pow(x0,a);
1754    b = 0.0;                                   << 
1755    if(a < 20.) b = y0/pow(x0,a);              << 
1756                                                  1423 
1757    a += 1.0;                                     1424    a += 1.0;
1758    if(a == 0) result = b*log(c);                 1425    if(a == 0) result = b*log(c);
1759    else       result = y0*(x1*pow(c,a-1) - x0    1426    else       result = y0*(x1*pow(c,a-1) - x0)/a;   
1760    a += 1.0;                                     1427    a += 1.0;
1761                                                  1428 
1762    if( a == 0 ) fIntegralMM[0] += b*log(c);   << 1429    if( a == 0 ) fIntegralMM[0] += b*log(x1/x0);
1763    else         fIntegralMM[0] += y0*(x1*x1*p    1430    else         fIntegralMM[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
1764    //G4cout<<"a = "<<a<<"; b = "<<b<<"; resul << 1431    //  G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl;   
1765    return result;                                1432    return result;
1766                                                  1433 
1767 } //  end of SumOverInterMM                      1434 } //  end of SumOverInterMM
1768                                                  1435 
1769 /////////////////////////////////////////////    1436 //////////////////////////////////////////////////////////////////////
1770 //                                               1437 //
1771 // Calculation the PAI Plasmon integral cross    1438 // Calculation the PAI Plasmon integral cross-section inside
1772 // of interval of continuous values of photo-    1439 // of interval of continuous values of photo-ionisation Plasmon
1773 // cross-section. Parameter  'i' is the numbe    1440 // cross-section. Parameter  'i' is the number of interval.
1774                                                  1441 
1775 G4double G4PAIxSection::SumOverInterPlasmon(     1442 G4double G4PAIxSection::SumOverInterPlasmon( G4int i )
1776 {                                                1443 {         
1777    G4double x0,x1,y0,yy1,a,b,c,result;           1444    G4double x0,x1,y0,yy1,a,b,c,result;
1778                                                  1445 
1779    x0  = fSplineEnergy[i];                       1446    x0  = fSplineEnergy[i];
1780    x1  = fSplineEnergy[i+1];                     1447    x1  = fSplineEnergy[i+1];
1781                                               << 
1782    if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 
1783                                               << 
1784    y0  = fdNdxPlasmon[i];                        1448    y0  = fdNdxPlasmon[i];
1785    yy1 = fdNdxPlasmon[i+1];                      1449    yy1 = fdNdxPlasmon[i+1];
1786    c = x1/x0;                                 << 1450    c =x1/x0;
1787    a = log10(yy1/y0)/log10(c);                   1451    a = log10(yy1/y0)/log10(c);
1788                                               << 1452    // b = log10(y0) - a*log10(x0);
1789    b = 0.0;                                   << 1453    b = y0/pow(x0,a);
1790    if(a < 20.) b = y0/pow(x0,a);              << 
1791                                                  1454 
1792    a += 1.0;                                     1455    a += 1.0;
1793    if(a == 0) result = b*log(x1/x0);             1456    if(a == 0) result = b*log(x1/x0);
1794    else       result = y0*(x1*pow(c,a-1) - x0    1457    else       result = y0*(x1*pow(c,a-1) - x0)/a;   
1795    a += 1.0;                                     1458    a += 1.0;
1796                                                  1459 
1797    if( a == 0 ) fIntegralPlasmon[0] += b*log(    1460    if( a == 0 ) fIntegralPlasmon[0] += b*log(x1/x0);
1798    else         fIntegralPlasmon[0] += y0*(x1    1461    else         fIntegralPlasmon[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
1799                                                  1462    
1800    return result;                                1463    return result;
1801                                                  1464 
1802 } //  end of SumOverInterPlasmon                 1465 } //  end of SumOverInterPlasmon
1803                                                  1466 
1804 /////////////////////////////////////////////    1467 //////////////////////////////////////////////////////////////////////
1805 //                                               1468 //
1806 // Calculation the PAI resonance integral cro    1469 // Calculation the PAI resonance integral cross-section inside
1807 // of interval of continuous values of photo-    1470 // of interval of continuous values of photo-ionisation resonance
1808 // cross-section. Parameter  'i' is the numbe    1471 // cross-section. Parameter  'i' is the number of interval.
1809                                                  1472 
1810 G4double G4PAIxSection::SumOverInterResonance    1473 G4double G4PAIxSection::SumOverInterResonance( G4int i )
1811 {                                                1474 {         
1812    G4double x0,x1,y0,yy1,a,b,c,result;           1475    G4double x0,x1,y0,yy1,a,b,c,result;
1813                                                  1476 
1814    x0  = fSplineEnergy[i];                       1477    x0  = fSplineEnergy[i];
1815    x1  = fSplineEnergy[i+1];                     1478    x1  = fSplineEnergy[i+1];
1816                                               << 
1817    if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x << 
1818                                               << 
1819    y0  = fdNdxResonance[i];                      1479    y0  = fdNdxResonance[i];
1820    yy1 = fdNdxResonance[i+1];                    1480    yy1 = fdNdxResonance[i+1];
1821    c =x1/x0;                                     1481    c =x1/x0;
1822    a = log10(yy1/y0)/log10(c);                   1482    a = log10(yy1/y0)/log10(c);
1823                                               << 1483    // b = log10(y0) - a*log10(x0);
1824    b = 0.0;                                   << 1484    b = y0/pow(x0,a);
1825    if(a < 20.) b = y0/pow(x0,a);              << 
1826                                                  1485 
1827    a += 1.0;                                     1486    a += 1.0;
1828    if(a == 0) result = b*log(x1/x0);             1487    if(a == 0) result = b*log(x1/x0);
1829    else       result = y0*(x1*pow(c,a-1) - x0    1488    else       result = y0*(x1*pow(c,a-1) - x0)/a;   
1830    a += 1.0;                                     1489    a += 1.0;
1831                                                  1490 
1832    if( a == 0 ) fIntegralResonance[0] += b*lo    1491    if( a == 0 ) fIntegralResonance[0] += b*log(x1/x0);
1833    else         fIntegralResonance[0] += y0*(    1492    else         fIntegralResonance[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a;
1834                                                  1493    
1835    return result;                                1494    return result;
1836                                                  1495 
1837 } //  end of SumOverInterResonance               1496 } //  end of SumOverInterResonance
1838                                                  1497 
1839 /////////////////////////////////////////////    1498 ///////////////////////////////////////////////////////////////////////////////
1840 //                                               1499 //
1841 // Integration of PAI cross-section for the c    1500 // Integration of PAI cross-section for the case of
1842 // passing across border between intervals       1501 // passing across border between intervals
1843                                                  1502 
1844 G4double G4PAIxSection::SumOverBorder( G4int     1503 G4double G4PAIxSection::SumOverBorder( G4int      i , 
1845                                        G4doub    1504                                        G4double en0    )
1846 {                                                1505 {               
1847   G4double x0,x1,y0,yy1,a,b,/*c,*/d,e0,result << 1506    G4double x0,x1,y0,yy1,a,b,c,d,e0,result;
1848                                                  1507 
1849    e0 = en0;                                     1508    e0 = en0;
1850    x0 = fSplineEnergy[i];                        1509    x0 = fSplineEnergy[i];
1851    x1 = fSplineEnergy[i+1];                      1510    x1 = fSplineEnergy[i+1];
1852    y0 = fDifPAIxSection[i];                      1511    y0 = fDifPAIxSection[i];
1853    yy1 = fDifPAIxSection[i+1];                   1512    yy1 = fDifPAIxSection[i+1];
1854                                                  1513 
1855    //c = x1/x0;                               << 1514    c = x1/x0;
1856    d = e0/x0;                                    1515    d = e0/x0;   
1857    a = log10(yy1/y0)/log10(x1/x0);               1516    a = log10(yy1/y0)/log10(x1/x0);
1858                                               << 1517    // b0 = log10(y0) - a*log10(x0);
1859    if(fVerbose>0) G4cout<<"SumOverBorder, a = << 1518    b = y0/pow(x0,a);  // pow(10.,b);
1860                                               << 
1861    b = 0.0;                                   << 
1862    if(a < 20.) b = y0/pow(x0,a);              << 
1863                                                  1519    
1864    a += 1.;                                      1520    a += 1.;
1865    if( std::abs(a) < 1.e-6 )                  << 1521    if( std::fabs(a) < 1.e-6 )
1866    {                                             1522    {
1867       result = b*log(x0/e0);                     1523       result = b*log(x0/e0);
1868    }                                             1524    }
1869    else                                          1525    else
1870    {                                             1526    {
1871       result = y0*(x0 - e0*pow(d,a-1))/a;        1527       result = y0*(x0 - e0*pow(d,a-1))/a;
1872    }                                             1528    }
1873    a += 1.;                                      1529    a += 1.;
1874    if( std::abs(a) < 1.e-6 )                  << 1530    if( std::fabs(a) < 1.e-6 )
1875    {                                             1531    {
1876       fIntegralPAIxSection[0] += b*log(x0/e0)    1532       fIntegralPAIxSection[0] += b*log(x0/e0);
1877    }                                             1533    }
1878    else                                          1534    else 
1879    {                                             1535    {
1880       fIntegralPAIxSection[0] += y0*(x0*x0 -     1536       fIntegralPAIxSection[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
1881    }                                             1537    }
1882    x0 = fSplineEnergy[i - 1];                    1538    x0 = fSplineEnergy[i - 1];
1883    x1 = fSplineEnergy[i - 2];                    1539    x1 = fSplineEnergy[i - 2];
1884    y0 = fDifPAIxSection[i - 1];                  1540    y0 = fDifPAIxSection[i - 1];
1885    yy1 = fDifPAIxSection[i - 2];                 1541    yy1 = fDifPAIxSection[i - 2];
1886                                                  1542 
                                                   >> 1543    c = x1/x0;
1887    d = e0/x0;                                    1544    d = e0/x0;   
1888    a = log10(yy1/y0)/log10(x1/x0);               1545    a = log10(yy1/y0)/log10(x1/x0);
1889                                               << 1546    //  b0 = log10(y0) - a*log10(x0);
1890    b = 0.0;                                   << 1547    b = y0/pow(x0,a);
1891    if(a < 20.) b = y0/pow(x0,a);              << 
1892                                               << 
1893    a += 1.;                                      1548    a += 1.;
1894    if( std::abs(a) < 1.e-6 )                  << 1549    if( std::fabs(a) < 1.e-6 )
1895    {                                             1550    {
1896       result += b*log(e0/x0);                    1551       result += b*log(e0/x0);
1897    }                                             1552    }
1898    else                                          1553    else
1899    {                                             1554    {
1900       result += y0*(e0*pow(d,a-1) - x0)/a;       1555       result += y0*(e0*pow(d,a-1) - x0)/a;
1901    }                                             1556    }
1902    a += 1.;                                      1557    a += 1.;
1903    if( std::abs(a) < 1.e-6 )                  << 1558    if( std::fabs(a) < 1.e-6 ) 
1904    {                                             1559    {
1905       fIntegralPAIxSection[0] += b*log(e0/x0)    1560       fIntegralPAIxSection[0] += b*log(e0/x0);
1906    }                                             1561    }
1907    else                                          1562    else
1908    {                                             1563    {
1909       fIntegralPAIxSection[0] += y0*(e0*e0*po    1564       fIntegralPAIxSection[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
1910    }                                             1565    }
1911    return result;                                1566    return result;
1912                                                  1567 
1913 }                                                1568 } 
1914                                                  1569 
1915 /////////////////////////////////////////////    1570 ///////////////////////////////////////////////////////////////////////
1916                                                  1571 
1917 G4double G4PAIxSection::SumOverBorderdEdx( G4 << 1572 G4double G4PAIxSection::SumOverBorderdEdx( G4int      i , 
                                                   >> 1573                                        G4double en0    )
1918 {                                                1574 {               
1919   G4double x0,x1,y0,yy1,a,b,d,e0,result;      << 1575    G4double x0,x1,y0,yy1,a,b,c,d,e0,result;
1920                                                  1576 
1921    e0 = en0;                                     1577    e0 = en0;
1922    x0 = fSplineEnergy[i];                        1578    x0 = fSplineEnergy[i];
1923    x1 = fSplineEnergy[i+1];                      1579    x1 = fSplineEnergy[i+1];
1924    y0 = fDifPAIxSection[i];                      1580    y0 = fDifPAIxSection[i];
1925    yy1 = fDifPAIxSection[i+1];                   1581    yy1 = fDifPAIxSection[i+1];
1926                                                  1582 
                                                   >> 1583    c = x1/x0;
1927    d = e0/x0;                                    1584    d = e0/x0;   
1928    a = log10(yy1/y0)/log10(x1/x0);               1585    a = log10(yy1/y0)/log10(x1/x0);
1929                                               << 1586    // b0 = log10(y0) - a*log10(x0);
1930    b = 0.0;                                   << 1587    b = y0/pow(x0,a);  // pow(10.,b);
1931    if(a < 20.) b = y0/pow(x0,a);              << 
1932                                                  1588    
1933    a += 2;                                       1589    a += 2;
1934    if(a == 0)                                    1590    if(a == 0)
1935    {                                             1591    {
1936       result = b*log(x0/e0);                     1592       result = b*log(x0/e0);
1937    }                                             1593    }
1938    else                                          1594    else 
1939    {                                             1595    {
1940       result = y0*(x0*x0 - e0*e0*pow(d,a-2))/    1596       result = y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
1941    }                                             1597    }
1942    x0 = fSplineEnergy[i - 1];                    1598    x0 = fSplineEnergy[i - 1];
1943    x1 = fSplineEnergy[i - 2];                    1599    x1 = fSplineEnergy[i - 2];
1944    y0 = fDifPAIxSection[i - 1];                  1600    y0 = fDifPAIxSection[i - 1];
1945    yy1 = fDifPAIxSection[i - 2];                 1601    yy1 = fDifPAIxSection[i - 2];
1946                                                  1602 
1947    // c = x1/x0;                              << 1603    c = x1/x0;
1948    d = e0/x0;                                    1604    d = e0/x0;   
1949    a = log10(yy1/y0)/log10(x1/x0);               1605    a = log10(yy1/y0)/log10(x1/x0);
1950                                               << 1606    //  b0 = log10(y0) - a*log10(x0);
1951    b = 0.0;                                   << 1607    b = y0/pow(x0,a);
1952    if(a < 20.) b = y0/pow(x0,a);              << 
1953                                               << 
1954    a += 2;                                       1608    a += 2;
1955    if(a == 0)                                    1609    if(a == 0) 
1956    {                                             1610    {
1957       result += b*log(e0/x0);                    1611       result += b*log(e0/x0);
1958    }                                             1612    }
1959    else                                          1613    else
1960    {                                             1614    {
1961       result += y0*(e0*e0*pow(d,a-2) - x0*x0)    1615       result += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
1962    }                                             1616    }
1963    return result;                                1617    return result;
1964                                                  1618 
1965 }                                                1619 } 
1966                                                  1620 
1967 /////////////////////////////////////////////    1621 ///////////////////////////////////////////////////////////////////////////////
1968 //                                               1622 //
1969 // Integration of Cerenkov cross-section for     1623 // Integration of Cerenkov cross-section for the case of
1970 // passing across border between intervals       1624 // passing across border between intervals
1971                                                  1625 
1972 G4double G4PAIxSection::SumOverBordCerenkov(  << 1626 G4double G4PAIxSection::SumOverBordCerenkov( G4int      i , 
                                                   >> 1627                                              G4double en0    )
1973 {                                                1628 {               
1974    G4double x0,x1,y0,yy1,a,b,e0,c,d,result;      1629    G4double x0,x1,y0,yy1,a,b,e0,c,d,result;
1975                                                  1630 
1976    e0 = en0;                                     1631    e0 = en0;
1977    x0 = fSplineEnergy[i];                        1632    x0 = fSplineEnergy[i];
1978    x1 = fSplineEnergy[i+1];                      1633    x1 = fSplineEnergy[i+1];
1979    y0 = fdNdxCerenkov[i];                        1634    y0 = fdNdxCerenkov[i];
1980    yy1 = fdNdxCerenkov[i+1];                     1635    yy1 = fdNdxCerenkov[i+1];
1981                                                  1636 
1982    //G4cout<<"SumBordC, i = "<<i<<"; en0 = "< << 1637    //  G4cout<<G4endl;
1983    //<<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl << 1638    //  G4cout<<"SumBordC, i = "<<i<<"; en0 = "<<en0<<"; x0 ="<<x0<<"; x1 = "<<x1
                                                   >> 1639    //     <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl;
1984    c = x1/x0;                                    1640    c = x1/x0;
1985    d = e0/x0;                                    1641    d = e0/x0;
1986    a = log10(yy1/y0)/log10(c);                   1642    a = log10(yy1/y0)/log10(c);
1987    //G4cout << "    a= " << a << " c=" << c < << 1643    // b0 = log10(y0) - a*log10(x0);
1988                                               << 1644    b = y0/pow(x0,a); // pow(10.,b0);   
1989    b = 0.0;                                   << 
1990    if(a < 20.) b = y0/pow(x0,a);              << 
1991                                                  1645    
1992    a += 1.0;                                     1646    a += 1.0;
1993    if( a == 0 ) result = b*log(x0/e0);           1647    if( a == 0 ) result = b*log(x0/e0);
1994    else         result = y0*(x0 - e0*pow(d,a-    1648    else         result = y0*(x0 - e0*pow(d,a-1))/a;   
1995    a += 1.0;                                     1649    a += 1.0;
1996                                                  1650 
1997    if( a == 0 ) fIntegralCerenkov[0] += b*log    1651    if( a == 0 ) fIntegralCerenkov[0] += b*log(x0/e0);
1998    else         fIntegralCerenkov[0] += y0*(x    1652    else         fIntegralCerenkov[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
1999                                                  1653 
                                                   >> 1654 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = "<<b<<"; result = "<<result<<G4endl;
                                                   >> 1655    
2000    x0  = fSplineEnergy[i - 1];                   1656    x0  = fSplineEnergy[i - 1];
2001    x1  = fSplineEnergy[i - 2];                   1657    x1  = fSplineEnergy[i - 2];
2002    y0  = fdNdxCerenkov[i - 1];                   1658    y0  = fdNdxCerenkov[i - 1];
2003    yy1 = fdNdxCerenkov[i - 2];                   1659    yy1 = fdNdxCerenkov[i - 2];
2004                                                  1660 
2005    // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1          1661    // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1
2006    //    <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4    1662    //    <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl;
2007                                                  1663 
2008    c = x1/x0;                                    1664    c = x1/x0;
2009    d = e0/x0;                                    1665    d = e0/x0;
2010    a  = log10(yy1/y0)/log10(c);               << 1666    a  = log10(yy1/y0)/log10(x1/x0);
2011                                               << 1667    // b0 = log10(y0) - a*log10(x0);
2012    b = 0.0;                                   << 1668    b  =  y0/pow(x0,a);  // pow(10.,b0);
2013    if(a < 20.) b = y0/pow(x0,a);              << 
2014                                                  1669 
2015    a += 1.0;                                     1670    a += 1.0;
2016    if( a == 0 ) result += b*log(e0/x0);          1671    if( a == 0 ) result += b*log(e0/x0);
2017    else         result += y0*(e0*pow(d,a-1) -    1672    else         result += y0*(e0*pow(d,a-1) - x0 )/a;
2018    a += 1.0;                                     1673    a += 1.0;
2019                                                  1674 
2020    if( a == 0 ) fIntegralCerenkov[0] += b*log << 1675    if( a == 0 )   fIntegralCerenkov[0] += b*log(e0/x0);
2021    else         fIntegralCerenkov[0] += y0*(e << 1676    else           fIntegralCerenkov[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
                                                   >> 1677 
                                                   >> 1678    // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = "
                                                   >> 1679    // <<b<<"; result = "<<result<<G4endl;    
2022                                                  1680 
2023    //G4cout<<"  a="<< a <<"  b="<< b <<"  res << 
2024    return result;                                1681    return result;
                                                   >> 1682 
2025 }                                                1683 } 
2026                                                  1684 
2027 /////////////////////////////////////////////    1685 ///////////////////////////////////////////////////////////////////////////////
2028 //                                               1686 //
2029 // Integration of MM-Cerenkov cross-section f    1687 // Integration of MM-Cerenkov cross-section for the case of
2030 // passing across border between intervals       1688 // passing across border between intervals
2031                                                  1689 
2032 G4double G4PAIxSection::SumOverBordMM( G4int  << 1690 G4double G4PAIxSection::SumOverBordMM( G4int      i , 
                                                   >> 1691                                              G4double en0    )
2033 {                                                1692 {               
2034    G4double x0,x1,y0,yy1,a,b,e0,c,d,result;      1693    G4double x0,x1,y0,yy1,a,b,e0,c,d,result;
2035                                                  1694 
2036    e0 = en0;                                     1695    e0 = en0;
2037    x0 = fSplineEnergy[i];                        1696    x0 = fSplineEnergy[i];
2038    x1 = fSplineEnergy[i+1];                      1697    x1 = fSplineEnergy[i+1];
2039    y0 = fdNdxMM[i];                              1698    y0 = fdNdxMM[i];
2040    yy1 = fdNdxMM[i+1];                           1699    yy1 = fdNdxMM[i+1];
2041                                                  1700 
                                                   >> 1701    //  G4cout<<G4endl;
2042    //  G4cout<<"SumBordC, i = "<<i<<"; en0 =     1702    //  G4cout<<"SumBordC, i = "<<i<<"; en0 = "<<en0<<"; x0 ="<<x0<<"; x1 = "<<x1
2043    //     <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G    1703    //     <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl;
2044    c = x1/x0;                                    1704    c = x1/x0;
2045    d = e0/x0;                                    1705    d = e0/x0;
2046    a = log10(yy1/y0)/log10(c);                   1706    a = log10(yy1/y0)/log10(c);
2047                                               << 1707    // b0 = log10(y0) - a*log10(x0);
2048    if(a > 20.0) b = 0.0;                      << 1708    b = y0/pow(x0,a); // pow(10.,b0);   
2049    else         b = y0/pow(x0,a);             << 
2050                                                  1709    
2051    a += 1.0;                                     1710    a += 1.0;
2052    if( a == 0 ) result = b*log(x0/e0);           1711    if( a == 0 ) result = b*log(x0/e0);
2053    else         result = y0*(x0 - e0*pow(d,a-    1712    else         result = y0*(x0 - e0*pow(d,a-1))/a;   
2054    a += 1.0;                                     1713    a += 1.0;
2055                                                  1714 
2056    if( a == 0 ) fIntegralMM[0] += b*log(x0/e0    1715    if( a == 0 ) fIntegralMM[0] += b*log(x0/e0);
2057    else         fIntegralMM[0] += y0*(x0*x0 -    1716    else         fIntegralMM[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
2058                                                  1717 
2059    // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b  << 1718 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = "<<b<<"; result = "<<result<<G4endl;
2060                                                  1719    
2061    x0  = fSplineEnergy[i - 1];                   1720    x0  = fSplineEnergy[i - 1];
2062    x1  = fSplineEnergy[i - 2];                   1721    x1  = fSplineEnergy[i - 2];
2063    y0  = fdNdxMM[i - 1];                         1722    y0  = fdNdxMM[i - 1];
2064    yy1 = fdNdxMM[i - 2];                         1723    yy1 = fdNdxMM[i - 2];
2065                                                  1724 
2066    // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1          1725    // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1
2067    //    <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4    1726    //    <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl;
2068                                                  1727 
2069    c = x1/x0;                                    1728    c = x1/x0;
2070    d = e0/x0;                                    1729    d = e0/x0;
2071    a  = log10(yy1/y0)/log10(x1/x0);              1730    a  = log10(yy1/y0)/log10(x1/x0);
2072                                               << 1731    // b0 = log10(y0) - a*log10(x0);
2073    if(a > 20.0) b = 0.0;                      << 1732    b  =  y0/pow(x0,a);  // pow(10.,b0);
2074    else         b = y0/pow(x0,a);             << 
2075                                                  1733 
2076    a += 1.0;                                     1734    a += 1.0;
2077    if( a == 0 ) result += b*log(e0/x0);          1735    if( a == 0 ) result += b*log(e0/x0);
2078    else         result += y0*(e0*pow(d,a-1) -    1736    else         result += y0*(e0*pow(d,a-1) - x0 )/a;
2079    a += 1.0;                                     1737    a += 1.0;
2080                                                  1738 
2081    if( a == 0 ) fIntegralMM[0] += b*log(e0/x0 << 1739    if( a == 0 )   fIntegralMM[0] += b*log(e0/x0);
2082    else         fIntegralMM[0] += y0*(e0*e0*p << 1740    else           fIntegralMM[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
2083                                                  1741 
2084    // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b     1742    // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = "
2085    // <<b<<"; result = "<<result<<G4endl;        1743    // <<b<<"; result = "<<result<<G4endl;    
2086                                                  1744 
2087    return result;                                1745    return result;
2088                                                  1746 
2089 }                                                1747 } 
2090                                                  1748 
2091 /////////////////////////////////////////////    1749 ///////////////////////////////////////////////////////////////////////////////
2092 //                                               1750 //
2093 // Integration of Plasmon cross-section for t    1751 // Integration of Plasmon cross-section for the case of
2094 // passing across border between intervals       1752 // passing across border between intervals
2095                                                  1753 
2096 G4double G4PAIxSection::SumOverBordPlasmon( G    1754 G4double G4PAIxSection::SumOverBordPlasmon( G4int      i , 
2097                                                  1755                                              G4double en0    )
2098 {                                                1756 {               
2099    G4double x0,x1,y0,yy1,a,b,c,d,e0,result;      1757    G4double x0,x1,y0,yy1,a,b,c,d,e0,result;
2100                                                  1758 
2101    e0 = en0;                                     1759    e0 = en0;
2102    x0 = fSplineEnergy[i];                        1760    x0 = fSplineEnergy[i];
2103    x1 = fSplineEnergy[i+1];                      1761    x1 = fSplineEnergy[i+1];
2104    y0 = fdNdxPlasmon[i];                         1762    y0 = fdNdxPlasmon[i];
2105    yy1 = fdNdxPlasmon[i+1];                      1763    yy1 = fdNdxPlasmon[i+1];
2106                                                  1764 
2107    c = x1/x0;                                    1765    c = x1/x0;
2108    d = e0/x0;                                    1766    d = e0/x0;   
2109    a = log10(yy1/y0)/log10(c);                   1767    a = log10(yy1/y0)/log10(c);
2110                                               << 1768    //  b0 = log10(y0) - a*log10(x0);
2111    if(a > 20.0) b = 0.0;                      << 1769    b = y0/pow(x0,a); //pow(10.,b);
2112    else         b = y0/pow(x0,a);             << 
2113                                                  1770    
2114    a += 1.0;                                     1771    a += 1.0;
2115    if( a == 0 ) result = b*log(x0/e0);           1772    if( a == 0 ) result = b*log(x0/e0);
2116    else         result = y0*(x0 - e0*pow(d,a-    1773    else         result = y0*(x0 - e0*pow(d,a-1))/a;   
2117    a += 1.0;                                     1774    a += 1.0;
2118                                                  1775 
2119    if( a == 0 ) fIntegralPlasmon[0] += b*log(    1776    if( a == 0 ) fIntegralPlasmon[0] += b*log(x0/e0);
2120    else         fIntegralPlasmon[0] += y0*(x0    1777    else         fIntegralPlasmon[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
2121                                                  1778    
2122    x0 = fSplineEnergy[i - 1];                    1779    x0 = fSplineEnergy[i - 1];
2123    x1 = fSplineEnergy[i - 2];                    1780    x1 = fSplineEnergy[i - 2];
2124    y0 = fdNdxPlasmon[i - 1];                     1781    y0 = fdNdxPlasmon[i - 1];
2125    yy1 = fdNdxPlasmon[i - 2];                    1782    yy1 = fdNdxPlasmon[i - 2];
2126                                                  1783 
2127    c = x1/x0;                                    1784    c = x1/x0;
2128    d = e0/x0;                                    1785    d = e0/x0;
2129    a = log10(yy1/y0)/log10(c);                   1786    a = log10(yy1/y0)/log10(c);
2130                                               << 1787    // b0 = log10(y0) - a*log10(x0);
2131    if(a > 20.0) b = 0.0;                      << 1788    b = y0/pow(x0,a);// pow(10.,b0);
2132    else         b = y0/pow(x0,a);             << 
2133                                                  1789 
2134    a += 1.0;                                     1790    a += 1.0;
2135    if( a == 0 ) result += b*log(e0/x0);          1791    if( a == 0 ) result += b*log(e0/x0);
2136    else         result += y0*(e0*pow(d,a-1) -    1792    else         result += y0*(e0*pow(d,a-1) - x0)/a;
2137    a += 1.0;                                     1793    a += 1.0;
2138                                                  1794 
2139    if( a == 0 )   fIntegralPlasmon[0] += b*lo    1795    if( a == 0 )   fIntegralPlasmon[0] += b*log(e0/x0);
2140    else           fIntegralPlasmon[0] += y0*(    1796    else           fIntegralPlasmon[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
2141                                                  1797    
2142    return result;                                1798    return result;
                                                   >> 1799 
2143 }                                                1800 } 
2144                                                  1801 
2145 /////////////////////////////////////////////    1802 ///////////////////////////////////////////////////////////////////////////////
2146 //                                               1803 //
2147 // Integration of resonance cross-section for    1804 // Integration of resonance cross-section for the case of
2148 // passing across border between intervals       1805 // passing across border between intervals
2149                                                  1806 
2150 G4double G4PAIxSection::SumOverBordResonance(    1807 G4double G4PAIxSection::SumOverBordResonance( G4int      i , 
2151                                                  1808                                              G4double en0    )
2152 {                                                1809 {               
2153    G4double x0,x1,y0,yy1,a,b,c,d,e0,result;      1810    G4double x0,x1,y0,yy1,a,b,c,d,e0,result;
2154                                                  1811 
2155    e0 = en0;                                     1812    e0 = en0;
2156    x0 = fSplineEnergy[i];                        1813    x0 = fSplineEnergy[i];
2157    x1 = fSplineEnergy[i+1];                      1814    x1 = fSplineEnergy[i+1];
2158    y0 = fdNdxResonance[i];                       1815    y0 = fdNdxResonance[i];
2159    yy1 = fdNdxResonance[i+1];                    1816    yy1 = fdNdxResonance[i+1];
2160                                                  1817 
2161    c = x1/x0;                                    1818    c = x1/x0;
2162    d = e0/x0;                                    1819    d = e0/x0;   
2163    a = log10(yy1/y0)/log10(c);                   1820    a = log10(yy1/y0)/log10(c);
2164                                               << 1821    //  b0 = log10(y0) - a*log10(x0);
2165    if(a > 20.0) b = 0.0;                      << 1822    b = y0/pow(x0,a); //pow(10.,b);
2166    else         b = y0/pow(x0,a);             << 
2167                                                  1823    
2168    a += 1.0;                                     1824    a += 1.0;
2169    if( a == 0 ) result = b*log(x0/e0);           1825    if( a == 0 ) result = b*log(x0/e0);
2170    else         result = y0*(x0 - e0*pow(d,a-    1826    else         result = y0*(x0 - e0*pow(d,a-1))/a;   
2171    a += 1.0;                                     1827    a += 1.0;
2172                                                  1828 
2173    if( a == 0 ) fIntegralResonance[0] += b*lo    1829    if( a == 0 ) fIntegralResonance[0] += b*log(x0/e0);
2174    else         fIntegralResonance[0] += y0*(    1830    else         fIntegralResonance[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a;
2175                                                  1831    
2176    x0 = fSplineEnergy[i - 1];                    1832    x0 = fSplineEnergy[i - 1];
2177    x1 = fSplineEnergy[i - 2];                    1833    x1 = fSplineEnergy[i - 2];
2178    y0 = fdNdxResonance[i - 1];                   1834    y0 = fdNdxResonance[i - 1];
2179    yy1 = fdNdxResonance[i - 2];                  1835    yy1 = fdNdxResonance[i - 2];
2180                                                  1836 
2181    c = x1/x0;                                    1837    c = x1/x0;
2182    d = e0/x0;                                    1838    d = e0/x0;
2183    a = log10(yy1/y0)/log10(c);                   1839    a = log10(yy1/y0)/log10(c);
2184                                               << 1840    // b0 = log10(y0) - a*log10(x0);
2185    if(a > 20.0) b = 0.0;                      << 1841    b = y0/pow(x0,a);// pow(10.,b0);
2186    else         b = y0/pow(x0,a);             << 
2187                                                  1842 
2188    a += 1.0;                                     1843    a += 1.0;
2189    if( a == 0 ) result += b*log(e0/x0);          1844    if( a == 0 ) result += b*log(e0/x0);
2190    else         result += y0*(e0*pow(d,a-1) -    1845    else         result += y0*(e0*pow(d,a-1) - x0)/a;
2191    a += 1.0;                                     1846    a += 1.0;
2192                                                  1847 
2193    if( a == 0 ) fIntegralResonance[0] += b*lo << 1848    if( a == 0 )   fIntegralResonance[0] += b*log(e0/x0);
2194    else         fIntegralResonance[0] += y0*( << 1849    else           fIntegralResonance[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a;
2195                                                  1850    
2196    return result;                                1851    return result;
2197                                                  1852 
2198 }                                                1853 } 
2199                                                  1854 
2200 /////////////////////////////////////////////    1855 /////////////////////////////////////////////////////////////////////////
2201 //                                               1856 //
2202 // Returns random PAI-total energy loss over     1857 // Returns random PAI-total energy loss over step
2203                                                  1858 
2204 G4double G4PAIxSection::GetStepEnergyLoss( G4    1859 G4double G4PAIxSection::GetStepEnergyLoss( G4double step )
2205 {                                                1860 {  
2206   G4long numOfCollisions;                        1861   G4long numOfCollisions;
2207   G4double meanNumber, loss = 0.0;               1862   G4double meanNumber, loss = 0.0;
2208                                                  1863 
2209   // G4cout<<" G4PAIxSection::GetStepEnergyLo    1864   // G4cout<<" G4PAIxSection::GetStepEnergyLoss "<<G4endl;
2210                                                  1865 
2211   meanNumber = fIntegralPAIxSection[1]*step;     1866   meanNumber = fIntegralPAIxSection[1]*step;
2212   numOfCollisions = G4Poisson(meanNumber);       1867   numOfCollisions = G4Poisson(meanNumber);
2213                                                  1868 
2214   // G4cout<<"numOfCollisions = "<<numOfColli << 1869   //   G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl;
2215                                                  1870 
2216   while(numOfCollisions)                         1871   while(numOfCollisions)
2217   {                                              1872   {
2218     loss += GetEnergyTransfer();              << 1873    loss += GetEnergyTransfer();
2219     numOfCollisions--;                        << 1874    numOfCollisions--;
2220     // Loop checking, 03-Aug-2015, Vladimir I << 
2221   }                                              1875   }
2222   // G4cout<<"PAI energy loss = "<<loss/keV<<    1876   // G4cout<<"PAI energy loss = "<<loss/keV<<" keV"<<G4endl; 
2223                                                  1877 
2224   return loss;                                   1878   return loss;
2225 }                                                1879 }
2226                                                  1880 
2227 /////////////////////////////////////////////    1881 /////////////////////////////////////////////////////////////////////////
2228 //                                               1882 //
2229 // Returns random PAI-total energy transfer i    1883 // Returns random PAI-total energy transfer in one collision
2230                                                  1884 
2231 G4double G4PAIxSection::GetEnergyTransfer()      1885 G4double G4PAIxSection::GetEnergyTransfer()
2232 {                                                1886 {  
2233   G4int iTransfer ;                              1887   G4int iTransfer ;
2234                                                  1888 
2235   G4double energyTransfer, position;             1889   G4double energyTransfer, position;
2236                                                  1890 
2237   position = fIntegralPAIxSection[1]*G4Unifor    1891   position = fIntegralPAIxSection[1]*G4UniformRand();
2238                                                  1892 
2239   for( iTransfer = 1; iTransfer <= fSplineNum    1893   for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ )
2240   {                                              1894   {
2241     if( position >= fIntegralPAIxSection[iTra << 1895         if( position >= fIntegralPAIxSection[iTransfer] ) break;
2242   }                                              1896   }
2243   if(iTransfer > fSplineNumber) iTransfer--;     1897   if(iTransfer > fSplineNumber) iTransfer--;
2244                                                  1898  
2245   energyTransfer = fSplineEnergy[iTransfer];     1899   energyTransfer = fSplineEnergy[iTransfer];
2246                                                  1900 
2247   if(iTransfer > 1)                              1901   if(iTransfer > 1)
2248   {                                              1902   {
2249     energyTransfer -= (fSplineEnergy[iTransfe    1903     energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand();
2250   }                                              1904   }
2251   return energyTransfer;                         1905   return energyTransfer;
2252 }                                                1906 }
2253                                                  1907 
2254 /////////////////////////////////////////////    1908 /////////////////////////////////////////////////////////////////////////
2255 //                                               1909 //
2256 // Returns random Cerenkov energy loss over s    1910 // Returns random Cerenkov energy loss over step
2257                                                  1911 
2258 G4double G4PAIxSection::GetStepCerenkovLoss(     1912 G4double G4PAIxSection::GetStepCerenkovLoss( G4double step )
2259 {                                                1913 {  
2260   G4long numOfCollisions;                        1914   G4long numOfCollisions;
2261   G4double meanNumber, loss = 0.0;               1915   G4double meanNumber, loss = 0.0;
2262                                                  1916 
2263   // G4cout<<" G4PAIxSection::GetStepCerenkov    1917   // G4cout<<" G4PAIxSection::GetStepCerenkovLoss "<<G4endl;
2264                                                  1918 
2265   meanNumber = fIntegralCerenkov[1]*step;        1919   meanNumber = fIntegralCerenkov[1]*step;
2266   numOfCollisions = G4Poisson(meanNumber);       1920   numOfCollisions = G4Poisson(meanNumber);
2267                                                  1921 
2268   //   G4cout<<"numOfCollisions = "<<numOfCol    1922   //   G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl;
2269                                                  1923 
2270   while(numOfCollisions)                         1924   while(numOfCollisions)
2271   {                                              1925   {
2272     loss += GetCerenkovEnergyTransfer();         1926     loss += GetCerenkovEnergyTransfer();
2273     numOfCollisions--;                           1927     numOfCollisions--;
2274     // Loop checking, 03-Aug-2015, Vladimir I << 
2275   }                                              1928   }
2276   // G4cout<<"PAI Cerenkov loss = "<<loss/keV    1929   // G4cout<<"PAI Cerenkov loss = "<<loss/keV<<" keV"<<G4endl; 
2277                                                  1930 
2278   return loss;                                   1931   return loss;
2279 }                                                1932 }
2280                                                  1933 
2281 /////////////////////////////////////////////    1934 /////////////////////////////////////////////////////////////////////////
2282 //                                               1935 //
2283 // Returns random MM-Cerenkov energy loss ove    1936 // Returns random MM-Cerenkov energy loss over step
2284                                                  1937 
2285 G4double G4PAIxSection::GetStepMMLoss( G4doub    1938 G4double G4PAIxSection::GetStepMMLoss( G4double step )
2286 {                                                1939 {  
2287   G4long numOfCollisions;                        1940   G4long numOfCollisions;
2288   G4double meanNumber, loss = 0.0;               1941   G4double meanNumber, loss = 0.0;
2289                                                  1942 
2290   // G4cout<<" G4PAIxSection::GetStepMMLoss "    1943   // G4cout<<" G4PAIxSection::GetStepMMLoss "<<G4endl;
2291                                                  1944 
2292   meanNumber = fIntegralMM[1]*step;              1945   meanNumber = fIntegralMM[1]*step;
2293   numOfCollisions = G4Poisson(meanNumber);       1946   numOfCollisions = G4Poisson(meanNumber);
2294                                                  1947 
2295   //   G4cout<<"numOfCollisions = "<<numOfCol    1948   //   G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl;
2296                                                  1949 
2297   while(numOfCollisions)                         1950   while(numOfCollisions)
2298   {                                              1951   {
2299     loss += GetMMEnergyTransfer();               1952     loss += GetMMEnergyTransfer();
2300     numOfCollisions--;                           1953     numOfCollisions--;
2301     // Loop checking, 03-Aug-2015, Vladimir I << 
2302   }                                              1954   }
2303   // G4cout<<"PAI MM-Cerenkov loss = "<<loss/    1955   // G4cout<<"PAI MM-Cerenkov loss = "<<loss/keV<<" keV"<<G4endl; 
2304                                                  1956 
2305   return loss;                                   1957   return loss;
2306 }                                                1958 }
2307                                                  1959 
2308 /////////////////////////////////////////////    1960 /////////////////////////////////////////////////////////////////////////
2309 //                                               1961 //
2310 // Returns Cerenkov energy transfer in one co    1962 // Returns Cerenkov energy transfer in one collision
2311                                                  1963 
2312 G4double G4PAIxSection::GetCerenkovEnergyTran    1964 G4double G4PAIxSection::GetCerenkovEnergyTransfer()
2313 {                                                1965 {  
2314   G4int iTransfer ;                              1966   G4int iTransfer ;
2315                                                  1967 
2316   G4double energyTransfer, position;             1968   G4double energyTransfer, position;
2317                                                  1969 
2318   position = fIntegralCerenkov[1]*G4UniformRa    1970   position = fIntegralCerenkov[1]*G4UniformRand();
2319                                                  1971 
2320   for( iTransfer = 1; iTransfer <= fSplineNum    1972   for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ )
2321   {                                              1973   {
2322         if( position >= fIntegralCerenkov[iTr    1974         if( position >= fIntegralCerenkov[iTransfer] ) break;
2323   }                                              1975   }
2324   if(iTransfer > fSplineNumber) iTransfer--;     1976   if(iTransfer > fSplineNumber) iTransfer--;
2325                                                  1977  
2326   energyTransfer = fSplineEnergy[iTransfer];     1978   energyTransfer = fSplineEnergy[iTransfer];
2327                                                  1979 
2328   if(iTransfer > 1)                              1980   if(iTransfer > 1)
2329   {                                              1981   {
2330     energyTransfer -= (fSplineEnergy[iTransfe    1982     energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand();
2331   }                                              1983   }
2332   return energyTransfer;                         1984   return energyTransfer;
2333 }                                                1985 }
2334                                                  1986 
2335 /////////////////////////////////////////////    1987 /////////////////////////////////////////////////////////////////////////
2336 //                                               1988 //
2337 // Returns MM-Cerenkov energy transfer in one    1989 // Returns MM-Cerenkov energy transfer in one collision
2338                                                  1990 
2339 G4double G4PAIxSection::GetMMEnergyTransfer()    1991 G4double G4PAIxSection::GetMMEnergyTransfer()
2340 {                                                1992 {  
2341   G4int iTransfer ;                              1993   G4int iTransfer ;
2342                                                  1994 
2343   G4double energyTransfer, position;             1995   G4double energyTransfer, position;
2344                                                  1996 
2345   position = fIntegralMM[1]*G4UniformRand();     1997   position = fIntegralMM[1]*G4UniformRand();
2346                                                  1998 
2347   for( iTransfer = 1; iTransfer <= fSplineNum    1999   for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ )
2348   {                                              2000   {
2349     if( position >= fIntegralMM[iTransfer] )  << 2001         if( position >= fIntegralMM[iTransfer] ) break;
2350   }                                              2002   }
2351   if(iTransfer > fSplineNumber) iTransfer--;     2003   if(iTransfer > fSplineNumber) iTransfer--;
2352                                                  2004  
2353   energyTransfer = fSplineEnergy[iTransfer];     2005   energyTransfer = fSplineEnergy[iTransfer];
2354                                                  2006 
2355   if(iTransfer > 1)                              2007   if(iTransfer > 1)
2356   {                                              2008   {
2357     energyTransfer -= (fSplineEnergy[iTransfe    2009     energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand();
2358   }                                              2010   }
2359   return energyTransfer;                         2011   return energyTransfer;
2360 }                                                2012 }
2361                                                  2013 
2362 /////////////////////////////////////////////    2014 /////////////////////////////////////////////////////////////////////////
2363 //                                               2015 //
2364 // Returns random plasmon energy loss over st    2016 // Returns random plasmon energy loss over step
2365                                                  2017 
2366 G4double G4PAIxSection::GetStepPlasmonLoss( G    2018 G4double G4PAIxSection::GetStepPlasmonLoss( G4double step )
2367 {                                                2019 {  
2368   G4long numOfCollisions;                        2020   G4long numOfCollisions;
2369   G4double  meanNumber, loss = 0.0;              2021   G4double  meanNumber, loss = 0.0;
2370                                                  2022 
2371   // G4cout<<" G4PAIxSection::GetStepPlasmonL    2023   // G4cout<<" G4PAIxSection::GetStepPlasmonLoss "<<G4endl;
2372                                                  2024 
2373   meanNumber = fIntegralPlasmon[1]*step;         2025   meanNumber = fIntegralPlasmon[1]*step;
2374   numOfCollisions = G4Poisson(meanNumber);       2026   numOfCollisions = G4Poisson(meanNumber);
2375                                                  2027 
2376   //   G4cout<<"numOfCollisions = "<<numOfCol    2028   //   G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl;
2377                                                  2029 
2378   while(numOfCollisions)                         2030   while(numOfCollisions)
2379   {                                              2031   {
2380     loss += GetPlasmonEnergyTransfer();          2032     loss += GetPlasmonEnergyTransfer();
2381     numOfCollisions--;                           2033     numOfCollisions--;
2382     // Loop checking, 03-Aug-2015, Vladimir I << 
2383   }                                              2034   }
2384   // G4cout<<"PAI Plasmon loss = "<<loss/keV<    2035   // G4cout<<"PAI Plasmon loss = "<<loss/keV<<" keV"<<G4endl; 
2385                                                  2036 
2386   return loss;                                   2037   return loss;
2387 }                                                2038 }
2388                                                  2039 
2389 /////////////////////////////////////////////    2040 /////////////////////////////////////////////////////////////////////////
2390 //                                               2041 //
2391 // Returns plasmon energy transfer in one col    2042 // Returns plasmon energy transfer in one collision
2392                                                  2043 
2393 G4double G4PAIxSection::GetPlasmonEnergyTrans    2044 G4double G4PAIxSection::GetPlasmonEnergyTransfer()
2394 {                                                2045 {  
2395   G4int iTransfer ;                              2046   G4int iTransfer ;
2396                                                  2047 
2397   G4double energyTransfer, position;             2048   G4double energyTransfer, position;
2398                                                  2049 
2399   position = fIntegralPlasmon[1]*G4UniformRan    2050   position = fIntegralPlasmon[1]*G4UniformRand();
2400                                                  2051 
2401   for( iTransfer = 1; iTransfer <= fSplineNum    2052   for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ )
2402   {                                              2053   {
2403     if( position >= fIntegralPlasmon[iTransfe << 2054         if( position >= fIntegralPlasmon[iTransfer] ) break;
2404   }                                              2055   }
2405   if(iTransfer > fSplineNumber) iTransfer--;     2056   if(iTransfer > fSplineNumber) iTransfer--;
2406                                                  2057  
2407   energyTransfer = fSplineEnergy[iTransfer];     2058   energyTransfer = fSplineEnergy[iTransfer];
2408                                                  2059 
2409   if(iTransfer > 1)                              2060   if(iTransfer > 1)
2410   {                                              2061   {
2411     energyTransfer -= (fSplineEnergy[iTransfe    2062     energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand();
2412   }                                              2063   }
2413   return energyTransfer;                         2064   return energyTransfer;
2414 }                                                2065 }
2415                                                  2066 
2416 /////////////////////////////////////////////    2067 /////////////////////////////////////////////////////////////////////////
2417 //                                               2068 //
2418 // Returns random resonance energy loss over     2069 // Returns random resonance energy loss over step
2419                                                  2070 
2420 G4double G4PAIxSection::GetStepResonanceLoss(    2071 G4double G4PAIxSection::GetStepResonanceLoss( G4double step )
2421 {                                                2072 {  
2422   G4long numOfCollisions;                        2073   G4long numOfCollisions;
2423   G4double meanNumber, loss = 0.0;               2074   G4double meanNumber, loss = 0.0;
2424                                                  2075 
2425   // G4cout<<" G4PAIxSection::GetStepCreLosnk    2076   // G4cout<<" G4PAIxSection::GetStepCreLosnkovs "<<G4endl;
2426                                                  2077 
2427   meanNumber = fIntegralResonance[1]*step;       2078   meanNumber = fIntegralResonance[1]*step;
2428   numOfCollisions = G4Poisson(meanNumber);       2079   numOfCollisions = G4Poisson(meanNumber);
2429                                                  2080 
2430   //   G4cout<<"numOfCollisions = "<<numOfCol    2081   //   G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl;
2431                                                  2082 
2432   while(numOfCollisions)                         2083   while(numOfCollisions)
2433   {                                              2084   {
2434     loss += GetResonanceEnergyTransfer();        2085     loss += GetResonanceEnergyTransfer();
2435     numOfCollisions--;                           2086     numOfCollisions--;
2436     // Loop checking, 03-Aug-2015, Vladimir I << 
2437   }                                              2087   }
2438   // G4cout<<"PAI resonance loss = "<<loss/ke    2088   // G4cout<<"PAI resonance loss = "<<loss/keV<<" keV"<<G4endl; 
2439                                                  2089 
2440   return loss;                                   2090   return loss;
2441 }                                                2091 }
2442                                                  2092 
2443                                                  2093 
2444 /////////////////////////////////////////////    2094 /////////////////////////////////////////////////////////////////////////
2445 //                                               2095 //
2446 // Returns resonance energy transfer in one c    2096 // Returns resonance energy transfer in one collision
2447                                                  2097 
2448 G4double G4PAIxSection::GetResonanceEnergyTra    2098 G4double G4PAIxSection::GetResonanceEnergyTransfer()
2449 {                                                2099 {  
2450   G4int iTransfer ;                              2100   G4int iTransfer ;
2451                                                  2101 
2452   G4double energyTransfer, position;             2102   G4double energyTransfer, position;
2453                                                  2103 
2454   position = fIntegralResonance[1]*G4UniformR    2104   position = fIntegralResonance[1]*G4UniformRand();
2455                                                  2105 
2456   for( iTransfer = 1; iTransfer <= fSplineNum    2106   for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ )
2457   {                                              2107   {
2458     if( position >= fIntegralResonance[iTrans << 2108         if( position >= fIntegralResonance[iTransfer] ) break;
2459   }                                              2109   }
2460   if(iTransfer > fSplineNumber) iTransfer--;     2110   if(iTransfer > fSplineNumber) iTransfer--;
2461                                                  2111  
2462   energyTransfer = fSplineEnergy[iTransfer];     2112   energyTransfer = fSplineEnergy[iTransfer];
2463                                                  2113 
2464   if(iTransfer > 1)                              2114   if(iTransfer > 1)
2465   {                                              2115   {
2466     energyTransfer -= (fSplineEnergy[iTransfe    2116     energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand();
2467   }                                              2117   }
2468   return energyTransfer;                         2118   return energyTransfer;
2469 }                                                2119 }
2470                                                  2120 
2471                                                  2121 
2472 /////////////////////////////////////////////    2122 /////////////////////////////////////////////////////////////////////////
2473 //                                               2123 //
2474 // Returns Rutherford energy transfer in one     2124 // Returns Rutherford energy transfer in one collision
2475                                                  2125 
2476 G4double G4PAIxSection::GetRutherfordEnergyTr    2126 G4double G4PAIxSection::GetRutherfordEnergyTransfer()
2477 {                                                2127 {  
2478   G4int iTransfer ;                              2128   G4int iTransfer ;
2479                                                  2129 
2480   G4double energyTransfer, position;             2130   G4double energyTransfer, position;
2481                                                  2131 
2482   position = (fIntegralPlasmon[1]-fIntegralRe    2132   position = (fIntegralPlasmon[1]-fIntegralResonance[1])*G4UniformRand();
2483                                                  2133 
2484   for( iTransfer = 1; iTransfer <= fSplineNum    2134   for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ )
2485   {                                              2135   {
2486     if( position >= (fIntegralPlasmon[iTransf << 2136         if( position >= (fIntegralPlasmon[iTransfer]-fIntegralResonance[iTransfer]) ) break;
2487   }                                              2137   }
2488   if(iTransfer > fSplineNumber) iTransfer--;     2138   if(iTransfer > fSplineNumber) iTransfer--;
2489                                                  2139  
2490   energyTransfer = fSplineEnergy[iTransfer];     2140   energyTransfer = fSplineEnergy[iTransfer];
2491                                                  2141 
2492   if(iTransfer > 1)                              2142   if(iTransfer > 1)
2493   {                                              2143   {
2494     energyTransfer -= (fSplineEnergy[iTransfe    2144     energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand();
2495   }                                              2145   }
2496   return energyTransfer;                         2146   return energyTransfer;
2497 }                                                2147 }
2498                                                  2148 
2499 ///////////////////////////////////////////// << 
2500 //                                            << 
2501                                               << 
2502 void G4PAIxSection::CallError(G4int i, const  << 
2503 {                                             << 
2504   G4String head = "G4PAIxSection::" + methodN << 
2505   G4ExceptionDescription ed;                  << 
2506   ed << "Wrong index " << i << " fSplineNumbe << 
2507   G4Exception(head,"pai001",FatalException,ed << 
2508 }                                             << 
2509                                                  2149 
2510 /////////////////////////////////////////////    2150 /////////////////////////////////////////////////////////////////////////////
2511 //                                               2151 //
2512 // Init  array of Lorentz factors                2152 // Init  array of Lorentz factors
2513 //                                               2153 //
2514                                                  2154 
2515 G4int G4PAIxSection::fNumberOfGammas = 111;      2155 G4int G4PAIxSection::fNumberOfGammas = 111;
2516                                                  2156 
2517 const G4double G4PAIxSection::fLorentzFactor[    2157 const G4double G4PAIxSection::fLorentzFactor[112] =     // fNumberOfGammas+1
2518 {                                                2158 {
2519 0.0,                                             2159 0.0,
2520 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.1    2160 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.138890e+00, 1.157642e+00,
2521 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.2    2161 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.261620e+00, 1.296942e+00, // 10
2522 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.4    2162 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.492800e+00, 1.559334e+00,
2523 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.9    2163 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.928263e+00, 2.053589e+00, // 20
2524 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.7    2164 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.748522e+00, 2.984591e+00,
2525 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.2    2165 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.293602e+00, 4.738274e+00, // 30
2526 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.2    2166 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.203990e+00, 8.041596e+00,
2527 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.2    2167 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.268614e+01, 1.426390e+01, // 40
2528 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.3    2168 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.301259e+01, 2.598453e+01,
2529 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.2    2169 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.246399e+01, 4.806208e+01, // 50
2530 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.9    2170 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.910361e+01, 8.964844e+01,
2531 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.4    2171 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.481198e+02, 1.679826e+02, // 60
2532 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.7    2172 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.781221e+02, 3.155365e+02,
2533 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.2    2173 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.230007e+02, 5.934765e+02, // 70
2534 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.8    2174 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.842662e+02, 1.117018e+03,
2535 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.8    2175 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.853128e+03, 2.103186e+03, // 80
2536 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.4    2176 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.489760e+03, 3.960780e+03,
2537 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.5    2177 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.572600e+03, 7.459837e+03, // 90
2538 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.2    2178 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.237959e+04, 1.405083e+04,
2539 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.3    2179 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.331792e+04, 2.646595e+04, // 100
2540 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.3    2180 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.392189e+04, 4.985168e+04,
2541 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.2    2181 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.273254e+04, 9.390219e+04, // 110
2542 1.065799e+05                                     2182 1.065799e+05
2543 };                                               2183 };
2544                                                  2184 
2545 /////////////////////////////////////////////    2185 ///////////////////////////////////////////////////////////////////////
2546 //                                               2186 //
2547 // The number of gamma for creation of  splin    2187 // The number of gamma for creation of  spline (near ion-min , G ~ 4 )
2548 //                                               2188 //
2549                                                  2189 
2550 const                                            2190 const
2551 G4int G4PAIxSection::fRefGammaNumber = 29;       2191 G4int G4PAIxSection::fRefGammaNumber = 29; 
2552                                                  2192 
2553                                                  2193    
2554 //                                               2194 //   
2555 // end of G4PAIxSection implementation file      2195 // end of G4PAIxSection implementation file 
2556 //                                               2196 //
2557 /////////////////////////////////////////////    2197 ////////////////////////////////////////////////////////////////////////////
2558                                                  2198 
2559                                                  2199