Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4PAIxSection.cc 84489 2014-10-16 09:51:31Z gcosmo $ >> 28 // GEANT4 tag $Name: geant4-09-03-ref-06 $ 27 // 29 // 28 // 30 // 29 // G4PAIxSection.cc -- class implementation fi 31 // G4PAIxSection.cc -- class implementation file 30 // 32 // 31 // GEANT 4 class implementation file 33 // GEANT 4 class implementation file 32 // 34 // 33 // For information related to this code, pleas 35 // For information related to this code, please, contact 34 // the Geant4 Collaboration. 36 // the Geant4 Collaboration. 35 // 37 // 36 // R&D: Vladimir.Grichine@cern.ch 38 // R&D: Vladimir.Grichine@cern.ch 37 // 39 // 38 // History: 40 // History: 39 // 41 // 40 // 13.05.03 V. Grichine, bug fixed for maxEner 42 // 13.05.03 V. Grichine, bug fixed for maxEnergyTransfer > max interval energy 41 // 28.05.01 V.Ivanchenko minor changes to prov 43 // 28.05.01 V.Ivanchenko minor changes to provide ANSI -wall compilation 42 // 17.05.01 V. Grichine, low energy extension 44 // 17.05.01 V. Grichine, low energy extension down to 10*keV of proton 43 // 20.11.98 adapted to a new Material/SandiaTa 45 // 20.11.98 adapted to a new Material/SandiaTable interface, mma 44 // 11.06.97 V. Grichine, 1st version 46 // 11.06.97 V. Grichine, 1st version 45 // 47 // 46 48 >> 49 >> 50 47 #include "G4PAIxSection.hh" 51 #include "G4PAIxSection.hh" 48 52 49 #include "globals.hh" 53 #include "globals.hh" 50 #include "G4PhysicalConstants.hh" 54 #include "G4PhysicalConstants.hh" 51 #include "G4SystemOfUnits.hh" 55 #include "G4SystemOfUnits.hh" 52 #include "G4ios.hh" 56 #include "G4ios.hh" 53 #include "G4Poisson.hh" 57 #include "G4Poisson.hh" 54 #include "G4Material.hh" 58 #include "G4Material.hh" 55 #include "G4MaterialCutsCouple.hh" 59 #include "G4MaterialCutsCouple.hh" 56 #include "G4SandiaTable.hh" 60 #include "G4SandiaTable.hh" 57 61 58 using namespace std; 62 using namespace std; 59 63 60 /* ******************************************* 64 /* ****************************************************************** 61 65 62 // Init array of Lorentz factors 66 // Init array of Lorentz factors 63 67 64 const G4double G4PAIxSection::fLorentzFactor[2 68 const G4double G4PAIxSection::fLorentzFactor[22] = 65 { 69 { 66 0.0 , 1.1 , 1.2 , 1.3 , 1 70 0.0 , 1.1 , 1.2 , 1.3 , 1.5 , 1.8 , 2.0 , 67 2.5 , 3.0 , 4.0 , 7.0 , 10 71 2.5 , 3.0 , 4.0 , 7.0 , 10.0 , 20.0 , 40.0 , 68 70.0 , 100.0 , 300.0 , 600.0 , 1000 72 70.0 , 100.0 , 300.0 , 600.0 , 1000.0 , 3000.0 , 69 10000.0 , 50000.0 73 10000.0 , 50000.0 70 }; 74 }; 71 75 72 const G4int G4PAIxSection:: 76 const G4int G4PAIxSection:: 73 fRefGammaNumber = 29; // The number of 77 fRefGammaNumber = 29; // The number of gamma for creation of 74 // spline (9) 78 // spline (9) 75 79 76 ********************************************** 80 ***************************************************************** */ 77 81 78 // Local class constants 82 // Local class constants 79 83 80 const G4double G4PAIxSection::fDelta = 0.005; 84 const G4double G4PAIxSection::fDelta = 0.005; // 0.005 energy shift from interval border 81 const G4double G4PAIxSection::fError = 0.005; 85 const G4double G4PAIxSection::fError = 0.005; // 0.005 error in lin-log approximation 82 86 83 const G4int G4PAIxSection::fMaxSplineSize = 10 87 const G4int G4PAIxSection::fMaxSplineSize = 1000; // Max size of output spline 84 88 // arrays 85 ////////////////////////////////////////////// 89 ////////////////////////////////////////////////////////////////// 86 // 90 // 87 // Constructor 91 // Constructor 88 // 92 // 89 93 90 G4PAIxSection::G4PAIxSection() 94 G4PAIxSection::G4PAIxSection() 91 { 95 { 92 fSandia = nullptr; << 96 fSandia = 0; 93 fMatSandiaMatrix = nullptr; << 97 fMatSandiaMatrix = 0; 94 fDensity = fElectronDensity = fNormalization 98 fDensity = fElectronDensity = fNormalizationCof = fLowEnergyCof = 0.0; 95 fIntervalNumber = fSplineNumber = 0; 99 fIntervalNumber = fSplineNumber = 0; 96 fVerbose = 0; 100 fVerbose = 0; 97 101 98 fSplineEnergy = G4DataVector(fMaxSp 102 fSplineEnergy = G4DataVector(fMaxSplineSize,0.0); 99 fRePartDielectricConst = G4DataVector(fMaxSp 103 fRePartDielectricConst = G4DataVector(fMaxSplineSize,0.0); 100 fImPartDielectricConst = G4DataVector(fMaxSp 104 fImPartDielectricConst = G4DataVector(fMaxSplineSize,0.0); 101 fIntegralTerm = G4DataVector(fMaxSp 105 fIntegralTerm = G4DataVector(fMaxSplineSize,0.0); 102 fDifPAIxSection = G4DataVector(fMaxSp 106 fDifPAIxSection = G4DataVector(fMaxSplineSize,0.0); 103 fdNdxCerenkov = G4DataVector(fMaxSp 107 fdNdxCerenkov = G4DataVector(fMaxSplineSize,0.0); 104 fdNdxPlasmon = G4DataVector(fMaxSp 108 fdNdxPlasmon = G4DataVector(fMaxSplineSize,0.0); 105 fdNdxMM = G4DataVector(fMaxSp 109 fdNdxMM = G4DataVector(fMaxSplineSize,0.0); 106 fdNdxResonance = G4DataVector(fMaxSp 110 fdNdxResonance = G4DataVector(fMaxSplineSize,0.0); 107 fIntegralPAIxSection = G4DataVector(fMaxSp 111 fIntegralPAIxSection = G4DataVector(fMaxSplineSize,0.0); 108 fIntegralPAIdEdx = G4DataVector(fMaxSp 112 fIntegralPAIdEdx = G4DataVector(fMaxSplineSize,0.0); 109 fIntegralCerenkov = G4DataVector(fMaxSp 113 fIntegralCerenkov = G4DataVector(fMaxSplineSize,0.0); 110 fIntegralPlasmon = G4DataVector(fMaxSp 114 fIntegralPlasmon = G4DataVector(fMaxSplineSize,0.0); 111 fIntegralMM = G4DataVector(fMaxSp 115 fIntegralMM = G4DataVector(fMaxSplineSize,0.0); 112 fIntegralResonance = G4DataVector(fMaxSp 116 fIntegralResonance = G4DataVector(fMaxSplineSize,0.0); 113 117 114 fMaterialIndex = 0; 118 fMaterialIndex = 0; 115 119 116 for( G4int i = 0; i < 500; ++i ) 120 for( G4int i = 0; i < 500; ++i ) 117 { 121 { 118 for( G4int j = 0; j < 112; ++j ) fPAItabl 122 for( G4int j = 0; j < 112; ++j ) fPAItable[i][j] = 0.0; 119 } 123 } 120 } 124 } 121 125 122 ////////////////////////////////////////////// 126 ////////////////////////////////////////////////////////////////// 123 // 127 // 124 // Constructor 128 // Constructor 125 // 129 // 126 130 127 G4PAIxSection::G4PAIxSection(G4MaterialCutsCou 131 G4PAIxSection::G4PAIxSection(G4MaterialCutsCouple* matCC) 128 { 132 { 129 fDensity = matCC->GetMaterial()->GetDe 133 fDensity = matCC->GetMaterial()->GetDensity(); 130 G4int matIndex = (G4int)matCC->GetMaterial() << 134 G4int matIndex = matCC->GetMaterial()->GetIndex(); 131 fMaterialIndex = matIndex; 135 fMaterialIndex = matIndex; 132 << 136 fSandia = new G4SandiaTable(matIndex); 133 const G4MaterialTable* theMaterialTable = G4 << 134 fSandia = (*theMaterialTable)[matIndex]->Get << 135 << 136 fVerbose = 0; 137 fVerbose = 0; 137 138 138 G4int i, j; 139 G4int i, j; 139 fMatSandiaMatrix = new G4OrderedTable(); 140 fMatSandiaMatrix = new G4OrderedTable(); 140 141 141 for (i = 0; i < fSandia->GetMaxInterval()-1; << 142 for (i = 0; i < fSandia->GetMaxInterval()-1; i++) 142 { 143 { 143 fMatSandiaMatrix->push_back(new G4DataVec 144 fMatSandiaMatrix->push_back(new G4DataVector(5,0.)); 144 } << 145 } 145 for (i = 0; i < fSandia->GetMaxInterval()-1; << 146 for (i = 0; i < fSandia->GetMaxInterval()-1; i++) 146 { 147 { 147 (*(*fMatSandiaMatrix)[i])[0] = fSandia->Ge 148 (*(*fMatSandiaMatrix)[i])[0] = fSandia->GetSandiaMatTable(i,0); 148 149 149 for(j = 1; j < 5; ++j) << 150 for(j = 1; j < 5; j++) 150 { 151 { 151 (*(*fMatSandiaMatrix)[i])[j] = fSandia-> 152 (*(*fMatSandiaMatrix)[i])[j] = fSandia->GetSandiaMatTable(i,j)*fDensity; 152 } 153 } 153 } 154 } 154 ComputeLowEnergyCof(); << 155 ComputeLowEnergyCof(); 155 // fEnergyInterval = fA1 = fA2 = fA3 = fA4 156 // fEnergyInterval = fA1 = fA2 = fA3 = fA4 = 0; 156 } 157 } 157 158 158 ////////////////////////////////////////////// 159 //////////////////////////////////////////////////////////////// 159 160 160 G4PAIxSection::G4PAIxSection(G4int materialInd 161 G4PAIxSection::G4PAIxSection(G4int materialIndex, 161 G4double maxEnerg << 162 G4double maxEnergyTransfer) 162 { 163 { 163 fSandia = nullptr; << 164 fSandia = 0; 164 fMatSandiaMatrix = nullptr; << 165 fMatSandiaMatrix = 0; 165 fVerbose = 0; 166 fVerbose = 0; 166 const G4MaterialTable* theMaterialTable = G4 167 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 167 G4int i, j; 168 G4int i, j; 168 169 169 fMaterialIndex = materialIndex; 170 fMaterialIndex = materialIndex; 170 fDensity = (*theMaterialTable 171 fDensity = (*theMaterialTable)[materialIndex]->GetDensity(); 171 fElectronDensity = (*theMaterialTable 172 fElectronDensity = (*theMaterialTable)[materialIndex]-> 172 GetElectronDensit 173 GetElectronDensity(); 173 fIntervalNumber = (*theMaterialTable 174 fIntervalNumber = (*theMaterialTable)[materialIndex]-> 174 GetSandiaTable()- 175 GetSandiaTable()->GetMatNbOfIntervals(); 175 fIntervalNumber--; 176 fIntervalNumber--; 176 // G4cout<<fDensity<<"\t"<<fElectronDensity< 177 // G4cout<<fDensity<<"\t"<<fElectronDensity<<"\t"<<fIntervalNumber<<G4endl; 177 178 178 fEnergyInterval = G4DataVector(fIntervalNumb 179 fEnergyInterval = G4DataVector(fIntervalNumber+2,0.0); 179 fA1 = G4DataVector(fIntervalNumb 180 fA1 = G4DataVector(fIntervalNumber+2,0.0); 180 fA2 = G4DataVector(fIntervalNumb 181 fA2 = G4DataVector(fIntervalNumber+2,0.0); 181 fA3 = G4DataVector(fIntervalNumb 182 fA3 = G4DataVector(fIntervalNumber+2,0.0); 182 fA4 = G4DataVector(fIntervalNumb 183 fA4 = G4DataVector(fIntervalNumber+2,0.0); 183 184 184 for(i = 1; i <= fIntervalNumber; i++ ) 185 for(i = 1; i <= fIntervalNumber; i++ ) 185 { 186 { 186 if(((*theMaterialTable)[materialIndex]-> 187 if(((*theMaterialTable)[materialIndex]-> 187 GetSandiaTable()->GetSandiaCofForMaterial( 188 GetSandiaTable()->GetSandiaCofForMaterial(i-1,0) >= maxEnergyTransfer) || 188 i > fIntervalNumber 189 i > fIntervalNumber ) 189 { << 190 { 190 fEnergyInterval[i] = maxEnergyTransf << 191 fEnergyInterval[i] = maxEnergyTransfer; 191 fIntervalNumber = i; << 192 fIntervalNumber = i; 192 break; << 193 break; 193 } << 194 } 194 fEnergyInterval[i] = (*theMaterialTab 195 fEnergyInterval[i] = (*theMaterialTable)[materialIndex]-> 195 GetSandiaTable() << 196 GetSandiaTable()->GetSandiaCofForMaterial(i-1,0); 196 fA1[i] = (*theMaterialTab 197 fA1[i] = (*theMaterialTable)[materialIndex]-> 197 GetSandiaTable() << 198 GetSandiaTable()->GetSandiaCofForMaterial(i-1,1); 198 fA2[i] = (*theMaterialTab 199 fA2[i] = (*theMaterialTable)[materialIndex]-> 199 GetSandiaTable() << 200 GetSandiaTable()->GetSandiaCofForMaterial(i-1,2); 200 fA3[i] = (*theMaterialTab 201 fA3[i] = (*theMaterialTable)[materialIndex]-> 201 GetSandiaTable() << 202 GetSandiaTable()->GetSandiaCofForMaterial(i-1,3); 202 fA4[i] = (*theMaterialTab 203 fA4[i] = (*theMaterialTable)[materialIndex]-> 203 GetSandiaTable() << 204 GetSandiaTable()->GetSandiaCofForMaterial(i-1,4); 204 // G4cout<<i<<"\t"<<fEnergyInterval[i << 205 // G4cout<<i<<"\t"<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 205 // <<fA << 206 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 206 } 207 } 207 if(fEnergyInterval[fIntervalNumber] != maxEn 208 if(fEnergyInterval[fIntervalNumber] != maxEnergyTransfer) 208 { 209 { 209 fIntervalNumber++; 210 fIntervalNumber++; 210 fEnergyInterval[fIntervalNumber] = ma 211 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; 211 } 212 } 212 213 213 // Now checking, if two borders are too clos 214 // Now checking, if two borders are too close together 214 215 215 for(i=1;i<fIntervalNumber;i++) 216 for(i=1;i<fIntervalNumber;i++) 216 { 217 { 217 if(fEnergyInterval[i+1]-fEnergyInterva 218 if(fEnergyInterval[i+1]-fEnergyInterval[i] > 218 1.5*fDelta*(fEnergyInterval[i+1]+fE 219 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i])) 219 { << 220 { 220 continue; 221 continue; 221 } << 222 } 222 else 223 else 223 { << 224 { 224 for(j=i;j<fIntervalNumber;j++) 225 for(j=i;j<fIntervalNumber;j++) 225 { << 226 { 226 fEnergyInterval[j] = fEnergyInterv 227 fEnergyInterval[j] = fEnergyInterval[j+1]; 227 fA1[j] = fA1[j+1]; 228 fA1[j] = fA1[j+1]; 228 fA2[j] = fA2[j+1]; 229 fA2[j] = fA2[j+1]; 229 fA3[j] = fA3[j+1]; 230 fA3[j] = fA3[j+1]; 230 fA4[j] = fA4[j+1]; 231 fA4[j] = fA4[j+1]; 231 } << 232 } 232 fIntervalNumber--; 233 fIntervalNumber--; 233 i--; 234 i--; 234 } << 235 } 235 } 236 } 236 237 237 238 238 /* ********************************* 239 /* ********************************* 239 240 240 fSplineEnergy = new G4double[fM 241 fSplineEnergy = new G4double[fMaxSplineSize]; 241 fRePartDielectricConst = new G4double[fM 242 fRePartDielectricConst = new G4double[fMaxSplineSize]; 242 fImPartDielectricConst = new G4double[fM 243 fImPartDielectricConst = new G4double[fMaxSplineSize]; 243 fIntegralTerm = new G4double[fM 244 fIntegralTerm = new G4double[fMaxSplineSize]; 244 fDifPAIxSection = new G4double[fM 245 fDifPAIxSection = new G4double[fMaxSplineSize]; 245 fIntegralPAIxSection = new G4double[fM 246 fIntegralPAIxSection = new G4double[fMaxSplineSize]; 246 247 247 for(i=0;i<fMaxSplineSize;i++) 248 for(i=0;i<fMaxSplineSize;i++) 248 { 249 { 249 fSplineEnergy[i] = 0.0; 250 fSplineEnergy[i] = 0.0; 250 fRePartDielectricConst[i] = 0.0; 251 fRePartDielectricConst[i] = 0.0; 251 fImPartDielectricConst[i] = 0.0; 252 fImPartDielectricConst[i] = 0.0; 252 fIntegralTerm[i] = 0.0; 253 fIntegralTerm[i] = 0.0; 253 fDifPAIxSection[i] = 0.0; 254 fDifPAIxSection[i] = 0.0; 254 fIntegralPAIxSection[i] = 0.0; 255 fIntegralPAIxSection[i] = 0.0; 255 } 256 } 256 **************************************** 257 ************************************************** */ 257 ComputeLowEnergyCof(); 258 ComputeLowEnergyCof(); 258 InitPAI(); // create arrays allocated a 259 InitPAI(); // create arrays allocated above 259 /* 260 /* 260 delete[] fEnergyInterval; 261 delete[] fEnergyInterval; 261 delete[] fA1; 262 delete[] fA1; 262 delete[] fA2; 263 delete[] fA2; 263 delete[] fA3; 264 delete[] fA3; 264 delete[] fA4; 265 delete[] fA4; 265 */ 266 */ 266 } 267 } 267 268 268 ////////////////////////////////////////////// 269 //////////////////////////////////////////////////////////////////////// 269 // 270 // 270 // Constructor called from G4PAIPhotonModel !! 271 // Constructor called from G4PAIPhotonModel !!! 271 272 272 G4PAIxSection::G4PAIxSection( G4int materialIn 273 G4PAIxSection::G4PAIxSection( G4int materialIndex, 273 G4double maxEner << 274 G4double maxEnergyTransfer, 274 G4double betaGam << 275 G4double betaGammaSq, 275 G4double** photo 276 G4double** photoAbsCof, 276 G4int intNumber 277 G4int intNumber ) 277 { 278 { 278 fSandia = nullptr; << 279 fSandia = 0; 279 fDensity = fElectronDensity = fNormalization 280 fDensity = fElectronDensity = fNormalizationCof = fLowEnergyCof = 0.0; 280 fIntervalNumber = fSplineNumber = 0; 281 fIntervalNumber = fSplineNumber = 0; 281 fVerbose = 0; 282 fVerbose = 0; 282 283 283 fSplineEnergy = G4DataVector(500,0. 284 fSplineEnergy = G4DataVector(500,0.0); 284 fRePartDielectricConst = G4DataVector(500,0. 285 fRePartDielectricConst = G4DataVector(500,0.0); 285 fImPartDielectricConst = G4DataVector(500,0. 286 fImPartDielectricConst = G4DataVector(500,0.0); 286 fIntegralTerm = G4DataVector(500,0. 287 fIntegralTerm = G4DataVector(500,0.0); 287 fDifPAIxSection = G4DataVector(500,0. 288 fDifPAIxSection = G4DataVector(500,0.0); 288 fdNdxCerenkov = G4DataVector(500,0. 289 fdNdxCerenkov = G4DataVector(500,0.0); 289 fdNdxPlasmon = G4DataVector(500,0. 290 fdNdxPlasmon = G4DataVector(500,0.0); 290 fdNdxMM = G4DataVector(500,0. 291 fdNdxMM = G4DataVector(500,0.0); 291 fdNdxResonance = G4DataVector(500,0. 292 fdNdxResonance = G4DataVector(500,0.0); 292 fIntegralPAIxSection = G4DataVector(500,0. 293 fIntegralPAIxSection = G4DataVector(500,0.0); 293 fIntegralPAIdEdx = G4DataVector(500,0. 294 fIntegralPAIdEdx = G4DataVector(500,0.0); 294 fIntegralCerenkov = G4DataVector(500,0. 295 fIntegralCerenkov = G4DataVector(500,0.0); 295 fIntegralPlasmon = G4DataVector(500,0. 296 fIntegralPlasmon = G4DataVector(500,0.0); 296 fIntegralMM = G4DataVector(500,0. 297 fIntegralMM = G4DataVector(500,0.0); 297 fIntegralResonance = G4DataVector(500,0. 298 fIntegralResonance = G4DataVector(500,0.0); 298 299 299 for( G4int i = 0; i < 500; ++i ) 300 for( G4int i = 0; i < 500; ++i ) 300 { 301 { 301 for( G4int j = 0; j < 112; ++j ) fPAItabl 302 for( G4int j = 0; j < 112; ++j ) fPAItable[i][j] = 0.0; 302 } 303 } 303 304 304 fSandia = nullptr; << 305 fSandia = 0; 305 fMatSandiaMatrix = nullptr; << 306 fMatSandiaMatrix = 0; 306 const G4MaterialTable* theMaterialTable = G4 307 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 307 G4int i, j; 308 G4int i, j; 308 309 309 fMaterialIndex = materialIndex; 310 fMaterialIndex = materialIndex; 310 fDensity = (*theMaterialTable)[mater 311 fDensity = (*theMaterialTable)[materialIndex]->GetDensity(); 311 fElectronDensity = (*theMaterialTable)[mater 312 fElectronDensity = (*theMaterialTable)[materialIndex]->GetElectronDensity(); 312 313 313 fIntervalNumber = intNumber; 314 fIntervalNumber = intNumber; 314 fIntervalNumber--; 315 fIntervalNumber--; 315 // G4cout<<fDensity<<"\t"<<fElectronDensit 316 // G4cout<<fDensity<<"\t"<<fElectronDensity<<"\t"<<fIntervalNumber<<G4endl; 316 317 317 fEnergyInterval = G4DataVector(fIntervalNumb 318 fEnergyInterval = G4DataVector(fIntervalNumber+2,0.0); 318 fA1 = G4DataVector(fIntervalNumb 319 fA1 = G4DataVector(fIntervalNumber+2,0.0); 319 fA2 = G4DataVector(fIntervalNumb 320 fA2 = G4DataVector(fIntervalNumber+2,0.0); 320 fA3 = G4DataVector(fIntervalNumb 321 fA3 = G4DataVector(fIntervalNumber+2,0.0); 321 fA4 = G4DataVector(fIntervalNumb 322 fA4 = G4DataVector(fIntervalNumber+2,0.0); 322 323 323 324 324 /* 325 /* 325 fEnergyInterval = new G4double[fInterval 326 fEnergyInterval = new G4double[fIntervalNumber+2]; 326 fA1 = new G4double[fInterval 327 fA1 = new G4double[fIntervalNumber+2]; 327 fA2 = new G4double[fInterval 328 fA2 = new G4double[fIntervalNumber+2]; 328 fA3 = new G4double[fInterval 329 fA3 = new G4double[fIntervalNumber+2]; 329 fA4 = new G4double[fInterval 330 fA4 = new G4double[fIntervalNumber+2]; 330 */ 331 */ 331 for( i = 1; i <= fIntervalNumber; i++ ) 332 for( i = 1; i <= fIntervalNumber; i++ ) 332 { 333 { 333 if( ( photoAbsCof[i-1][0] >= maxEnerg 334 if( ( photoAbsCof[i-1][0] >= maxEnergyTransfer ) || 334 i > fIntervalNumber ) 335 i > fIntervalNumber ) 335 { 336 { 336 fEnergyInterval[i] = maxEnergyTran 337 fEnergyInterval[i] = maxEnergyTransfer; 337 fIntervalNumber = i; << 338 fIntervalNumber = i; 338 break; << 339 break; 339 } 340 } 340 fEnergyInterval[i] = photoAbsCof[i-1] 341 fEnergyInterval[i] = photoAbsCof[i-1][0]; 341 fA1[i] = photoAbsCof[i-1] 342 fA1[i] = photoAbsCof[i-1][1]; 342 fA2[i] = photoAbsCof[i-1] 343 fA2[i] = photoAbsCof[i-1][2]; 343 fA3[i] = photoAbsCof[i-1] 344 fA3[i] = photoAbsCof[i-1][3]; 344 fA4[i] = photoAbsCof[i-1] 345 fA4[i] = photoAbsCof[i-1][4]; 345 // G4cout<<i<<"\t"<<fEnergyInterval[i << 346 // G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 346 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"< << 347 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 347 } 348 } 348 // G4cout<<"i last = "<<i<<"; "<<"fInter 349 // G4cout<<"i last = "<<i<<"; "<<"fIntervalNumber = "<<fIntervalNumber<<G4endl; 349 350 350 if(fEnergyInterval[fIntervalNumber] != maxEn 351 if(fEnergyInterval[fIntervalNumber] != maxEnergyTransfer) 351 { 352 { 352 fIntervalNumber++; 353 fIntervalNumber++; 353 fEnergyInterval[fIntervalNumber] = ma 354 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; 354 } 355 } 355 // G4cout<<"after check of max energy tr 356 // G4cout<<"after check of max energy transfer"<<G4endl; 356 357 357 for( i = 1; i <= fIntervalNumber; i++ ) 358 for( i = 1; i <= fIntervalNumber; i++ ) 358 { 359 { 359 // G4cout<<i<<"\t"<<fEnergyInterval[i] << 360 // G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 360 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4e << 361 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 361 } 362 } 362 // Now checking, if two borders are too 363 // Now checking, if two borders are too close together 363 364 364 for( i = 1; i < fIntervalNumber; i++ ) 365 for( i = 1; i < fIntervalNumber; i++ ) 365 { 366 { 366 if(fEnergyInterval[i+1]-fEnergyInterva 367 if(fEnergyInterval[i+1]-fEnergyInterval[i] > 367 1.5*fDelta*(fEnergyInterval[i+1]+fE 368 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i])) 368 { << 369 { 369 continue; 370 continue; 370 } << 371 } 371 else 372 else 372 { << 373 { 373 for(j=i;j<fIntervalNumber;j++) 374 for(j=i;j<fIntervalNumber;j++) 374 { << 375 { 375 fEnergyInterval[j] = fEnergyInterv 376 fEnergyInterval[j] = fEnergyInterval[j+1]; 376 fA1[j] = fA1[j+1]; 377 fA1[j] = fA1[j+1]; 377 fA2[j] = fA2[j+1]; 378 fA2[j] = fA2[j+1]; 378 fA3[j] = fA3[j+1]; 379 fA3[j] = fA3[j+1]; 379 fA4[j] = fA4[j+1]; 380 fA4[j] = fA4[j+1]; 380 } << 381 } 381 fIntervalNumber--; 382 fIntervalNumber--; 382 i--; 383 i--; 383 } << 384 } 384 } 385 } 385 // G4cout<<"after check of close borders"<<G 386 // G4cout<<"after check of close borders"<<G4endl; 386 387 387 for( i = 1; i <= fIntervalNumber; i++ ) 388 for( i = 1; i <= fIntervalNumber; i++ ) 388 { 389 { 389 // G4cout<<i<<"\t"<<fEnergyInterval[i] << 390 // G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 390 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4en << 391 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 391 } 392 } 392 393 393 // Preparation of fSplineEnergy array corres 394 // Preparation of fSplineEnergy array corresponding to min ionisation, G~4 394 395 395 ComputeLowEnergyCof(); 396 ComputeLowEnergyCof(); 396 G4double betaGammaSqRef = 397 G4double betaGammaSqRef = 397 fLorentzFactor[fRefGammaNumber]*fLorentzFa 398 fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1; 398 399 399 NormShift(betaGammaSqRef); 400 NormShift(betaGammaSqRef); 400 SplainPAI(betaGammaSqRef); 401 SplainPAI(betaGammaSqRef); 401 402 402 // Preparation of integral PAI cross section 403 // Preparation of integral PAI cross section for input betaGammaSq 403 404 404 for(i = 1; i <= fSplineNumber; i++) 405 for(i = 1; i <= fSplineNumber; i++) 405 { 406 { 406 fdNdxCerenkov[i] = PAIdNdxCerenkov( 407 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 407 fdNdxMM[i] = PAIdNdxMM(i,betaGammaS 408 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 408 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 409 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 409 fdNdxResonance[i] = PAIdNdxResonance 410 fdNdxResonance[i] = PAIdNdxResonance(i,betaGammaSq); 410 fDifPAIxSection[i] = DifPAIxSection(i 411 fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq); 411 412 412 // G4cout<<i<<"; dNdxC = "<<fdNdxCere << 413 // G4cout<<i<<"; dNdxC = "<<fdNdxCerenkov[i]<<"; dNdxP = "<<fdNdxPlasmon[i] 413 // <<"; dNdxPAI = "<<fDifPAIxSecti << 414 // <<"; dNdxPAI = "<<fDifPAIxSection[i]<<G4endl; 414 } 415 } 415 IntegralCerenkov(); 416 IntegralCerenkov(); 416 IntegralMM(); 417 IntegralMM(); 417 IntegralPlasmon(); 418 IntegralPlasmon(); 418 IntegralResonance(); 419 IntegralResonance(); 419 IntegralPAIxSection(); 420 IntegralPAIxSection(); 420 /* 421 /* 421 delete[] fEnergyInterval; 422 delete[] fEnergyInterval; 422 delete[] fA1; 423 delete[] fA1; 423 delete[] fA2; 424 delete[] fA2; 424 delete[] fA3; 425 delete[] fA3; 425 delete[] fA4; 426 delete[] fA4; 426 */ 427 */ 427 } 428 } 428 429 429 ////////////////////////////////////////////// 430 //////////////////////////////////////////////////////////////////////// 430 // 431 // 431 // Test Constructor with beta*gamma square val 432 // Test Constructor with beta*gamma square value 432 433 433 G4PAIxSection::G4PAIxSection( G4int materialIn 434 G4PAIxSection::G4PAIxSection( G4int materialIndex, 434 G4double maxEner << 435 G4double maxEnergyTransfer, 435 G4double betaGam << 436 G4double betaGammaSq ) 436 { 437 { 437 fSandia = nullptr; << 438 fSandia = 0; 438 fMatSandiaMatrix = nullptr; << 439 fMatSandiaMatrix = 0; 439 fVerbose = 0; 440 fVerbose = 0; 440 const G4MaterialTable* theMaterialTable = G4 441 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 441 442 442 G4int i, j, numberOfElements; 443 G4int i, j, numberOfElements; 443 444 444 fMaterialIndex = materialIndex; 445 fMaterialIndex = materialIndex; 445 fDensity = (*theMaterialTable)[mater 446 fDensity = (*theMaterialTable)[materialIndex]->GetDensity(); 446 fElectronDensity = (*theMaterialTable)[mater 447 fElectronDensity = (*theMaterialTable)[materialIndex]->GetElectronDensity(); 447 numberOfElements = (G4int)(*theMaterialTable << 448 numberOfElements = (*theMaterialTable)[materialIndex]->GetNumberOfElements(); 448 449 449 G4int* thisMaterialZ = new G4int[numberOfEle 450 G4int* thisMaterialZ = new G4int[numberOfElements]; 450 451 451 for( i = 0; i < numberOfElements; ++i ) << 452 for( i = 0; i < numberOfElements; i++ ) 452 { 453 { 453 thisMaterialZ[i] = (G4int)(*theMateri 454 thisMaterialZ[i] = (G4int)(*theMaterialTable)[materialIndex]-> 454 GetEleme 455 GetElement(i)->GetZ(); 455 } 456 } 456 // fSandia = new G4SandiaTable(materialIndex 457 // fSandia = new G4SandiaTable(materialIndex); 457 fSandia = (*theMaterialTable)[materialIndex] 458 fSandia = (*theMaterialTable)[materialIndex]->GetSandiaTable(); 458 G4SandiaTable thisMaterialSandiaTable(ma 459 G4SandiaTable thisMaterialSandiaTable(materialIndex); 459 fIntervalNumber = thisMaterialSandiaTable.Sa 460 fIntervalNumber = thisMaterialSandiaTable.SandiaIntervals(thisMaterialZ, 460 << 461 numberOfElements); 461 fIntervalNumber = thisMaterialSandiaTable.Sa 462 fIntervalNumber = thisMaterialSandiaTable.SandiaMixing 462 ( thisMaterialZ , 463 ( thisMaterialZ , 463 (*theMaterialTable)[mate 464 (*theMaterialTable)[materialIndex]->GetFractionVector() , 464 numberOfElements, << 465 numberOfElements,fIntervalNumber); 465 466 466 fIntervalNumber--; 467 fIntervalNumber--; 467 468 468 fEnergyInterval = G4DataVector(fIntervalNumb 469 fEnergyInterval = G4DataVector(fIntervalNumber+2,0.0); 469 fA1 = G4DataVector(fIntervalNumb 470 fA1 = G4DataVector(fIntervalNumber+2,0.0); 470 fA2 = G4DataVector(fIntervalNumb 471 fA2 = G4DataVector(fIntervalNumber+2,0.0); 471 fA3 = G4DataVector(fIntervalNumb 472 fA3 = G4DataVector(fIntervalNumber+2,0.0); 472 fA4 = G4DataVector(fIntervalNumb 473 fA4 = G4DataVector(fIntervalNumber+2,0.0); 473 474 474 /* 475 /* 475 fEnergyInterval = new G4double[fInterval 476 fEnergyInterval = new G4double[fIntervalNumber+2]; 476 fA1 = new G4double[fInterval 477 fA1 = new G4double[fIntervalNumber+2]; 477 fA2 = new G4double[fInterval 478 fA2 = new G4double[fIntervalNumber+2]; 478 fA3 = new G4double[fInterval 479 fA3 = new G4double[fIntervalNumber+2]; 479 fA4 = new G4double[fInterval 480 fA4 = new G4double[fIntervalNumber+2]; 480 */ 481 */ 481 for( i = 1; i <= fIntervalNumber; i++ ) 482 for( i = 1; i <= fIntervalNumber; i++ ) 482 { 483 { 483 if((thisMaterialSandiaTable.GetPhotoAbsorpCo 484 if((thisMaterialSandiaTable.GetPhotoAbsorpCof(i,0) >= maxEnergyTransfer) || 484 i > fIntervalNumber) 485 i > fIntervalNumber) 485 { 486 { 486 fEnergyInterval[i] = maxEnergyTran 487 fEnergyInterval[i] = maxEnergyTransfer; 487 fIntervalNumber = i; << 488 fIntervalNumber = i; 488 break; << 489 break; 489 } 490 } 490 fEnergyInterval[i] = thisMaterialSandiaTabl 491 fEnergyInterval[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,0); 491 fA1[i] = thisMaterialSandiaTabl 492 fA1[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,1)*fDensity; 492 fA2[i] = thisMaterialSandiaTabl 493 fA2[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,2)*fDensity; 493 fA3[i] = thisMaterialSandiaTabl 494 fA3[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,3)*fDensity; 494 fA4[i] = thisMaterialSandiaTabl 495 fA4[i] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i,4)*fDensity; 495 496 496 } 497 } 497 if(fEnergyInterval[fIntervalNumber] != maxEn 498 if(fEnergyInterval[fIntervalNumber] != maxEnergyTransfer) 498 { 499 { 499 fIntervalNumber++; 500 fIntervalNumber++; 500 fEnergyInterval[fIntervalNumber] = ma 501 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; 501 fA1[fIntervalNumber] = fA1[fIntervalN 502 fA1[fIntervalNumber] = fA1[fIntervalNumber-1]; 502 fA2[fIntervalNumber] = fA2[fIntervalN 503 fA2[fIntervalNumber] = fA2[fIntervalNumber-1]; 503 fA3[fIntervalNumber] = fA3[fIntervalN 504 fA3[fIntervalNumber] = fA3[fIntervalNumber-1]; 504 fA4[fIntervalNumber] = fA4[fIntervalN 505 fA4[fIntervalNumber] = fA4[fIntervalNumber-1]; 505 } 506 } 506 for(i=1;i<=fIntervalNumber;i++) 507 for(i=1;i<=fIntervalNumber;i++) 507 { 508 { 508 // G4cout<<fEnergyInterval[i]<<"\t"<<f << 509 // G4cout<<fEnergyInterval[i]<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 509 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4e << 510 // <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 510 } 511 } 511 // Now checking, if two borders are too clos 512 // Now checking, if two borders are too close together 512 513 513 for( i = 1; i < fIntervalNumber; i++ ) 514 for( i = 1; i < fIntervalNumber; i++ ) 514 { 515 { 515 if(fEnergyInterval[i+1]-fEnergyInterva 516 if(fEnergyInterval[i+1]-fEnergyInterval[i] > 516 1.5*fDelta*(fEnergyInterval[i+1]+fE 517 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i])) 517 { << 518 { 518 continue; 519 continue; 519 } << 520 } 520 else 521 else 521 { << 522 { 522 for( j = i; j < fIntervalNumber; j++ 523 for( j = i; j < fIntervalNumber; j++ ) 523 { << 524 { 524 fEnergyInterval[j] = fEnergyInterv 525 fEnergyInterval[j] = fEnergyInterval[j+1]; 525 fA1[j] = fA1[j+1]; 526 fA1[j] = fA1[j+1]; 526 fA2[j] = fA2[j+1]; 527 fA2[j] = fA2[j+1]; 527 fA3[j] = fA3[j+1]; 528 fA3[j] = fA3[j+1]; 528 fA4[j] = fA4[j+1]; 529 fA4[j] = fA4[j+1]; 529 } << 530 } 530 fIntervalNumber--; 531 fIntervalNumber--; 531 i--; 532 i--; 532 } << 533 } 533 } 534 } 534 535 535 /* ********************************* 536 /* ********************************* 536 fSplineEnergy = new G4double[fM 537 fSplineEnergy = new G4double[fMaxSplineSize]; 537 fRePartDielectricConst = new G4double[fM 538 fRePartDielectricConst = new G4double[fMaxSplineSize]; 538 fImPartDielectricConst = new G4double[fM 539 fImPartDielectricConst = new G4double[fMaxSplineSize]; 539 fIntegralTerm = new G4double[fM 540 fIntegralTerm = new G4double[fMaxSplineSize]; 540 fDifPAIxSection = new G4double[fM 541 fDifPAIxSection = new G4double[fMaxSplineSize]; 541 fIntegralPAIxSection = new G4double[fM 542 fIntegralPAIxSection = new G4double[fMaxSplineSize]; 542 543 543 for(i=0;i<fMaxSplineSize;i++) 544 for(i=0;i<fMaxSplineSize;i++) 544 { 545 { 545 fSplineEnergy[i] = 0.0; 546 fSplineEnergy[i] = 0.0; 546 fRePartDielectricConst[i] = 0.0; 547 fRePartDielectricConst[i] = 0.0; 547 fImPartDielectricConst[i] = 0.0; 548 fImPartDielectricConst[i] = 0.0; 548 fIntegralTerm[i] = 0.0; 549 fIntegralTerm[i] = 0.0; 549 fDifPAIxSection[i] = 0.0; 550 fDifPAIxSection[i] = 0.0; 550 fIntegralPAIxSection[i] = 0.0; 551 fIntegralPAIxSection[i] = 0.0; 551 } 552 } 552 */ //////////////////////// 553 */ //////////////////////// 553 554 554 // Preparation of fSplineEnergy array co 555 // Preparation of fSplineEnergy array corresponding to min ionisation, G~4 555 556 556 ComputeLowEnergyCof(); 557 ComputeLowEnergyCof(); 557 G4double betaGammaSqRef = 558 G4double betaGammaSqRef = 558 fLorentzFactor[fRefGammaNumber]*fLorentzFa 559 fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1; 559 560 560 NormShift(betaGammaSqRef); 561 NormShift(betaGammaSqRef); 561 SplainPAI(betaGammaSqRef); 562 SplainPAI(betaGammaSqRef); 562 563 563 // Preparation of integral PAI cross section 564 // Preparation of integral PAI cross section for input betaGammaSq 564 565 565 for(i = 1; i <= fSplineNumber; i++) 566 for(i = 1; i <= fSplineNumber; i++) 566 { 567 { 567 fDifPAIxSection[i] = DifPAIxSection(i 568 fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq); 568 fdNdxCerenkov[i] = PAIdNdxCerenkov( 569 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 569 fdNdxMM[i] = PAIdNdxMM(i,betaGammaS 570 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 570 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 571 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 571 fdNdxResonance[i] = PAIdNdxResonance 572 fdNdxResonance[i] = PAIdNdxResonance(i,betaGammaSq); 572 } 573 } 573 IntegralPAIxSection(); 574 IntegralPAIxSection(); 574 IntegralCerenkov(); 575 IntegralCerenkov(); 575 IntegralMM(); 576 IntegralMM(); 576 IntegralPlasmon(); 577 IntegralPlasmon(); 577 IntegralResonance(); 578 IntegralResonance(); 578 } 579 } 579 580 580 ////////////////////////////////////////////// 581 //////////////////////////////////////////////////////////////////////////// 581 // 582 // 582 // Destructor 583 // Destructor 583 584 584 G4PAIxSection::~G4PAIxSection() 585 G4PAIxSection::~G4PAIxSection() 585 { 586 { 586 /* ************************ 587 /* ************************ 587 delete[] fSplineEnergy ; 588 delete[] fSplineEnergy ; 588 delete[] fRePartDielectricConst; 589 delete[] fRePartDielectricConst; 589 delete[] fImPartDielectricConst; 590 delete[] fImPartDielectricConst; 590 delete[] fIntegralTerm ; 591 delete[] fIntegralTerm ; 591 delete[] fDifPAIxSection ; 592 delete[] fDifPAIxSection ; 592 delete[] fIntegralPAIxSection ; 593 delete[] fIntegralPAIxSection ; 593 */ //////////////////////// 594 */ //////////////////////// 594 delete fMatSandiaMatrix; 595 delete fMatSandiaMatrix; 595 } 596 } 596 597 597 G4double G4PAIxSection::GetLorentzFactor(G4int << 598 598 { << 599 599 return fLorentzFactor[j]; << 600 } << 601 600 602 ////////////////////////////////////////////// 601 //////////////////////////////////////////////////////////////////////// 603 // 602 // 604 // Constructor with beta*gamma square value ca 603 // Constructor with beta*gamma square value called from G4PAIPhotModel/Data 605 604 606 void G4PAIxSection::Initialize( const G4Materi 605 void G4PAIxSection::Initialize( const G4Material* material, 607 G4double maxEn << 606 G4double maxEnergyTransfer, 608 G4double betaG << 607 G4double betaGammaSq, 609 G4SandiaTable* << 608 G4SandiaTable* sandia) 610 { 609 { 611 if(fVerbose > 0) 610 if(fVerbose > 0) 612 { 611 { 613 G4cout<<G4endl; 612 G4cout<<G4endl; 614 G4cout<<"G4PAIxSection::Initialize(...,G4S 613 G4cout<<"G4PAIxSection::Initialize(...,G4SandiaTable* sandia)"<<G4endl; 615 G4cout<<G4endl; 614 G4cout<<G4endl; 616 } 615 } 617 G4int i, j; 616 G4int i, j; 618 617 619 fSandia = sandia; 618 fSandia = sandia; 620 fIntervalNumber = sandia->GetMaxInterval(); 619 fIntervalNumber = sandia->GetMaxInterval(); 621 fDensity = material->GetDensity(); 620 fDensity = material->GetDensity(); 622 fElectronDensity = material->GetElectronDens 621 fElectronDensity = material->GetElectronDensity(); 623 622 624 // fIntervalNumber--; 623 // fIntervalNumber--; 625 624 626 if( fVerbose > 0 ) 625 if( fVerbose > 0 ) 627 { 626 { 628 G4cout<<"fDensity = "<<fDensity<<"\t"<<fEl 627 G4cout<<"fDensity = "<<fDensity<<"\t"<<fElectronDensity<<"\t fIntervalNumber = "<<fIntervalNumber<<G4endl; 629 } 628 } 630 fEnergyInterval = G4DataVector(fIntervalNumb 629 fEnergyInterval = G4DataVector(fIntervalNumber+2,0.0); 631 fA1 = G4DataVector(fIntervalNumb 630 fA1 = G4DataVector(fIntervalNumber+2,0.0); 632 fA2 = G4DataVector(fIntervalNumb 631 fA2 = G4DataVector(fIntervalNumber+2,0.0); 633 fA3 = G4DataVector(fIntervalNumb 632 fA3 = G4DataVector(fIntervalNumber+2,0.0); 634 fA4 = G4DataVector(fIntervalNumb 633 fA4 = G4DataVector(fIntervalNumber+2,0.0); 635 634 636 for( i = 1; i <= fIntervalNumber; i++ ) 635 for( i = 1; i <= fIntervalNumber; i++ ) 637 { 636 { 638 if ( sandia->GetSandiaMatTablePAI(i-1,0) < 637 if ( sandia->GetSandiaMatTablePAI(i-1,0) < 1.*eV && sandia->GetLowerI1() == false) 639 { 638 { 640 fIntervalNumber--; 639 fIntervalNumber--; 641 continue; 640 continue; 642 } 641 } 643 if( ( sandia->GetSandiaMatTablePAI(i-1,0) 642 if( ( sandia->GetSandiaMatTablePAI(i-1,0) >= maxEnergyTransfer ) || i >= fIntervalNumber ) 644 { 643 { 645 fEnergyInterval[i] = maxEnergyTransfer; 644 fEnergyInterval[i] = maxEnergyTransfer; 646 fIntervalNumber = i; 645 fIntervalNumber = i; 647 break; 646 break; 648 } 647 } 649 fEnergyInterval[i] = sandia->GetSandiaMatT 648 fEnergyInterval[i] = sandia->GetSandiaMatTablePAI(i-1,0); 650 fA1[i] = sandia->GetSandiaMatT 649 fA1[i] = sandia->GetSandiaMatTablePAI(i-1,1); 651 fA2[i] = sandia->GetSandiaMatT 650 fA2[i] = sandia->GetSandiaMatTablePAI(i-1,2); 652 fA3[i] = sandia->GetSandiaMatT 651 fA3[i] = sandia->GetSandiaMatTablePAI(i-1,3); 653 fA4[i] = sandia->GetSandiaMatT 652 fA4[i] = sandia->GetSandiaMatTablePAI(i-1,4); 654 653 655 if( fVerbose > 0 ) 654 if( fVerbose > 0 ) 656 { 655 { 657 G4cout<<i<<"\t"<<fEnergyInterval[i]/ke 656 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 658 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4e 657 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 659 } 658 } 660 } 659 } 661 if( fVerbose > 0 ) G4cout<<"last i = "<<i<<" 660 if( fVerbose > 0 ) G4cout<<"last i = "<<i<<"; "<<"fIntervalNumber = "<<fIntervalNumber<<G4endl; 662 661 663 if( fEnergyInterval[fIntervalNumber] != maxE 662 if( fEnergyInterval[fIntervalNumber] != maxEnergyTransfer ) 664 { 663 { 665 fIntervalNumber++; 664 fIntervalNumber++; 666 fEnergyInterval[fIntervalNumber] = maxEn 665 fEnergyInterval[fIntervalNumber] = maxEnergyTransfer; 667 } 666 } 668 if( fVerbose > 0 ) 667 if( fVerbose > 0 ) 669 { 668 { 670 for( i = 1; i <= fIntervalNumber; i++ ) 669 for( i = 1; i <= fIntervalNumber; i++ ) 671 { 670 { 672 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< 671 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 673 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 672 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 674 } 673 } 675 } 674 } 676 if( fVerbose > 0 ) G4cout<<"Now checking, 675 if( fVerbose > 0 ) G4cout<<"Now checking, if two borders are too close together"<<G4endl; 677 676 678 for( i = 1; i < fIntervalNumber; i++ ) 677 for( i = 1; i < fIntervalNumber; i++ ) 679 { 678 { 680 if( fEnergyInterval[i+1]-fEnergyInterval[i 679 if( fEnergyInterval[i+1]-fEnergyInterval[i] > 681 1.5*fDelta*(fEnergyInterval[i+1]+fEne << 680 1.5*fDelta*(fEnergyInterval[i+1]+fEnergyInterval[i]) && fEnergyInterval[i] > 0.) continue; 682 else 681 else 683 { 682 { 684 if( fVerbose > 0 ) G4cout<<i<<"\t"<<fEn 683 if( fVerbose > 0 ) G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<"\t"<<fEnergyInterval[i+1]/keV; 685 684 686 for( j = i; j < fIntervalNumber; j++ ) 685 for( j = i; j < fIntervalNumber; j++ ) 687 { 686 { 688 fEnergyInterval[j] = fEnergyInte << 687 fEnergyInterval[j] = fEnergyInterval[j+1]; 689 fA1[j] = fA1[j+1]; << 688 fA1[j] = fA1[j+1]; 690 fA2[j] = fA2[j+1]; << 689 fA2[j] = fA2[j+1]; 691 fA3[j] = fA3[j+1]; << 690 fA3[j] = fA3[j+1]; 692 fA4[j] = fA4[j+1]; << 691 fA4[j] = fA4[j+1]; 693 } 692 } 694 fIntervalNumber--; 693 fIntervalNumber--; 695 i--; 694 i--; 696 } 695 } 697 } 696 } 698 if( fVerbose > 0 ) 697 if( fVerbose > 0 ) 699 { 698 { 700 for( i = 1; i <= fIntervalNumber; i++ ) 699 for( i = 1; i <= fIntervalNumber; i++ ) 701 { 700 { 702 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV< 701 G4cout<<i<<"\t"<<fEnergyInterval[i]/keV<<"\t"<<fA1[i]<<"\t"<<fA2[i]<<"\t" 703 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 702 <<fA3[i]<<"\t"<<fA4[i]<<"\t"<<G4endl; 704 } 703 } 705 } 704 } 706 // Preparation of fSplineEnergy array corres 705 // Preparation of fSplineEnergy array corresponding to min ionisation, G~4 707 706 708 ComputeLowEnergyCof(material); 707 ComputeLowEnergyCof(material); 709 708 710 G4double betaGammaSqRef = 709 G4double betaGammaSqRef = 711 fLorentzFactor[fRefGammaNumber]*fLorentzFa 710 fLorentzFactor[fRefGammaNumber]*fLorentzFactor[fRefGammaNumber] - 1; 712 711 713 NormShift(betaGammaSqRef); 712 NormShift(betaGammaSqRef); 714 SplainPAI(betaGammaSqRef); 713 SplainPAI(betaGammaSqRef); 715 714 716 // Preparation of integral PAI cross section 715 // Preparation of integral PAI cross section for input betaGammaSq 717 716 718 for( i = 1; i <= fSplineNumber; i++ ) 717 for( i = 1; i <= fSplineNumber; i++ ) 719 { 718 { 720 fDifPAIxSection[i] = DifPAIxSection(i,bet 719 fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq); 721 720 722 721 723 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,be 722 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 724 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 723 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 725 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,bet 724 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 726 fdNdxResonance[i] = PAIdNdxResonance(i,b 725 fdNdxResonance[i] = PAIdNdxResonance(i,betaGammaSq); 727 } 726 } 728 IntegralPAIxSection(); 727 IntegralPAIxSection(); 729 IntegralCerenkov(); 728 IntegralCerenkov(); 730 IntegralMM(); 729 IntegralMM(); 731 IntegralPlasmon(); 730 IntegralPlasmon(); 732 IntegralResonance(); 731 IntegralResonance(); 733 732 734 for( i = 1; i <= fSplineNumber; i++ ) 733 for( i = 1; i <= fSplineNumber; i++ ) 735 { 734 { 736 if(fVerbose>0) G4cout<<i<<"; w = "<<fSplin 735 if(fVerbose>0) G4cout<<i<<"; w = "<<fSplineEnergy[i]/keV<<" keV; dN/dx_>w = "<<fIntegralPAIxSection[i]<<" 1/mm"<<G4endl; 737 } 736 } 738 } 737 } 739 738 740 739 741 ////////////////////////////////////////////// 740 ///////////////////////////////////////////////////////////////////////// 742 // 741 // 743 // Compute low energy cof. It reduces PAI xsc 742 // Compute low energy cof. It reduces PAI xsc for Lorentz factors less than 4. 744 // 743 // 745 744 746 void G4PAIxSection::ComputeLowEnergyCof(const 745 void G4PAIxSection::ComputeLowEnergyCof(const G4Material* material) 747 { 746 { 748 G4int i, numberOfElements = (G4int)material- << 747 G4int i, numberOfElements = material->GetNumberOfElements(); 749 G4double sumZ = 0., sumCof = 0.; 748 G4double sumZ = 0., sumCof = 0.; 750 749 751 static const G4double p0 = 1.20923e+00; 750 static const G4double p0 = 1.20923e+00; 752 static const G4double p1 = 3.53256e-01; 751 static const G4double p1 = 3.53256e-01; 753 static const G4double p2 = -1.45052e-03; 752 static const G4double p2 = -1.45052e-03; 754 753 755 G4double* thisMaterialZ = new G4double[num 754 G4double* thisMaterialZ = new G4double[numberOfElements]; 756 G4double* thisMaterialCof = new G4double[num 755 G4double* thisMaterialCof = new G4double[numberOfElements]; 757 756 758 for( i = 0; i < numberOfElements; ++i ) << 757 for( i = 0; i < numberOfElements; i++ ) 759 { 758 { 760 thisMaterialZ[i] = material->GetElement(i) 759 thisMaterialZ[i] = material->GetElement(i)->GetZ(); 761 sumZ += thisMaterialZ[i]; 760 sumZ += thisMaterialZ[i]; 762 thisMaterialCof[i] = p0+p1*thisMaterialZ[i 761 thisMaterialCof[i] = p0+p1*thisMaterialZ[i]+p2*thisMaterialZ[i]*thisMaterialZ[i]; 763 } 762 } 764 for( i = 0; i < numberOfElements; ++i ) << 763 for( i = 0; i < numberOfElements; i++ ) 765 { 764 { 766 sumCof += thisMaterialCof[i]*thisMaterialZ 765 sumCof += thisMaterialCof[i]*thisMaterialZ[i]/sumZ; 767 } 766 } 768 fLowEnergyCof = sumCof; 767 fLowEnergyCof = sumCof; 769 delete [] thisMaterialZ; 768 delete [] thisMaterialZ; 770 delete [] thisMaterialCof; 769 delete [] thisMaterialCof; 771 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof 770 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof<<G4endl; 772 } 771 } 773 772 774 ////////////////////////////////////////////// 773 ///////////////////////////////////////////////////////////////////////// 775 // 774 // 776 // Compute low energy cof. It reduces PAI xsc 775 // Compute low energy cof. It reduces PAI xsc for Lorentz factors less than 4. 777 // 776 // 778 777 779 void G4PAIxSection::ComputeLowEnergyCof() 778 void G4PAIxSection::ComputeLowEnergyCof() 780 { 779 { 781 const G4MaterialTable* theMaterialTable = G4 780 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 782 G4int i, numberOfElements = (G4int)(*theMate << 781 G4int i, numberOfElements = (*theMaterialTable)[fMaterialIndex]->GetNumberOfElements(); 783 G4double sumZ = 0., sumCof = 0.; 782 G4double sumZ = 0., sumCof = 0.; 784 783 785 const G4double p0 = 1.20923e+00; 784 const G4double p0 = 1.20923e+00; 786 const G4double p1 = 3.53256e-01; 785 const G4double p1 = 3.53256e-01; 787 const G4double p2 = -1.45052e-03; 786 const G4double p2 = -1.45052e-03; 788 787 789 G4double* thisMaterialZ = new G4double[num 788 G4double* thisMaterialZ = new G4double[numberOfElements]; 790 G4double* thisMaterialCof = new G4double[num 789 G4double* thisMaterialCof = new G4double[numberOfElements]; 791 790 792 for( i = 0; i < numberOfElements; ++i ) << 791 for( i = 0; i < numberOfElements; i++ ) 793 { 792 { 794 thisMaterialZ[i] = (*theMaterialTable)[fMa 793 thisMaterialZ[i] = (*theMaterialTable)[fMaterialIndex]->GetElement(i)->GetZ(); 795 sumZ += thisMaterialZ[i]; 794 sumZ += thisMaterialZ[i]; 796 thisMaterialCof[i] = p0+p1*thisMaterialZ[i 795 thisMaterialCof[i] = p0+p1*thisMaterialZ[i]+p2*thisMaterialZ[i]*thisMaterialZ[i]; 797 } 796 } 798 for( i = 0; i < numberOfElements; ++i ) << 797 for( i = 0; i < numberOfElements; i++ ) 799 { 798 { 800 sumCof += thisMaterialCof[i]*thisMaterialZ 799 sumCof += thisMaterialCof[i]*thisMaterialZ[i]/sumZ; 801 } 800 } 802 fLowEnergyCof = sumCof; 801 fLowEnergyCof = sumCof; 803 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof 802 // G4cout<<"fLowEnergyCof = "<<fLowEnergyCof<<G4endl; 804 delete [] thisMaterialZ; 803 delete [] thisMaterialZ; 805 delete [] thisMaterialCof; 804 delete [] thisMaterialCof; 806 } 805 } 807 806 808 ////////////////////////////////////////////// 807 ///////////////////////////////////////////////////////////////////////// 809 // 808 // 810 // General control function for class G4PAIxSe 809 // General control function for class G4PAIxSection 811 // 810 // 812 811 813 void G4PAIxSection::InitPAI() 812 void G4PAIxSection::InitPAI() 814 { 813 { 815 G4int i; 814 G4int i; 816 G4double betaGammaSq = fLorentzFactor[fRefG 815 G4double betaGammaSq = fLorentzFactor[fRefGammaNumber]* 817 fLorentzFactor[fRefG 816 fLorentzFactor[fRefGammaNumber] - 1; 818 817 819 // Preparation of integral PAI cross sectio 818 // Preparation of integral PAI cross section for reference gamma 820 819 821 NormShift(betaGammaSq); 820 NormShift(betaGammaSq); 822 SplainPAI(betaGammaSq); 821 SplainPAI(betaGammaSq); 823 822 824 IntegralPAIxSection(); 823 IntegralPAIxSection(); 825 IntegralCerenkov(); 824 IntegralCerenkov(); 826 IntegralMM(); 825 IntegralMM(); 827 IntegralPlasmon(); 826 IntegralPlasmon(); 828 IntegralResonance(); 827 IntegralResonance(); 829 828 830 for(i = 0; i<= fSplineNumber; i++) 829 for(i = 0; i<= fSplineNumber; i++) 831 { 830 { 832 fPAItable[i][fRefGammaNumber] = fIntegra 831 fPAItable[i][fRefGammaNumber] = fIntegralPAIxSection[i]; 833 if(i != 0) 832 if(i != 0) 834 { 833 { 835 fPAItable[i][0] = fSplineEnergy[i]; << 834 fPAItable[i][0] = fSplineEnergy[i]; 836 } 835 } 837 } 836 } 838 fPAItable[0][0] = fSplineNumber; 837 fPAItable[0][0] = fSplineNumber; 839 838 840 for(G4int j = 1; j < 112; j++) // for 839 for(G4int j = 1; j < 112; j++) // for other gammas 841 { 840 { 842 if( j == fRefGammaNumber ) continue; 841 if( j == fRefGammaNumber ) continue; 843 842 844 betaGammaSq = fLorentzFactor[j]*fLorentz 843 betaGammaSq = fLorentzFactor[j]*fLorentzFactor[j] - 1; 845 844 846 for(i = 1; i <= fSplineNumber; i++) 845 for(i = 1; i <= fSplineNumber; i++) 847 { 846 { 848 fDifPAIxSection[i] = DifPAIxSection(i 847 fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq); 849 fdNdxCerenkov[i] = PAIdNdxCerenkov( 848 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 850 fdNdxMM[i] = PAIdNdxMM(i,betaGammaS 849 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 851 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 850 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 852 fdNdxResonance[i] = PAIdNdxResonance 851 fdNdxResonance[i] = PAIdNdxResonance(i,betaGammaSq); 853 } 852 } 854 IntegralPAIxSection(); 853 IntegralPAIxSection(); 855 IntegralCerenkov(); 854 IntegralCerenkov(); 856 IntegralMM(); 855 IntegralMM(); 857 IntegralPlasmon(); 856 IntegralPlasmon(); 858 IntegralResonance(); 857 IntegralResonance(); 859 858 860 for(i = 0; i <= fSplineNumber; i++) 859 for(i = 0; i <= fSplineNumber; i++) 861 { 860 { 862 fPAItable[i][j] = fIntegralPAIxSectio 861 fPAItable[i][j] = fIntegralPAIxSection[i]; 863 } 862 } 864 } 863 } 865 864 866 } 865 } 867 866 868 ////////////////////////////////////////////// 867 /////////////////////////////////////////////////////////////////////// 869 // 868 // 870 // Shifting from borders to intervals Creation 869 // Shifting from borders to intervals Creation of first energy points 871 // 870 // 872 871 873 void G4PAIxSection::NormShift(G4double betaGam 872 void G4PAIxSection::NormShift(G4double betaGammaSq) 874 { 873 { 875 G4int i, j; 874 G4int i, j; 876 875 877 if(fVerbose>0) G4cout<<" G4PAIxSection: 876 if(fVerbose>0) G4cout<<" G4PAIxSection::NormShift call "<<G4endl; 878 877 879 878 880 for( i = 1; i <= fIntervalNumber-1; i++ ) 879 for( i = 1; i <= fIntervalNumber-1; i++ ) 881 { 880 { 882 for( j = 1; j <= 2; j++ ) 881 for( j = 1; j <= 2; j++ ) 883 { 882 { 884 fSplineNumber = (i-1)*2 + j; 883 fSplineNumber = (i-1)*2 + j; 885 884 886 if( j == 1 ) fSplineEnergy[fSplineNumber 885 if( j == 1 ) fSplineEnergy[fSplineNumber] = fEnergyInterval[i ]*(1+fDelta); 887 else fSplineEnergy[fSplineNumber 886 else fSplineEnergy[fSplineNumber] = fEnergyInterval[i+1]*(1-fDelta); 888 if(fVerbose>0) G4cout<<"cn = "<<fSplineN 887 if(fVerbose>0) G4cout<<"cn = "<<fSplineNumber<<"; "<<"w = "<<fSplineEnergy[fSplineNumber]/keV<<" keV"<<G4endl; 889 } 888 } 890 } 889 } 891 fIntegralTerm[1]=RutherfordIntegral(1,fEnerg 890 fIntegralTerm[1]=RutherfordIntegral(1,fEnergyInterval[1],fSplineEnergy[1]); 892 891 893 j = 1; 892 j = 1; 894 893 895 for( i = 2; i <= fSplineNumber; i++ ) 894 for( i = 2; i <= fSplineNumber; i++ ) 896 { 895 { 897 if( fSplineEnergy[i]<fEnergyInterval[j+1] 896 if( fSplineEnergy[i]<fEnergyInterval[j+1] ) 898 { 897 { 899 fIntegralTerm[i] = fIntegralTerm[i-1] 898 fIntegralTerm[i] = fIntegralTerm[i-1] + 900 RutherfordIntegral << 899 RutherfordIntegral(j,fSplineEnergy[i-1], 901 900 fSplineEnergy[i] ); 902 } 901 } 903 else 902 else 904 { 903 { 905 G4double x = RutherfordIntegral(j,fSpli 904 G4double x = RutherfordIntegral(j,fSplineEnergy[i-1], 906 fEn 905 fEnergyInterval[j+1] ); 907 j++; 906 j++; 908 fIntegralTerm[i] = fIntegralTerm[i-1] 907 fIntegralTerm[i] = fIntegralTerm[i-1] + x + 909 RutherfordIntegral << 908 RutherfordIntegral(j,fEnergyInterval[j], 910 909 fSplineEnergy[i] ); 911 } 910 } 912 if(fVerbose>0) G4cout<<i<<" Shift: w = "< 911 if(fVerbose>0) G4cout<<i<<" Shift: w = "<<fSplineEnergy[i]/keV<<" keV \t"<<fIntegralTerm[i]<<"\n"<<G4endl; 913 } 912 } 914 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine 913 fNormalizationCof = 2*pi*pi*hbarc*hbarc*fine_structure_const/electron_mass_c2; 915 fNormalizationCof *= fElectronDensity/fInteg 914 fNormalizationCof *= fElectronDensity/fIntegralTerm[fSplineNumber]; 916 915 917 // G4cout<<"fNormalizationCof = "<<fNormaliz 916 // G4cout<<"fNormalizationCof = "<<fNormalizationCof<<G4endl; 918 917 919 // Calculation of PAI differrential << 918 // Calculation of PAI differrential cross-section (1/(keV*cm)) 920 // in the energy points near borders << 919 // in the energy points near borders of energy intervals 921 920 922 for(G4int k = 1; k <= fIntervalNumber-1; k+ 921 for(G4int k = 1; k <= fIntervalNumber-1; k++ ) 923 { 922 { 924 for( j = 1; j <= 2; j++ ) 923 for( j = 1; j <= 2; j++ ) 925 { 924 { 926 i = (k-1)*2 + j; 925 i = (k-1)*2 + j; 927 fImPartDielectricConst[i] = fNormaliz 926 fImPartDielectricConst[i] = fNormalizationCof* 928 ImPartDie << 927 ImPartDielectricConst(k,fSplineEnergy[i]); 929 fRePartDielectricConst[i] = fNormaliz 928 fRePartDielectricConst[i] = fNormalizationCof* 930 RePartDie << 929 RePartDielectricConst(fSplineEnergy[i]); 931 fIntegralTerm[i] *= fNormalizationCof 930 fIntegralTerm[i] *= fNormalizationCof; 932 931 933 fDifPAIxSection[i] = DifPAIxSection(i 932 fDifPAIxSection[i] = DifPAIxSection(i,betaGammaSq); 934 fdNdxCerenkov[i] = PAIdNdxCerenkov( 933 fdNdxCerenkov[i] = PAIdNdxCerenkov(i,betaGammaSq); 935 fdNdxMM[i] = PAIdNdxMM(i,betaGammaS 934 fdNdxMM[i] = PAIdNdxMM(i,betaGammaSq); 936 fdNdxPlasmon[i] = PAIdNdxPlasmon(i 935 fdNdxPlasmon[i] = PAIdNdxPlasmon(i,betaGammaSq); 937 fdNdxResonance[i] = PAIdNdxResonan 936 fdNdxResonance[i] = PAIdNdxResonance(i,betaGammaSq); 938 if(fVerbose>0) G4cout<<i<<" Shift: w = "< 937 if(fVerbose>0) G4cout<<i<<" Shift: w = "<<fSplineEnergy[i]/keV<<" keV, xsc = "<<fDifPAIxSection[i]<<"\n"<<G4endl; 939 } 938 } 940 } 939 } 941 940 942 } // end of NormShift 941 } // end of NormShift 943 942 944 ////////////////////////////////////////////// 943 ///////////////////////////////////////////////////////////////////////// 945 // 944 // 946 // Creation of new energy points as geometrica 945 // Creation of new energy points as geometrical mean of existing 947 // one, calculation PAI_cs for them, while the 946 // one, calculation PAI_cs for them, while the error of logarithmic 948 // linear approximation would be smaller than 947 // linear approximation would be smaller than 'fError' 949 948 950 void G4PAIxSection::SplainPAI(G4double betaGam 949 void G4PAIxSection::SplainPAI(G4double betaGammaSq) 951 { 950 { 952 G4int j, k = 1, i = 1; 951 G4int j, k = 1, i = 1; 953 952 954 if(fVerbose>0) G4cout<<" G 953 if(fVerbose>0) G4cout<<" G4PAIxSection::SplainPAI call "<<G4endl; 955 954 956 while ( (i < fSplineNumber) && (fSplineNumbe 955 while ( (i < fSplineNumber) && (fSplineNumber < fMaxSplineSize-1) ) 957 { 956 { 958 // if( std::abs(fSplineEnergy[i+1]-fEnerg 957 // if( std::abs(fSplineEnergy[i+1]-fEnergyInterval[k+1]) > (fSplineEnergy[i+1]+fEnergyInterval[k+1])*5.e-7 ) 959 if( fSplineEnergy[i+1] > fEnergyInterval[ 958 if( fSplineEnergy[i+1] > fEnergyInterval[k+1] ) 960 { 959 { 961 k++; // Here next energy point is 960 k++; // Here next energy point is in next energy interval 962 i++; << 961 i++; 963 if(fVerbose>0) G4cout<<" << 962 if(fVerbose>0) G4cout<<" in if: i = "<<i<<"; k = "<<k<<G4endl; 964 continue; 963 continue; 965 } 964 } 966 if(fVerbose>0) G4cout<<" out if: i 965 if(fVerbose>0) G4cout<<" out if: i = "<<i<<"; k = "<<k<<G4endl; 967 966 968 // Shifting of arrayes << 967 // Shifting of arrayes for inserting the geometrical 969 // average of 'i' and ' << 968 // average of 'i' and 'i+1' energy points to 'i+1' place 970 fSplineNumber++; 969 fSplineNumber++; 971 970 972 for( j = fSplineNumber; j >= i+2; j-- ) 971 for( j = fSplineNumber; j >= i+2; j-- ) 973 { 972 { 974 fSplineEnergy[j] = fSplineEn 973 fSplineEnergy[j] = fSplineEnergy[j-1]; 975 fImPartDielectricConst[j] = fImPartDi 974 fImPartDielectricConst[j] = fImPartDielectricConst[j-1]; 976 fRePartDielectricConst[j] = fRePartDi << 975 fRePartDielectricConst[j] = fRePartDielectricConst[j-1]; 977 fIntegralTerm[j] = fIntegral << 976 fIntegralTerm[j] = fIntegralTerm[j-1]; 978 977 979 fDifPAIxSection[j] = fDifPAIxSection[ << 978 fDifPAIxSection[j] = fDifPAIxSection[j-1]; 980 fdNdxCerenkov[j] = fdNdxCerenkov[j- 979 fdNdxCerenkov[j] = fdNdxCerenkov[j-1]; 981 fdNdxMM[j] = fdNdxMM[j-1]; 980 fdNdxMM[j] = fdNdxMM[j-1]; 982 fdNdxPlasmon[j] = fdNdxPlasmon[j-1 981 fdNdxPlasmon[j] = fdNdxPlasmon[j-1]; 983 fdNdxResonance[j] = fdNdxResonance[j 982 fdNdxResonance[j] = fdNdxResonance[j-1]; 984 } 983 } 985 G4double x1 = fSplineEnergy[i]; 984 G4double x1 = fSplineEnergy[i]; 986 G4double x2 = fSplineEnergy[i+1]; 985 G4double x2 = fSplineEnergy[i+1]; 987 G4double yy1 = fDifPAIxSection[i]; 986 G4double yy1 = fDifPAIxSection[i]; 988 G4double y2 = fDifPAIxSection[i+1]; 987 G4double y2 = fDifPAIxSection[i+1]; 989 988 990 if(fVerbose>0) G4cout<<"Spline: x1 = "<< 989 if(fVerbose>0) G4cout<<"Spline: x1 = "<<x1<<"; x2 = "<<x2<<", yy1 = "<<yy1<<"; y2 = "<<y2<<G4endl; 991 990 992 991 993 G4double en1 = sqrt(x1*x2); 992 G4double en1 = sqrt(x1*x2); 994 // G4double en1 = 0.5*(x1 + x2); 993 // G4double en1 = 0.5*(x1 + x2); 995 994 996 995 997 fSplineEnergy[i+1] = en1; 996 fSplineEnergy[i+1] = en1; 998 997 999 // Calculation of logarithmic << 998 // Calculation of logarithmic linear approximation 1000 // in this (enr) energy poin << 999 // in this (enr) energy point, which number is 'i+1' now 1001 1000 1002 G4double a = log10(y2/yy1)/log10(x2/x1) 1001 G4double a = log10(y2/yy1)/log10(x2/x1); 1003 G4double b = log10(yy1) - a*log10(x1); 1002 G4double b = log10(yy1) - a*log10(x1); 1004 G4double y = a*log10(en1) + b; 1003 G4double y = a*log10(en1) + b; 1005 1004 1006 y = pow(10.,y); 1005 y = pow(10.,y); 1007 1006 1008 // Calculation of the PAI di << 1007 // Calculation of the PAI dif. cross-section at this point 1009 1008 1010 fImPartDielectricConst[i+1] = fNormaliz 1009 fImPartDielectricConst[i+1] = fNormalizationCof* 1011 ImPartDie << 1010 ImPartDielectricConst(k,fSplineEnergy[i+1]); 1012 fRePartDielectricConst[i+1] = fNormaliz 1011 fRePartDielectricConst[i+1] = fNormalizationCof* 1013 RePartDie << 1012 RePartDielectricConst(fSplineEnergy[i+1]); 1014 fIntegralTerm[i+1] = fIntegralTerm[i] + 1013 fIntegralTerm[i+1] = fIntegralTerm[i] + fNormalizationCof* 1015 RutherfordIntegral << 1014 RutherfordIntegral(k,fSplineEnergy[i], 1016 1015 fSplineEnergy[i+1]); 1017 1016 1018 fDifPAIxSection[i+1] = DifPAIxSection(i 1017 fDifPAIxSection[i+1] = DifPAIxSection(i+1,betaGammaSq); 1019 fdNdxCerenkov[i+1] = PAIdNdxCerenkov( 1018 fdNdxCerenkov[i+1] = PAIdNdxCerenkov(i+1,betaGammaSq); 1020 fdNdxMM[i+1] = PAIdNdxMM(i+1,be 1019 fdNdxMM[i+1] = PAIdNdxMM(i+1,betaGammaSq); 1021 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i 1020 fdNdxPlasmon[i+1] = PAIdNdxPlasmon(i+1,betaGammaSq); 1022 fdNdxResonance[i+1] = PAIdNdxResonance 1021 fdNdxResonance[i+1] = PAIdNdxResonance(i+1,betaGammaSq); 1023 1022 1024 // Condition for next divis << 1023 // Condition for next division of this segment or to pass 1025 1024 1026 if(fVerbose>0) G4cout<<"Spline, a = "<<a< 1025 if(fVerbose>0) G4cout<<"Spline, a = "<<a<<"; b = "<<b<<"; new xsc = "<<y<<"; compxsc = "<<fDifPAIxSection[i+1]<<G4endl; 1027 1026 1028 // to higher energies << 1027 // to higher energies 1029 1028 1030 G4double x = 2*(fDifPAIxSection[i+1] - 1029 G4double x = 2*(fDifPAIxSection[i+1] - y)/(fDifPAIxSection[i+1] + y); 1031 1030 1032 G4double delta = 2.*(fSplineEnergy[i+1] 1031 G4double delta = 2.*(fSplineEnergy[i+1]-fSplineEnergy[i])/(fSplineEnergy[i+1]+fSplineEnergy[i]); 1033 1032 1034 if( x < 0 ) 1033 if( x < 0 ) 1035 { 1034 { 1036 x = -x; << 1035 x = -x; 1037 } 1036 } 1038 if( x > fError && fSplineNumber < fMaxS 1037 if( x > fError && fSplineNumber < fMaxSplineSize-1 && delta > 2.*fDelta ) 1039 { 1038 { 1040 continue; // next division << 1039 continue; // next division 1041 } 1040 } 1042 i += 2; // pass to next segment 1041 i += 2; // pass to next segment 1043 1042 1044 // Loop checking, 03-Aug-2015, Vladimir << 1045 } // close 'while' 1043 } // close 'while' 1046 1044 1047 } // end of SplainPAI 1045 } // end of SplainPAI 1048 1046 1049 1047 1050 ///////////////////////////////////////////// 1048 //////////////////////////////////////////////////////////////////// 1051 // 1049 // 1052 // Integration over electrons that could be c 1050 // Integration over electrons that could be considered 1053 // quasi-free at energy transfer of interest 1051 // quasi-free at energy transfer of interest 1054 1052 1055 G4double G4PAIxSection::RutherfordIntegral( G 1053 G4double G4PAIxSection::RutherfordIntegral( G4int k, 1056 G << 1054 G4double x1, 1057 << 1055 G4double x2 ) 1058 { 1056 { 1059 G4double c1, c2, c3; 1057 G4double c1, c2, c3; 1060 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "< 1058 // G4cout<<"RI: x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl; 1061 c1 = (x2 - x1)/x1/x2; 1059 c1 = (x2 - x1)/x1/x2; 1062 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2; 1060 c2 = (x2 - x1)*(x2 + x1)/x1/x1/x2/x2; 1063 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/ 1061 c3 = (x2 - x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 1064 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = " 1062 // G4cout<<" RI: c1 = "<<c1<<"; "<<"c2 = "<<c2<<"; "<<"c3 = "<<c3<<G4endl; 1065 1063 1066 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA 1064 return fA1[k]*log(x2/x1) + fA2[k]*c1 + fA3[k]*c2/2 + fA4[k]*c3/3; 1067 1065 1068 } // end of RutherfordIntegral 1066 } // end of RutherfordIntegral 1069 1067 1070 1068 1071 ///////////////////////////////////////////// 1069 ///////////////////////////////////////////////////////////////// 1072 // 1070 // 1073 // Imaginary part of dielectric constant 1071 // Imaginary part of dielectric constant 1074 // (G4int k - interval number, G4double en1 - 1072 // (G4int k - interval number, G4double en1 - energy point) 1075 1073 1076 G4double G4PAIxSection::ImPartDielectricConst 1074 G4double G4PAIxSection::ImPartDielectricConst( G4int k , 1077 << 1075 G4double energy1 ) 1078 { 1076 { 1079 G4double energy2,energy3,energy4,result; 1077 G4double energy2,energy3,energy4,result; 1080 1078 1081 energy2 = energy1*energy1; 1079 energy2 = energy1*energy1; 1082 energy3 = energy2*energy1; 1080 energy3 = energy2*energy1; 1083 energy4 = energy3*energy1; 1081 energy4 = energy3*energy1; 1084 1082 1085 result = fA1[k]/energy1+fA2[k]/energy2+fA3 1083 result = fA1[k]/energy1+fA2[k]/energy2+fA3[k]/energy3+fA4[k]/energy4; 1086 result *=hbarc/energy1; 1084 result *=hbarc/energy1; 1087 1085 1088 return result; 1086 return result; 1089 1087 1090 } // end of ImPartDielectricConst 1088 } // end of ImPartDielectricConst 1091 1089 1092 ///////////////////////////////////////////// 1090 ///////////////////////////////////////////////////////////////// 1093 // 1091 // 1094 // Returns lambda of photon with energy1 in c 1092 // Returns lambda of photon with energy1 in current material 1095 1093 1096 G4double G4PAIxSection::GetPhotonRange( G4dou 1094 G4double G4PAIxSection::GetPhotonRange( G4double energy1 ) 1097 { 1095 { 1098 G4int i; 1096 G4int i; 1099 G4double energy2, energy3, energy4, result, 1097 G4double energy2, energy3, energy4, result, lambda; 1100 1098 1101 energy2 = energy1*energy1; 1099 energy2 = energy1*energy1; 1102 energy3 = energy2*energy1; 1100 energy3 = energy2*energy1; 1103 energy4 = energy3*energy1; 1101 energy4 = energy3*energy1; 1104 1102 >> 1103 // G4double* SandiaCof = fSandia->GetSandiaCofForMaterialPAI(energy1); >> 1104 // result = SandiaCof[0]/energy1+SandiaCof[1]/energy2+SandiaCof[2]/energy3+SandiaCof[3]/energy4; >> 1105 // result *= fDensity; >> 1106 1105 for( i = 1; i <= fIntervalNumber; i++ ) 1107 for( i = 1; i <= fIntervalNumber; i++ ) 1106 { 1108 { 1107 if( energy1 < fEnergyInterval[i]) break; 1109 if( energy1 < fEnergyInterval[i]) break; 1108 } 1110 } 1109 i--; 1111 i--; 1110 if(i == 0) i = 1; 1112 if(i == 0) i = 1; 1111 1113 1112 result = fA1[i]/energy1+fA2[i]/energy2+fA3[ 1114 result = fA1[i]/energy1+fA2[i]/energy2+fA3[i]/energy3+fA4[i]/energy4; 1113 1115 1114 if( result > DBL_MIN ) lambda = 1./result; 1116 if( result > DBL_MIN ) lambda = 1./result; 1115 else lambda = DBL_MAX; 1117 else lambda = DBL_MAX; 1116 1118 1117 return lambda; 1119 return lambda; 1118 } 1120 } 1119 1121 1120 ///////////////////////////////////////////// 1122 ///////////////////////////////////////////////////////////////// 1121 // 1123 // 1122 // Return lambda of electron with energy1 in 1124 // Return lambda of electron with energy1 in current material 1123 // parametrisation from NIM A554(2005)474-493 1125 // parametrisation from NIM A554(2005)474-493 1124 1126 1125 G4double G4PAIxSection::GetElectronRange( G4d 1127 G4double G4PAIxSection::GetElectronRange( G4double energy ) 1126 { 1128 { 1127 G4double range; 1129 G4double range; 1128 /* 1130 /* 1129 const G4MaterialTable* theMaterialTable = G 1131 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 1130 1132 1131 G4double Z = (*theMaterialTable)[fMaterialI 1133 G4double Z = (*theMaterialTable)[fMaterialIndex]->GetIonisation()->GetZeffective(); 1132 G4double A = (*theMaterialTable)[fMaterialI 1134 G4double A = (*theMaterialTable)[fMaterialIndex]->GetA(); 1133 1135 1134 energy /= keV; // energy in keV in parametr 1136 energy /= keV; // energy in keV in parametrised formula 1135 1137 1136 if (energy < 10.) 1138 if (energy < 10.) 1137 { 1139 { 1138 range = 3.872e-3*A/Z; 1140 range = 3.872e-3*A/Z; 1139 range *= pow(energy,1.492); 1141 range *= pow(energy,1.492); 1140 } 1142 } 1141 else 1143 else 1142 { 1144 { 1143 range = 6.97e-3*pow(energy,1.6); 1145 range = 6.97e-3*pow(energy,1.6); 1144 } 1146 } 1145 */ 1147 */ 1146 // Blum&Rolandi Particle Detection with Dri 1148 // Blum&Rolandi Particle Detection with Drift Chambers, p. 7 1147 1149 1148 G4double cofA = 5.37e-4*g/cm2/keV; 1150 G4double cofA = 5.37e-4*g/cm2/keV; 1149 G4double cofB = 0.9815; 1151 G4double cofB = 0.9815; 1150 G4double cofC = 3.123e-3/keV; 1152 G4double cofC = 3.123e-3/keV; 1151 // energy /= keV; 1153 // energy /= keV; 1152 1154 1153 range = cofA*energy*( 1 - cofB/(1 + cofC*en 1155 range = cofA*energy*( 1 - cofB/(1 + cofC*energy) ); 1154 1156 1155 // range *= g/cm2; 1157 // range *= g/cm2; 1156 range /= fDensity; 1158 range /= fDensity; 1157 1159 1158 return range; 1160 return range; 1159 } 1161 } 1160 1162 1161 ///////////////////////////////////////////// 1163 ////////////////////////////////////////////////////////////////////////////// 1162 // 1164 // 1163 // Real part of dielectric constant minus uni 1165 // Real part of dielectric constant minus unit: epsilon_1 - 1 1164 // (G4double enb - energy point) 1166 // (G4double enb - energy point) 1165 // 1167 // 1166 1168 1167 G4double G4PAIxSection::RePartDielectricConst 1169 G4double G4PAIxSection::RePartDielectricConst(G4double enb) 1168 { 1170 { 1169 G4double x0, x02, x03, x04, x05, x1, x2, x 1171 G4double x0, x02, x03, x04, x05, x1, x2, xx1 ,xx2 , xx12, 1170 c1, c2, c3, cof1, cof2, xln1, xln 1172 c1, c2, c3, cof1, cof2, xln1, xln2, xln3, result; 1171 1173 1172 x0 = enb; 1174 x0 = enb; 1173 result = 0; 1175 result = 0; 1174 1176 1175 for(G4int i=1;i<=fIntervalNumber-1;i++) 1177 for(G4int i=1;i<=fIntervalNumber-1;i++) 1176 { 1178 { 1177 x1 = fEnergyInterval[i]; 1179 x1 = fEnergyInterval[i]; 1178 x2 = fEnergyInterval[i+1]; 1180 x2 = fEnergyInterval[i+1]; 1179 xx1 = x1 - x0; 1181 xx1 = x1 - x0; 1180 xx2 = x2 - x0; 1182 xx2 = x2 - x0; 1181 xx12 = xx2/xx1; 1183 xx12 = xx2/xx1; 1182 1184 1183 if(xx12<0) 1185 if(xx12<0) 1184 { 1186 { 1185 xx12 = -xx12; << 1187 xx12 = -xx12; 1186 } 1188 } 1187 xln1 = log(x2/x1); 1189 xln1 = log(x2/x1); 1188 xln2 = log(xx12); 1190 xln2 = log(xx12); 1189 xln3 = log((x2 + x0)/(x1 + x0)); 1191 xln3 = log((x2 + x0)/(x1 + x0)); 1190 x02 = x0*x0; 1192 x02 = x0*x0; 1191 x03 = x02*x0; 1193 x03 = x02*x0; 1192 x04 = x03*x0; 1194 x04 = x03*x0; 1193 x05 = x04*x0; 1195 x05 = x04*x0; 1194 c1 = (x2 - x1)/x1/x2; 1196 c1 = (x2 - x1)/x1/x2; 1195 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2; 1197 c2 = (x2 - x1)*(x2 +x1)/x1/x1/x2/x2; 1196 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/ 1198 c3 = (x2 -x1)*(x1*x1 + x1*x2 + x2*x2)/x1/x1/x1/x2/x2/x2; 1197 1199 1198 result -= (fA1[i]/x02 + fA3[i]/x04)*xln 1200 result -= (fA1[i]/x02 + fA3[i]/x04)*xln1; 1199 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 1201 result -= (fA2[i]/x02 + fA4[i]/x04)*c1; 1200 result -= fA3[i]*c2/2/x02; 1202 result -= fA3[i]*c2/2/x02; 1201 result -= fA4[i]*c3/3/x02; 1203 result -= fA4[i]*c3/3/x02; 1202 1204 1203 cof1 = fA1[i]/x02 + fA3[i]/x04; 1205 cof1 = fA1[i]/x02 + fA3[i]/x04; 1204 cof2 = fA2[i]/x03 + fA4[i]/x05; 1206 cof2 = fA2[i]/x03 + fA4[i]/x05; 1205 1207 1206 result += 0.5*(cof1 +cof2)*xln2; 1208 result += 0.5*(cof1 +cof2)*xln2; 1207 result += 0.5*(cof1 - cof2)*xln3; 1209 result += 0.5*(cof1 - cof2)*xln3; 1208 } 1210 } 1209 result *= 2*hbarc/pi; 1211 result *= 2*hbarc/pi; 1210 1212 1211 return result; 1213 return result; 1212 1214 1213 } // end of RePartDielectricConst 1215 } // end of RePartDielectricConst 1214 1216 1215 ///////////////////////////////////////////// 1217 ////////////////////////////////////////////////////////////////////// 1216 // 1218 // 1217 // PAI differential cross-section in terms of 1219 // PAI differential cross-section in terms of 1218 // simplified Allison's equation 1220 // simplified Allison's equation 1219 // 1221 // 1220 1222 1221 G4double G4PAIxSection::DifPAIxSection( G4int << 1223 G4double G4PAIxSection::DifPAIxSection( G4int i , >> 1224 G4double betaGammaSq ) 1222 { 1225 { 1223 G4double cof,x1,x2,x3,x4,x5,x6,x7,x8,resul 1226 G4double cof,x1,x2,x3,x4,x5,x6,x7,x8,result; 1224 1227 1225 G4double betaBohr = fine_structure_const; 1228 G4double betaBohr = fine_structure_const; >> 1229 // G4double betaBohr2 = fine_structure_const*fine_structure_const; >> 1230 // G4double betaBohr3 = betaBohr*betaBohr2; // *4.0; >> 1231 1226 G4double be2 = betaGammaSq/(1 + betaGamma 1232 G4double be2 = betaGammaSq/(1 + betaGammaSq); 1227 G4double beta = std::sqrt(be2); << 1233 G4double beta = sqrt(be2); >> 1234 // G4double be3 = beta*be2; 1228 1235 1229 cof = 1.; 1236 cof = 1.; 1230 x1 = std::log(2*electron_mass_c2/fSplineE << 1237 x1 = log(2*electron_mass_c2/fSplineEnergy[i]); 1231 1238 1232 if( betaGammaSq < 0.01 ) x2 = std::log(be2 << 1239 if( betaGammaSq < 0.01 ) x2 = log(be2); 1233 else 1240 else 1234 { 1241 { 1235 x2 = -log( (1/betaGammaSq - fRePartDiele 1242 x2 = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 1236 (1/betaGammaSq - fRePartDiele << 1243 (1/betaGammaSq - fRePartDielectricConst[i]) + 1237 fImPartDielectricConst[i]*fIm << 1244 fImPartDielectricConst[i]*fImPartDielectricConst[i] )/2; 1238 } 1245 } 1239 if( fImPartDielectricConst[i] == 0.0 ||bet 1246 if( fImPartDielectricConst[i] == 0.0 ||betaGammaSq < 0.01 ) 1240 { 1247 { 1241 x6 = 0.; 1248 x6 = 0.; 1242 } 1249 } 1243 else 1250 else 1244 { 1251 { 1245 x3 = -fRePartDielectricConst[i] + 1/beta 1252 x3 = -fRePartDielectricConst[i] + 1/betaGammaSq; 1246 x5 = -1 - fRePartDielectricConst[i] + 1253 x5 = -1 - fRePartDielectricConst[i] + 1247 be2*((1 +fRePartDielectricConst[i]) 1254 be2*((1 +fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 1248 fImPartDielectricConst[i]*fImPartDi << 1255 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 1249 1256 1250 x7 = atan2(fImPartDielectricConst[i],x3) 1257 x7 = atan2(fImPartDielectricConst[i],x3); 1251 x6 = x5 * x7; 1258 x6 = x5 * x7; 1252 } 1259 } >> 1260 // if(fImPartDielectricConst[i] == 0) x6 = 0.; 1253 1261 1254 x4 = ((x1 + x2)*fImPartDielectricConst[i] 1262 x4 = ((x1 + x2)*fImPartDielectricConst[i] + x6)/hbarc; 1255 1263 >> 1264 // if( x4 < 0.0 ) x4 = 0.0; >> 1265 1256 x8 = (1 + fRePartDielectricConst[i])*(1 + 1266 x8 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + 1257 fImPartDielectricConst[i]*fImPartDiel 1267 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 1258 1268 1259 result = (x4 + cof*fIntegralTerm[i]/fSplin 1269 result = (x4 + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i]); 1260 1270 1261 if( result < 1.0e-8 ) result = 1.0e-8; 1271 if( result < 1.0e-8 ) result = 1.0e-8; 1262 1272 1263 result *= fine_structure_const/be2/pi; 1273 result *= fine_structure_const/be2/pi; 1264 1274 1265 // low energy correction 1275 // low energy correction 1266 1276 1267 G4double lowCof = fLowEnergyCof; // 6.0 ; 1277 G4double lowCof = fLowEnergyCof; // 6.0 ; // Ar ~ 4.; -> fLowCof as f(Z1,Z2)? 1268 1278 1269 result *= (1 - std::exp(-beta/betaBohr/low << 1279 result *= (1 - exp(-beta/betaBohr/lowCof)); 1270 if(x8 >= 0.0) << 1280 >> 1281 >> 1282 // result *= (1 - exp(-be2/betaBohr2/lowCof)); >> 1283 >> 1284 // result *= (1 - exp(-be3/betaBohr3/lowCof)); // ~ be for be<<betaBohr >> 1285 >> 1286 // result *= (1 - exp(-be4/betaBohr4/lowCof)); >> 1287 >> 1288 if(fDensity >= 0.1) 1271 { 1289 { 1272 result /= x8; << 1290 result /= x8; 1273 } 1291 } 1274 return result; 1292 return result; 1275 1293 1276 } // end of DifPAIxSection 1294 } // end of DifPAIxSection 1277 1295 1278 ///////////////////////////////////////////// 1296 ////////////////////////////////////////////////////////////////////////// 1279 // 1297 // 1280 // Calculation od dN/dx of collisions with cr 1298 // Calculation od dN/dx of collisions with creation of Cerenkov pseudo-photons 1281 1299 1282 G4double G4PAIxSection::PAIdNdxCerenkov( G4in 1300 G4double G4PAIxSection::PAIdNdxCerenkov( G4int i , 1283 G4do 1301 G4double betaGammaSq ) 1284 { 1302 { 1285 G4double logarithm, x3, x5, argument, modu 1303 G4double logarithm, x3, x5, argument, modul2, dNdxC; 1286 G4double be2, betaBohr2, cofBetaBohr; 1304 G4double be2, betaBohr2, cofBetaBohr; 1287 1305 1288 cofBetaBohr = 4.0; 1306 cofBetaBohr = 4.0; 1289 betaBohr2 = fine_structure_const*fine_stru << 1307 betaBohr2 = fine_structure_const*fine_structure_const; 1290 G4double betaBohr4 = betaBohr2*betaBohr2*c << 1308 G4double betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 1291 1309 1292 be2 = betaGammaSq/(1 + betaGammaSq); 1310 be2 = betaGammaSq/(1 + betaGammaSq); 1293 G4double be4 = be2*be2; 1311 G4double be4 = be2*be2; 1294 1312 1295 if( betaGammaSq < 0.01 ) logarithm = std:: << 1313 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq); // 0.0; 1296 else 1314 else 1297 { 1315 { 1298 logarithm = -log( (1/betaGammaSq - fReP 1316 logarithm = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 1299 (1/betaGammaSq - fReP << 1317 (1/betaGammaSq - fRePartDielectricConst[i]) + 1300 fImPartDielectricCons << 1318 fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5; 1301 logarithm += log(1+1.0/betaGammaSq); 1319 logarithm += log(1+1.0/betaGammaSq); 1302 } 1320 } 1303 1321 1304 if( fImPartDielectricConst[i] == 0.0 || be 1322 if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 ) 1305 { 1323 { 1306 argument = 0.0; 1324 argument = 0.0; 1307 } 1325 } 1308 else 1326 else 1309 { 1327 { 1310 x3 = -fRePartDielectricConst[i] + 1.0/be 1328 x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq; 1311 x5 = -1.0 - fRePartDielectricConst[i] + 1329 x5 = -1.0 - fRePartDielectricConst[i] + 1312 be2*((1.0 +fRePartDielectricConst[i 1330 be2*((1.0 +fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + 1313 fImPartDielectricConst[i]*fImPartDi << 1331 fImPartDielectricConst[i]*fImPartDielectricConst[i]); 1314 if( x3 == 0.0 ) argument = 0.5*pi; 1332 if( x3 == 0.0 ) argument = 0.5*pi; 1315 else argument = std::atan2(fI << 1333 else argument = atan2(fImPartDielectricConst[i],x3); 1316 argument *= x5 ; 1334 argument *= x5 ; 1317 } 1335 } 1318 dNdxC = ( logarithm*fImPartDielectricConst 1336 dNdxC = ( logarithm*fImPartDielectricConst[i] + argument )/hbarc; 1319 1337 1320 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 1338 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 1321 1339 1322 dNdxC *= fine_structure_const/be2/pi; 1340 dNdxC *= fine_structure_const/be2/pi; 1323 1341 1324 dNdxC *= (1-std::exp(-be4/betaBohr4)); << 1342 dNdxC *= (1-exp(-be4/betaBohr4)); 1325 1343 1326 modul2 = (1.0 + fRePartDielectricConst[i]) << 1344 if(fDensity >= 0.1) 1327 fImPartDielectricConst[i]*fImPartDielect << 1328 if(modul2 >= 0.0) << 1329 { 1345 { 1330 dNdxC /= modul2; << 1346 modul2 = (1.0 + fRePartDielectricConst[i])*(1.0 + fRePartDielectricConst[i]) + >> 1347 fImPartDielectricConst[i]*fImPartDielectricConst[i]; >> 1348 dNdxC /= modul2; 1331 } 1349 } 1332 return dNdxC; 1350 return dNdxC; 1333 1351 1334 } // end of PAIdNdxCerenkov 1352 } // end of PAIdNdxCerenkov 1335 1353 1336 ///////////////////////////////////////////// 1354 ////////////////////////////////////////////////////////////////////////// 1337 // 1355 // 1338 // Calculation od dN/dx of collisions of MM w 1356 // Calculation od dN/dx of collisions of MM with creation of Cerenkov pseudo-photons 1339 1357 1340 G4double G4PAIxSection::PAIdNdxMM( G4int i 1358 G4double G4PAIxSection::PAIdNdxMM( G4int i , 1341 G4do 1359 G4double betaGammaSq ) 1342 { 1360 { 1343 G4double logarithm, x3, x5, argument, dNdx 1361 G4double logarithm, x3, x5, argument, dNdxC; 1344 G4double be2, be4, betaBohr2,betaBohr4,cof 1362 G4double be2, be4, betaBohr2,betaBohr4,cofBetaBohr; 1345 1363 1346 cofBetaBohr = 4.0; 1364 cofBetaBohr = 4.0; 1347 betaBohr2 = fine_structure_const*fine_st 1365 betaBohr2 = fine_structure_const*fine_structure_const; 1348 betaBohr4 = betaBohr2*betaBohr2*cofBetaB 1366 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 1349 1367 1350 be2 = betaGammaSq/(1 + betaGammaSq); 1368 be2 = betaGammaSq/(1 + betaGammaSq); 1351 be4 = be2*be2; 1369 be4 = be2*be2; 1352 1370 1353 if( betaGammaSq < 0.01 ) logarithm = log(1 1371 if( betaGammaSq < 0.01 ) logarithm = log(1.0+betaGammaSq); // 0.0; 1354 else 1372 else 1355 { 1373 { 1356 logarithm = -log( (1/betaGammaSq - fReP 1374 logarithm = -log( (1/betaGammaSq - fRePartDielectricConst[i])* 1357 (1/betaGammaSq - fReP << 1375 (1/betaGammaSq - fRePartDielectricConst[i]) + 1358 fImPartDielectricCons << 1376 fImPartDielectricConst[i]*fImPartDielectricConst[i] )*0.5; 1359 logarithm += log(1+1.0/betaGammaSq); 1377 logarithm += log(1+1.0/betaGammaSq); 1360 } 1378 } 1361 1379 1362 if( fImPartDielectricConst[i] == 0.0 || be 1380 if( fImPartDielectricConst[i] == 0.0 || betaGammaSq < 0.01 ) 1363 { 1381 { 1364 argument = 0.0; 1382 argument = 0.0; 1365 } 1383 } 1366 else 1384 else 1367 { 1385 { 1368 x3 = -fRePartDielectricConst[i] + 1.0/be 1386 x3 = -fRePartDielectricConst[i] + 1.0/betaGammaSq; 1369 x5 = be2*( 1.0 + fRePartDielectricConst[ 1387 x5 = be2*( 1.0 + fRePartDielectricConst[i] ) - 1.0; 1370 if( x3 == 0.0 ) argument = 0.5*pi; 1388 if( x3 == 0.0 ) argument = 0.5*pi; 1371 else argument = atan2(fImPart 1389 else argument = atan2(fImPartDielectricConst[i],x3); 1372 argument *= x5 ; 1390 argument *= x5 ; 1373 } 1391 } 1374 dNdxC = ( logarithm*fImPartDielectricConst 1392 dNdxC = ( logarithm*fImPartDielectricConst[i]*be2 + argument )/hbarc; 1375 1393 1376 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 1394 if(dNdxC < 1.0e-8) dNdxC = 1.0e-8; 1377 1395 1378 dNdxC *= fine_structure_const/be2/pi; 1396 dNdxC *= fine_structure_const/be2/pi; 1379 1397 1380 dNdxC *= (1-std::exp(-be4/betaBohr4)); << 1398 dNdxC *= (1-exp(-be4/betaBohr4)); 1381 return dNdxC; 1399 return dNdxC; 1382 1400 1383 } // end of PAIdNdxMM 1401 } // end of PAIdNdxMM 1384 1402 1385 ///////////////////////////////////////////// 1403 ////////////////////////////////////////////////////////////////////////// 1386 // 1404 // 1387 // Calculation od dN/dx of collisions with cr 1405 // Calculation od dN/dx of collisions with creation of longitudinal EM 1388 // excitations (plasmons, delta-electrons) 1406 // excitations (plasmons, delta-electrons) 1389 1407 1390 G4double G4PAIxSection::PAIdNdxPlasmon( G4int 1408 G4double G4PAIxSection::PAIdNdxPlasmon( G4int i , 1391 G4dou 1409 G4double betaGammaSq ) 1392 { 1410 { 1393 G4double resonance, modul2, dNdxP, cof = 1 1411 G4double resonance, modul2, dNdxP, cof = 1.; 1394 G4double be2, betaBohr; 1412 G4double be2, betaBohr; 1395 1413 1396 betaBohr = fine_structure_const; 1414 betaBohr = fine_structure_const; 1397 be2 = betaGammaSq/(1 + betaGammaSq); 1415 be2 = betaGammaSq/(1 + betaGammaSq); 1398 1416 1399 G4double beta = std::sqrt(be2); << 1417 G4double beta = sqrt(be2); 1400 1418 1401 resonance = std::log(2*electron_mass_c2*be << 1419 resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]); 1402 resonance *= fImPartDielectricConst[i]/hba 1420 resonance *= fImPartDielectricConst[i]/hbarc; 1403 1421 >> 1422 1404 dNdxP = ( resonance + cof*fIntegralTerm[i] 1423 dNdxP = ( resonance + cof*fIntegralTerm[i]/fSplineEnergy[i]/fSplineEnergy[i] ); 1405 1424 1406 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 1425 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 1407 1426 1408 dNdxP *= fine_structure_const/be2/pi; 1427 dNdxP *= fine_structure_const/be2/pi; 1409 1428 1410 dNdxP *= (1 - std::exp(-beta/betaBohr/fLo << 1429 dNdxP *= (1 - exp(-beta/betaBohr/fLowEnergyCof)); 1411 1430 1412 modul2 = (1 + fRePartDielectricConst[i])*( << 1431 // dNdxP *= (1-exp(-be4/betaBohr4)); 1413 fImPartDielectricConst[i]*fImPartDielect << 1432 1414 if( modul2 >= 0.0 ) << 1433 if( fDensity >= 0.1 ) 1415 { 1434 { >> 1435 modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + >> 1436 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 1416 dNdxP /= modul2; 1437 dNdxP /= modul2; 1417 } 1438 } 1418 return dNdxP; 1439 return dNdxP; 1419 1440 1420 } // end of PAIdNdxPlasmon 1441 } // end of PAIdNdxPlasmon 1421 1442 1422 ///////////////////////////////////////////// 1443 ////////////////////////////////////////////////////////////////////////// 1423 // 1444 // 1424 // Calculation od dN/dx of collisions with cr 1445 // Calculation od dN/dx of collisions with creation of longitudinal EM 1425 // resonance excitations (plasmons, delta-ele 1446 // resonance excitations (plasmons, delta-electrons) 1426 1447 1427 G4double G4PAIxSection::PAIdNdxResonance( G4i 1448 G4double G4PAIxSection::PAIdNdxResonance( G4int i , 1428 G4dou 1449 G4double betaGammaSq ) 1429 { 1450 { 1430 G4double resonance, modul2, dNdxP; 1451 G4double resonance, modul2, dNdxP; 1431 G4double be2, be4, betaBohr2, betaBohr4, c 1452 G4double be2, be4, betaBohr2, betaBohr4, cofBetaBohr; 1432 1453 1433 cofBetaBohr = 4.0; 1454 cofBetaBohr = 4.0; 1434 betaBohr2 = fine_structure_const*fine_st 1455 betaBohr2 = fine_structure_const*fine_structure_const; 1435 betaBohr4 = betaBohr2*betaBohr2*cofBetaB 1456 betaBohr4 = betaBohr2*betaBohr2*cofBetaBohr; 1436 1457 1437 be2 = betaGammaSq/(1 + betaGammaSq); 1458 be2 = betaGammaSq/(1 + betaGammaSq); 1438 be4 = be2*be2; 1459 be4 = be2*be2; 1439 1460 1440 resonance = log(2*electron_mass_c2*be2/fSp 1461 resonance = log(2*electron_mass_c2*be2/fSplineEnergy[i]); 1441 resonance *= fImPartDielectricConst[i]/hba 1462 resonance *= fImPartDielectricConst[i]/hbarc; 1442 1463 >> 1464 1443 dNdxP = resonance; 1465 dNdxP = resonance; 1444 1466 1445 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 1467 if( dNdxP < 1.0e-8 ) dNdxP = 1.0e-8; 1446 1468 1447 dNdxP *= fine_structure_const/be2/pi; 1469 dNdxP *= fine_structure_const/be2/pi; 1448 dNdxP *= (1 - std::exp(-be4/betaBohr4)); << 1470 dNdxP *= (1-exp(-be4/betaBohr4)); 1449 1471 1450 modul2 = (1 + fRePartDielectricConst[i])*( << 1472 if( fDensity >= 0.1 ) 1451 fImPartDielectricConst[i]*fImPartDielect << 1452 if( modul2 >= 0.0 ) << 1453 { 1473 { >> 1474 modul2 = (1 + fRePartDielectricConst[i])*(1 + fRePartDielectricConst[i]) + >> 1475 fImPartDielectricConst[i]*fImPartDielectricConst[i]; 1454 dNdxP /= modul2; 1476 dNdxP /= modul2; 1455 } 1477 } 1456 return dNdxP; 1478 return dNdxP; 1457 1479 1458 } // end of PAIdNdxResonance 1480 } // end of PAIdNdxResonance 1459 1481 1460 ///////////////////////////////////////////// 1482 //////////////////////////////////////////////////////////////////////// 1461 // 1483 // 1462 // Calculation of the PAI integral cross-sect 1484 // Calculation of the PAI integral cross-section 1463 // fIntegralPAIxSection[1] = specific primary 1485 // fIntegralPAIxSection[1] = specific primary ionisation, 1/cm 1464 // and fIntegralPAIxSection[0] = mean energy 1486 // and fIntegralPAIxSection[0] = mean energy loss per cm in keV/cm 1465 1487 1466 void G4PAIxSection::IntegralPAIxSection() 1488 void G4PAIxSection::IntegralPAIxSection() 1467 { 1489 { 1468 fIntegralPAIxSection[fSplineNumber] = 0; 1490 fIntegralPAIxSection[fSplineNumber] = 0; 1469 fIntegralPAIdEdx[fSplineNumber] = 0; 1491 fIntegralPAIdEdx[fSplineNumber] = 0; 1470 fIntegralPAIxSection[0] = 0; 1492 fIntegralPAIxSection[0] = 0; 1471 G4int i, k = fIntervalNumber -1; 1493 G4int i, k = fIntervalNumber -1; 1472 1494 1473 for( i = fSplineNumber-1; i >= 1; i--) 1495 for( i = fSplineNumber-1; i >= 1; i--) 1474 { 1496 { 1475 if(fSplineEnergy[i] >= fEnergyInterval[k] 1497 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1476 { 1498 { 1477 fIntegralPAIxSection[i] = fIntegralPAIx 1499 fIntegralPAIxSection[i] = fIntegralPAIxSection[i+1] + SumOverInterval(i); 1478 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[ 1500 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + SumOverIntervaldEdx(i); 1479 } 1501 } 1480 else 1502 else 1481 { 1503 { 1482 fIntegralPAIxSection[i] = fIntegralPAIx 1504 fIntegralPAIxSection[i] = fIntegralPAIxSection[i+1] + 1483 SumOverBor << 1505 SumOverBorder(i+1,fEnergyInterval[k]); 1484 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[ 1506 fIntegralPAIdEdx[i] = fIntegralPAIdEdx[i+1] + 1485 SumOverBor << 1507 SumOverBorderdEdx(i+1,fEnergyInterval[k]); 1486 k--; 1508 k--; 1487 } 1509 } 1488 if(fVerbose>0) G4cout<<"i = "<<i<<"; k = 1510 if(fVerbose>0) G4cout<<"i = "<<i<<"; k = "<<k<<"; intPAIxsc[i] = "<<fIntegralPAIxSection[i]<<G4endl; 1489 } 1511 } 1490 } // end of IntegralPAIxSection 1512 } // end of IntegralPAIxSection 1491 1513 1492 ///////////////////////////////////////////// 1514 //////////////////////////////////////////////////////////////////////// 1493 // 1515 // 1494 // Calculation of the PAI Cerenkov integral c 1516 // Calculation of the PAI Cerenkov integral cross-section 1495 // fIntegralCrenkov[1] = specific Crenkov ion 1517 // fIntegralCrenkov[1] = specific Crenkov ionisation, 1/cm 1496 // and fIntegralCerenkov[0] = mean Cerenkov l 1518 // and fIntegralCerenkov[0] = mean Cerenkov loss per cm in keV/cm 1497 1519 1498 void G4PAIxSection::IntegralCerenkov() 1520 void G4PAIxSection::IntegralCerenkov() 1499 { 1521 { 1500 G4int i, k; 1522 G4int i, k; 1501 fIntegralCerenkov[fSplineNumber] = 0; 1523 fIntegralCerenkov[fSplineNumber] = 0; 1502 fIntegralCerenkov[0] = 0; 1524 fIntegralCerenkov[0] = 0; 1503 k = fIntervalNumber -1; 1525 k = fIntervalNumber -1; 1504 1526 1505 for( i = fSplineNumber-1; i >= 1; i-- ) 1527 for( i = fSplineNumber-1; i >= 1; i-- ) 1506 { 1528 { 1507 if(fSplineEnergy[i] >= fEnergyInterval[ 1529 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1508 { 1530 { 1509 fIntegralCerenkov[i] = fIntegralCeren 1531 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + SumOverInterCerenkov(i); 1510 // G4cout<<"int: i = "<<i<<"; sumC = << 1532 // G4cout<<"int: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 1511 } 1533 } 1512 else 1534 else 1513 { 1535 { 1514 fIntegralCerenkov[i] = fIntegralCeren 1536 fIntegralCerenkov[i] = fIntegralCerenkov[i+1] + 1515 SumOverBor << 1537 SumOverBordCerenkov(i+1,fEnergyInterval[k]); 1516 k--; << 1538 k--; 1517 // G4cout<<"bord: i = "<<i<<"; sumC = << 1539 // G4cout<<"bord: i = "<<i<<"; sumC = "<<fIntegralCerenkov[i]<<G4endl; 1518 } 1540 } 1519 } 1541 } 1520 1542 1521 } // end of IntegralCerenkov 1543 } // end of IntegralCerenkov 1522 1544 1523 ///////////////////////////////////////////// 1545 //////////////////////////////////////////////////////////////////////// 1524 // 1546 // 1525 // Calculation of the PAI MM-Cerenkov integra 1547 // Calculation of the PAI MM-Cerenkov integral cross-section 1526 // fIntegralMM[1] = specific MM-Cerenkov ioni 1548 // fIntegralMM[1] = specific MM-Cerenkov ionisation, 1/cm 1527 // and fIntegralMM[0] = mean MM-Cerenkov loss 1549 // and fIntegralMM[0] = mean MM-Cerenkov loss per cm in keV/cm 1528 1550 1529 void G4PAIxSection::IntegralMM() 1551 void G4PAIxSection::IntegralMM() 1530 { 1552 { 1531 G4int i, k; 1553 G4int i, k; 1532 fIntegralMM[fSplineNumber] = 0; 1554 fIntegralMM[fSplineNumber] = 0; 1533 fIntegralMM[0] = 0; 1555 fIntegralMM[0] = 0; 1534 k = fIntervalNumber -1; 1556 k = fIntervalNumber -1; 1535 1557 1536 for( i = fSplineNumber-1; i >= 1; i-- ) 1558 for( i = fSplineNumber-1; i >= 1; i-- ) 1537 { 1559 { 1538 if(fSplineEnergy[i] >= fEnergyInterval[ 1560 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1539 { 1561 { 1540 fIntegralMM[i] = fIntegralMM[i+1] + S 1562 fIntegralMM[i] = fIntegralMM[i+1] + SumOverInterMM(i); 1541 // G4cout<<"int: i = "<<i<<"; sumC = << 1563 // G4cout<<"int: i = "<<i<<"; sumC = "<<fIntegralMM[i]<<G4endl; 1542 } 1564 } 1543 else 1565 else 1544 { 1566 { 1545 fIntegralMM[i] = fIntegralMM[i+1] + 1567 fIntegralMM[i] = fIntegralMM[i+1] + 1546 SumOverBor << 1568 SumOverBordMM(i+1,fEnergyInterval[k]); 1547 k--; << 1569 k--; 1548 // G4cout<<"bord: i = "<<i<<"; sumC = << 1570 // G4cout<<"bord: i = "<<i<<"; sumC = "<<fIntegralMM[i]<<G4endl; 1549 } 1571 } 1550 } 1572 } 1551 1573 1552 } // end of IntegralMM 1574 } // end of IntegralMM 1553 1575 1554 ///////////////////////////////////////////// 1576 //////////////////////////////////////////////////////////////////////// 1555 // 1577 // 1556 // Calculation of the PAI Plasmon integral cr 1578 // Calculation of the PAI Plasmon integral cross-section 1557 // fIntegralPlasmon[1] = splasmon primary ion 1579 // fIntegralPlasmon[1] = splasmon primary ionisation, 1/cm 1558 // and fIntegralPlasmon[0] = mean plasmon los 1580 // and fIntegralPlasmon[0] = mean plasmon loss per cm in keV/cm 1559 1581 1560 void G4PAIxSection::IntegralPlasmon() 1582 void G4PAIxSection::IntegralPlasmon() 1561 { 1583 { 1562 fIntegralPlasmon[fSplineNumber] = 0; 1584 fIntegralPlasmon[fSplineNumber] = 0; 1563 fIntegralPlasmon[0] = 0; 1585 fIntegralPlasmon[0] = 0; 1564 G4int k = fIntervalNumber -1; 1586 G4int k = fIntervalNumber -1; 1565 for(G4int i=fSplineNumber-1;i>=1;i--) 1587 for(G4int i=fSplineNumber-1;i>=1;i--) 1566 { 1588 { 1567 if(fSplineEnergy[i] >= fEnergyInterval[ 1589 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1568 { 1590 { 1569 fIntegralPlasmon[i] = fIntegralPlasmo 1591 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + SumOverInterPlasmon(i); 1570 } 1592 } 1571 else 1593 else 1572 { 1594 { 1573 fIntegralPlasmon[i] = fIntegralPlasmo 1595 fIntegralPlasmon[i] = fIntegralPlasmon[i+1] + 1574 SumOverBor << 1596 SumOverBordPlasmon(i+1,fEnergyInterval[k]); 1575 k--; << 1597 k--; 1576 } 1598 } 1577 } 1599 } 1578 1600 1579 } // end of IntegralPlasmon 1601 } // end of IntegralPlasmon 1580 1602 1581 ///////////////////////////////////////////// 1603 //////////////////////////////////////////////////////////////////////// 1582 // 1604 // 1583 // Calculation of the PAI resonance integral 1605 // Calculation of the PAI resonance integral cross-section 1584 // fIntegralResonance[1] = resonance primary 1606 // fIntegralResonance[1] = resonance primary ionisation, 1/cm 1585 // and fIntegralResonance[0] = mean resonance 1607 // and fIntegralResonance[0] = mean resonance loss per cm in keV/cm 1586 1608 1587 void G4PAIxSection::IntegralResonance() 1609 void G4PAIxSection::IntegralResonance() 1588 { 1610 { 1589 fIntegralResonance[fSplineNumber] = 0; 1611 fIntegralResonance[fSplineNumber] = 0; 1590 fIntegralResonance[0] = 0; 1612 fIntegralResonance[0] = 0; 1591 G4int k = fIntervalNumber -1; 1613 G4int k = fIntervalNumber -1; 1592 for(G4int i=fSplineNumber-1;i>=1;i--) 1614 for(G4int i=fSplineNumber-1;i>=1;i--) 1593 { 1615 { 1594 if(fSplineEnergy[i] >= fEnergyInterval[ 1616 if(fSplineEnergy[i] >= fEnergyInterval[k]) 1595 { 1617 { 1596 fIntegralResonance[i] = fIntegralReso 1618 fIntegralResonance[i] = fIntegralResonance[i+1] + SumOverInterResonance(i); 1597 } 1619 } 1598 else 1620 else 1599 { 1621 { 1600 fIntegralResonance[i] = fIntegralReso 1622 fIntegralResonance[i] = fIntegralResonance[i+1] + 1601 SumOverBor << 1623 SumOverBordResonance(i+1,fEnergyInterval[k]); 1602 k--; << 1624 k--; 1603 } 1625 } 1604 } 1626 } 1605 1627 1606 } // end of IntegralResonance 1628 } // end of IntegralResonance 1607 1629 1608 ///////////////////////////////////////////// 1630 ////////////////////////////////////////////////////////////////////// 1609 // 1631 // 1610 // Calculation the PAI integral cross-section 1632 // Calculation the PAI integral cross-section inside 1611 // of interval of continuous values of photo- 1633 // of interval of continuous values of photo-ionisation 1612 // cross-section. Parameter 'i' is the numbe 1634 // cross-section. Parameter 'i' is the number of interval. 1613 1635 1614 G4double G4PAIxSection::SumOverInterval( G4in 1636 G4double G4PAIxSection::SumOverInterval( G4int i ) 1615 { 1637 { 1616 G4double x0,x1,y0,yy1,a,b,c,result; 1638 G4double x0,x1,y0,yy1,a,b,c,result; 1617 1639 1618 x0 = fSplineEnergy[i]; 1640 x0 = fSplineEnergy[i]; 1619 x1 = fSplineEnergy[i+1]; 1641 x1 = fSplineEnergy[i+1]; 1620 if(fVerbose>0) G4cout<<"SumOverInterval i= 1642 if(fVerbose>0) G4cout<<"SumOverInterval i= " << i << " x0 = "<<x0<<"; x1 = "<<x1<<G4endl; 1621 1643 1622 if( x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/( 1644 if( x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) return 0.; 1623 1645 1624 y0 = fDifPAIxSection[i]; 1646 y0 = fDifPAIxSection[i]; 1625 yy1 = fDifPAIxSection[i+1]; 1647 yy1 = fDifPAIxSection[i+1]; 1626 1648 1627 if(fVerbose>0) G4cout<<"x0 = "<<x0<<"; x1 1649 if(fVerbose>0) G4cout<<"x0 = "<<x0<<"; x1 = "<<x1<<", y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1628 1650 1629 c = x1/x0; 1651 c = x1/x0; 1630 a = log10(yy1/y0)/log10(c); 1652 a = log10(yy1/y0)/log10(c); 1631 1653 1632 if(fVerbose>0) G4cout<<"SumOverInterval, a 1654 if(fVerbose>0) G4cout<<"SumOverInterval, a = "<<a<<"; c = "<<c<<G4endl; 1633 1655 1634 b = 0.0; << 1656 // b = log10(y0) - a*log10(x0); 1635 if(a < 20.) b = y0/pow(x0,a); << 1657 b = y0/pow(x0,a); 1636 << 1637 a += 1.; 1658 a += 1.; 1638 if( std::abs(a) < 1.e-6 ) << 1659 if( std::fabs(a) < 1.e-6 ) 1639 { 1660 { 1640 result = b*log(x1/x0); 1661 result = b*log(x1/x0); 1641 } 1662 } 1642 else 1663 else 1643 { 1664 { 1644 result = y0*(x1*pow(c,a-1) - x0)/a; 1665 result = y0*(x1*pow(c,a-1) - x0)/a; 1645 } 1666 } 1646 a += 1.; 1667 a += 1.; 1647 if( std::abs(a) < 1.e-6 ) << 1668 if( std::fabs(a) < 1.e-6 ) 1648 { 1669 { 1649 fIntegralPAIxSection[0] += b*log(x1/x0); << 1670 fIntegralPAIxSection[0] += b*log(x1/x0); 1650 } 1671 } 1651 else 1672 else 1652 { 1673 { 1653 fIntegralPAIxSection[0] += y0*(x1*x1*po 1674 fIntegralPAIxSection[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1654 } 1675 } 1655 if(fVerbose>0) G4cout<<"SumOverInterval, r 1676 if(fVerbose>0) G4cout<<"SumOverInterval, result = "<<result<<G4endl; 1656 return result; 1677 return result; 1657 1678 1658 } // end of SumOverInterval 1679 } // end of SumOverInterval 1659 1680 1660 ///////////////////////////////// 1681 ///////////////////////////////// 1661 1682 1662 G4double G4PAIxSection::SumOverIntervaldEdx( 1683 G4double G4PAIxSection::SumOverIntervaldEdx( G4int i ) 1663 { 1684 { 1664 G4double x0,x1,y0,yy1,a,b,c,result; 1685 G4double x0,x1,y0,yy1,a,b,c,result; 1665 1686 1666 x0 = fSplineEnergy[i]; 1687 x0 = fSplineEnergy[i]; 1667 x1 = fSplineEnergy[i+1]; 1688 x1 = fSplineEnergy[i+1]; 1668 1689 1669 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x 1690 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) return 0.; 1670 1691 1671 y0 = fDifPAIxSection[i]; 1692 y0 = fDifPAIxSection[i]; 1672 yy1 = fDifPAIxSection[i+1]; 1693 yy1 = fDifPAIxSection[i+1]; 1673 c = x1/x0; 1694 c = x1/x0; 1674 a = log10(yy1/y0)/log10(c); 1695 a = log10(yy1/y0)/log10(c); 1675 << 1696 // b = log10(y0) - a*log10(x0); 1676 b = 0.0; << 1697 b = y0/pow(x0,a); 1677 if(a < 20.) b = y0/pow(x0,a); << 1678 << 1679 a += 2; 1698 a += 2; 1680 if(a == 0) 1699 if(a == 0) 1681 { 1700 { 1682 result = b*log(x1/x0); 1701 result = b*log(x1/x0); 1683 } 1702 } 1684 else 1703 else 1685 { 1704 { 1686 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a 1705 result = y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1687 } 1706 } 1688 return result; 1707 return result; 1689 1708 1690 } // end of SumOverInterval 1709 } // end of SumOverInterval 1691 1710 1692 ///////////////////////////////////////////// 1711 ////////////////////////////////////////////////////////////////////// 1693 // 1712 // 1694 // Calculation the PAI Cerenkov integral cros 1713 // Calculation the PAI Cerenkov integral cross-section inside 1695 // of interval of continuous values of photo- 1714 // of interval of continuous values of photo-ionisation Cerenkov 1696 // cross-section. Parameter 'i' is the numbe 1715 // cross-section. Parameter 'i' is the number of interval. 1697 1716 1698 G4double G4PAIxSection::SumOverInterCerenkov( 1717 G4double G4PAIxSection::SumOverInterCerenkov( G4int i ) 1699 { 1718 { 1700 G4double x0,x1,y0,yy1,a,b,c,result; 1719 G4double x0,x1,y0,yy1,a,b,c,result; 1701 1720 1702 x0 = fSplineEnergy[i]; 1721 x0 = fSplineEnergy[i]; 1703 x1 = fSplineEnergy[i+1]; 1722 x1 = fSplineEnergy[i+1]; 1704 1723 1705 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x 1724 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) return 0.; 1706 1725 1707 y0 = fdNdxCerenkov[i]; 1726 y0 = fdNdxCerenkov[i]; 1708 yy1 = fdNdxCerenkov[i+1]; 1727 yy1 = fdNdxCerenkov[i+1]; 1709 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<< 1728 // G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<"; x1 = "<<x1 1710 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4e 1729 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1711 1730 1712 c = x1/x0; 1731 c = x1/x0; 1713 a = log10(yy1/y0)/log10(c); 1732 a = log10(yy1/y0)/log10(c); 1714 << 1733 b = y0/pow(x0,a); 1715 if(a > 20.0) b = 0.0; << 1716 else b = y0/pow(x0,a); << 1717 1734 1718 a += 1.0; 1735 a += 1.0; 1719 if(a == 0) result = b*log(c); 1736 if(a == 0) result = b*log(c); 1720 else result = y0*(x1*pow(c,a-1) - x0 1737 else result = y0*(x1*pow(c,a-1) - x0)/a; 1721 a += 1.0; 1738 a += 1.0; 1722 1739 1723 if( a == 0 ) fIntegralCerenkov[0] += b*log 1740 if( a == 0 ) fIntegralCerenkov[0] += b*log(x1/x0); 1724 else fIntegralCerenkov[0] += y0*(x 1741 else fIntegralCerenkov[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1725 // G4cout<<"a = "<<a<<"; b = "<<b<<"; res 1742 // G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1726 return result; 1743 return result; 1727 1744 1728 } // end of SumOverInterCerenkov 1745 } // end of SumOverInterCerenkov 1729 1746 1730 ///////////////////////////////////////////// 1747 ////////////////////////////////////////////////////////////////////// 1731 // 1748 // 1732 // Calculation the PAI MM-Cerenkov integral c 1749 // Calculation the PAI MM-Cerenkov integral cross-section inside 1733 // of interval of continuous values of photo- 1750 // of interval of continuous values of photo-ionisation Cerenkov 1734 // cross-section. Parameter 'i' is the numbe 1751 // cross-section. Parameter 'i' is the number of interval. 1735 1752 1736 G4double G4PAIxSection::SumOverInterMM( G4int 1753 G4double G4PAIxSection::SumOverInterMM( G4int i ) 1737 { 1754 { 1738 G4double x0,x1,y0,yy1,a,b,c,result; 1755 G4double x0,x1,y0,yy1,a,b,c,result; 1739 1756 1740 x0 = fSplineEnergy[i]; 1757 x0 = fSplineEnergy[i]; 1741 x1 = fSplineEnergy[i+1]; 1758 x1 = fSplineEnergy[i+1]; 1742 1759 1743 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x 1760 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) return 0.; 1744 1761 1745 y0 = fdNdxMM[i]; 1762 y0 = fdNdxMM[i]; 1746 yy1 = fdNdxMM[i+1]; 1763 yy1 = fdNdxMM[i+1]; 1747 //G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<" 1764 //G4cout<<"SumC, i = "<<i<<"; x0 ="<<x0<<"; x1 = "<<x1 1748 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4e 1765 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1749 1766 1750 c = x1/x0; 1767 c = x1/x0; 1751 //G4cout<<" c = "<<c<< " yy1/y0= " << yy1/ 1768 //G4cout<<" c = "<<c<< " yy1/y0= " << yy1/y0 <<G4endl; 1752 a = log10(yy1/y0)/log10(c); 1769 a = log10(yy1/y0)/log10(c); 1753 << 1770 if(a > 10.0) return 0.; 1754 b = 0.0; << 1771 b = y0/pow(x0,a); 1755 if(a < 20.) b = y0/pow(x0,a); << 1756 1772 1757 a += 1.0; 1773 a += 1.0; 1758 if(a == 0) result = b*log(c); 1774 if(a == 0) result = b*log(c); 1759 else result = y0*(x1*pow(c,a-1) - x0 1775 else result = y0*(x1*pow(c,a-1) - x0)/a; 1760 a += 1.0; 1776 a += 1.0; 1761 1777 1762 if( a == 0 ) fIntegralMM[0] += b*log(c); 1778 if( a == 0 ) fIntegralMM[0] += b*log(c); 1763 else fIntegralMM[0] += y0*(x1*x1*p 1779 else fIntegralMM[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1764 //G4cout<<"a = "<<a<<"; b = "<<b<<"; resul 1780 //G4cout<<"a = "<<a<<"; b = "<<b<<"; result = "<<result<<G4endl; 1765 return result; 1781 return result; 1766 1782 1767 } // end of SumOverInterMM 1783 } // end of SumOverInterMM 1768 1784 1769 ///////////////////////////////////////////// 1785 ////////////////////////////////////////////////////////////////////// 1770 // 1786 // 1771 // Calculation the PAI Plasmon integral cross 1787 // Calculation the PAI Plasmon integral cross-section inside 1772 // of interval of continuous values of photo- 1788 // of interval of continuous values of photo-ionisation Plasmon 1773 // cross-section. Parameter 'i' is the numbe 1789 // cross-section. Parameter 'i' is the number of interval. 1774 1790 1775 G4double G4PAIxSection::SumOverInterPlasmon( 1791 G4double G4PAIxSection::SumOverInterPlasmon( G4int i ) 1776 { 1792 { 1777 G4double x0,x1,y0,yy1,a,b,c,result; 1793 G4double x0,x1,y0,yy1,a,b,c,result; 1778 1794 1779 x0 = fSplineEnergy[i]; 1795 x0 = fSplineEnergy[i]; 1780 x1 = fSplineEnergy[i+1]; 1796 x1 = fSplineEnergy[i+1]; 1781 1797 1782 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x 1798 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) return 0.; 1783 1799 1784 y0 = fdNdxPlasmon[i]; 1800 y0 = fdNdxPlasmon[i]; 1785 yy1 = fdNdxPlasmon[i+1]; 1801 yy1 = fdNdxPlasmon[i+1]; 1786 c = x1/x0; << 1802 c =x1/x0; 1787 a = log10(yy1/y0)/log10(c); 1803 a = log10(yy1/y0)/log10(c); 1788 << 1804 if(a > 10.0) return 0.; 1789 b = 0.0; << 1805 // b = log10(y0) - a*log10(x0); 1790 if(a < 20.) b = y0/pow(x0,a); << 1806 b = y0/pow(x0,a); 1791 1807 1792 a += 1.0; 1808 a += 1.0; 1793 if(a == 0) result = b*log(x1/x0); 1809 if(a == 0) result = b*log(x1/x0); 1794 else result = y0*(x1*pow(c,a-1) - x0 1810 else result = y0*(x1*pow(c,a-1) - x0)/a; 1795 a += 1.0; 1811 a += 1.0; 1796 1812 1797 if( a == 0 ) fIntegralPlasmon[0] += b*log( 1813 if( a == 0 ) fIntegralPlasmon[0] += b*log(x1/x0); 1798 else fIntegralPlasmon[0] += y0*(x1 1814 else fIntegralPlasmon[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1799 1815 1800 return result; 1816 return result; 1801 1817 1802 } // end of SumOverInterPlasmon 1818 } // end of SumOverInterPlasmon 1803 1819 1804 ///////////////////////////////////////////// 1820 ////////////////////////////////////////////////////////////////////// 1805 // 1821 // 1806 // Calculation the PAI resonance integral cro 1822 // Calculation the PAI resonance integral cross-section inside 1807 // of interval of continuous values of photo- 1823 // of interval of continuous values of photo-ionisation resonance 1808 // cross-section. Parameter 'i' is the numbe 1824 // cross-section. Parameter 'i' is the number of interval. 1809 1825 1810 G4double G4PAIxSection::SumOverInterResonance 1826 G4double G4PAIxSection::SumOverInterResonance( G4int i ) 1811 { 1827 { 1812 G4double x0,x1,y0,yy1,a,b,c,result; 1828 G4double x0,x1,y0,yy1,a,b,c,result; 1813 1829 1814 x0 = fSplineEnergy[i]; 1830 x0 = fSplineEnergy[i]; 1815 x1 = fSplineEnergy[i+1]; 1831 x1 = fSplineEnergy[i+1]; 1816 1832 1817 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x 1833 if(x1+x0 <= 0.0 || std::abs( 2.*(x1-x0)/(x1+x0) ) < 1.e-6) return 0.; 1818 1834 1819 y0 = fdNdxResonance[i]; 1835 y0 = fdNdxResonance[i]; 1820 yy1 = fdNdxResonance[i+1]; 1836 yy1 = fdNdxResonance[i+1]; 1821 c =x1/x0; 1837 c =x1/x0; 1822 a = log10(yy1/y0)/log10(c); 1838 a = log10(yy1/y0)/log10(c); 1823 << 1839 if(a > 10.0) return 0.; 1824 b = 0.0; << 1840 // b = log10(y0) - a*log10(x0); 1825 if(a < 20.) b = y0/pow(x0,a); << 1841 b = y0/pow(x0,a); 1826 1842 1827 a += 1.0; 1843 a += 1.0; 1828 if(a == 0) result = b*log(x1/x0); 1844 if(a == 0) result = b*log(x1/x0); 1829 else result = y0*(x1*pow(c,a-1) - x0 1845 else result = y0*(x1*pow(c,a-1) - x0)/a; 1830 a += 1.0; 1846 a += 1.0; 1831 1847 1832 if( a == 0 ) fIntegralResonance[0] += b*lo 1848 if( a == 0 ) fIntegralResonance[0] += b*log(x1/x0); 1833 else fIntegralResonance[0] += y0*( 1849 else fIntegralResonance[0] += y0*(x1*x1*pow(c,a-2) - x0*x0)/a; 1834 1850 1835 return result; 1851 return result; 1836 1852 1837 } // end of SumOverInterResonance 1853 } // end of SumOverInterResonance 1838 1854 1839 ///////////////////////////////////////////// 1855 /////////////////////////////////////////////////////////////////////////////// 1840 // 1856 // 1841 // Integration of PAI cross-section for the c 1857 // Integration of PAI cross-section for the case of 1842 // passing across border between intervals 1858 // passing across border between intervals 1843 1859 1844 G4double G4PAIxSection::SumOverBorder( G4int 1860 G4double G4PAIxSection::SumOverBorder( G4int i , 1845 G4doub 1861 G4double en0 ) 1846 { 1862 { 1847 G4double x0,x1,y0,yy1,a,b,/*c,*/d,e0,result 1863 G4double x0,x1,y0,yy1,a,b,/*c,*/d,e0,result; 1848 1864 1849 e0 = en0; 1865 e0 = en0; 1850 x0 = fSplineEnergy[i]; 1866 x0 = fSplineEnergy[i]; 1851 x1 = fSplineEnergy[i+1]; 1867 x1 = fSplineEnergy[i+1]; 1852 y0 = fDifPAIxSection[i]; 1868 y0 = fDifPAIxSection[i]; 1853 yy1 = fDifPAIxSection[i+1]; 1869 yy1 = fDifPAIxSection[i+1]; 1854 1870 1855 //c = x1/x0; 1871 //c = x1/x0; 1856 d = e0/x0; 1872 d = e0/x0; 1857 a = log10(yy1/y0)/log10(x1/x0); 1873 a = log10(yy1/y0)/log10(x1/x0); >> 1874 if(a > 10.0) return 0.; 1858 1875 1859 if(fVerbose>0) G4cout<<"SumOverBorder, a = 1876 if(fVerbose>0) G4cout<<"SumOverBorder, a = "<<a<<G4endl; 1860 1877 1861 b = 0.0; << 1878 // b0 = log10(y0) - a*log10(x0); 1862 if(a < 20.) b = y0/pow(x0,a); << 1879 b = y0/pow(x0,a); // pow(10.,b); 1863 1880 1864 a += 1.; 1881 a += 1.; 1865 if( std::abs(a) < 1.e-6 ) << 1882 if( std::fabs(a) < 1.e-6 ) 1866 { 1883 { 1867 result = b*log(x0/e0); 1884 result = b*log(x0/e0); 1868 } 1885 } 1869 else 1886 else 1870 { 1887 { 1871 result = y0*(x0 - e0*pow(d,a-1))/a; 1888 result = y0*(x0 - e0*pow(d,a-1))/a; 1872 } 1889 } 1873 a += 1.; 1890 a += 1.; 1874 if( std::abs(a) < 1.e-6 ) << 1891 if( std::fabs(a) < 1.e-6 ) 1875 { 1892 { 1876 fIntegralPAIxSection[0] += b*log(x0/e0) 1893 fIntegralPAIxSection[0] += b*log(x0/e0); 1877 } 1894 } 1878 else 1895 else 1879 { 1896 { 1880 fIntegralPAIxSection[0] += y0*(x0*x0 - 1897 fIntegralPAIxSection[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1881 } 1898 } 1882 x0 = fSplineEnergy[i - 1]; 1899 x0 = fSplineEnergy[i - 1]; 1883 x1 = fSplineEnergy[i - 2]; 1900 x1 = fSplineEnergy[i - 2]; 1884 y0 = fDifPAIxSection[i - 1]; 1901 y0 = fDifPAIxSection[i - 1]; 1885 yy1 = fDifPAIxSection[i - 2]; 1902 yy1 = fDifPAIxSection[i - 2]; 1886 1903 >> 1904 //c = x1/x0; 1887 d = e0/x0; 1905 d = e0/x0; 1888 a = log10(yy1/y0)/log10(x1/x0); 1906 a = log10(yy1/y0)/log10(x1/x0); 1889 << 1907 // b0 = log10(y0) - a*log10(x0); 1890 b = 0.0; << 1908 b = y0/pow(x0,a); 1891 if(a < 20.) b = y0/pow(x0,a); << 1892 << 1893 a += 1.; 1909 a += 1.; 1894 if( std::abs(a) < 1.e-6 ) << 1910 if( std::fabs(a) < 1.e-6 ) 1895 { 1911 { 1896 result += b*log(e0/x0); 1912 result += b*log(e0/x0); 1897 } 1913 } 1898 else 1914 else 1899 { 1915 { 1900 result += y0*(e0*pow(d,a-1) - x0)/a; 1916 result += y0*(e0*pow(d,a-1) - x0)/a; 1901 } 1917 } 1902 a += 1.; 1918 a += 1.; 1903 if( std::abs(a) < 1.e-6 ) << 1919 if( std::fabs(a) < 1.e-6 ) 1904 { 1920 { 1905 fIntegralPAIxSection[0] += b*log(e0/x0) 1921 fIntegralPAIxSection[0] += b*log(e0/x0); 1906 } 1922 } 1907 else 1923 else 1908 { 1924 { 1909 fIntegralPAIxSection[0] += y0*(e0*e0*po 1925 fIntegralPAIxSection[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1910 } 1926 } 1911 return result; 1927 return result; 1912 1928 1913 } 1929 } 1914 1930 1915 ///////////////////////////////////////////// 1931 /////////////////////////////////////////////////////////////////////// 1916 1932 1917 G4double G4PAIxSection::SumOverBorderdEdx( G4 << 1933 G4double G4PAIxSection::SumOverBorderdEdx( G4int i , >> 1934 G4double en0 ) 1918 { 1935 { 1919 G4double x0,x1,y0,yy1,a,b,d,e0,result; << 1936 G4double x0,x1,y0,yy1,a,b,/*c,*/d,e0,result; 1920 1937 1921 e0 = en0; 1938 e0 = en0; 1922 x0 = fSplineEnergy[i]; 1939 x0 = fSplineEnergy[i]; 1923 x1 = fSplineEnergy[i+1]; 1940 x1 = fSplineEnergy[i+1]; 1924 y0 = fDifPAIxSection[i]; 1941 y0 = fDifPAIxSection[i]; 1925 yy1 = fDifPAIxSection[i+1]; 1942 yy1 = fDifPAIxSection[i+1]; 1926 1943 >> 1944 //c = x1/x0; 1927 d = e0/x0; 1945 d = e0/x0; 1928 a = log10(yy1/y0)/log10(x1/x0); 1946 a = log10(yy1/y0)/log10(x1/x0); 1929 << 1947 if(a > 10.0) return 0.; 1930 b = 0.0; << 1948 // b0 = log10(y0) - a*log10(x0); 1931 if(a < 20.) b = y0/pow(x0,a); << 1949 b = y0/pow(x0,a); // pow(10.,b); 1932 1950 1933 a += 2; 1951 a += 2; 1934 if(a == 0) 1952 if(a == 0) 1935 { 1953 { 1936 result = b*log(x0/e0); 1954 result = b*log(x0/e0); 1937 } 1955 } 1938 else 1956 else 1939 { 1957 { 1940 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/ 1958 result = y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1941 } 1959 } 1942 x0 = fSplineEnergy[i - 1]; 1960 x0 = fSplineEnergy[i - 1]; 1943 x1 = fSplineEnergy[i - 2]; 1961 x1 = fSplineEnergy[i - 2]; 1944 y0 = fDifPAIxSection[i - 1]; 1962 y0 = fDifPAIxSection[i - 1]; 1945 yy1 = fDifPAIxSection[i - 2]; 1963 yy1 = fDifPAIxSection[i - 2]; 1946 1964 1947 // c = x1/x0; 1965 // c = x1/x0; 1948 d = e0/x0; 1966 d = e0/x0; 1949 a = log10(yy1/y0)/log10(x1/x0); 1967 a = log10(yy1/y0)/log10(x1/x0); 1950 << 1968 // b0 = log10(y0) - a*log10(x0); 1951 b = 0.0; << 1969 b = y0/pow(x0,a); 1952 if(a < 20.) b = y0/pow(x0,a); << 1953 << 1954 a += 2; 1970 a += 2; 1955 if(a == 0) 1971 if(a == 0) 1956 { 1972 { 1957 result += b*log(e0/x0); 1973 result += b*log(e0/x0); 1958 } 1974 } 1959 else 1975 else 1960 { 1976 { 1961 result += y0*(e0*e0*pow(d,a-2) - x0*x0) 1977 result += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 1962 } 1978 } 1963 return result; 1979 return result; 1964 1980 1965 } 1981 } 1966 1982 1967 ///////////////////////////////////////////// 1983 /////////////////////////////////////////////////////////////////////////////// 1968 // 1984 // 1969 // Integration of Cerenkov cross-section for 1985 // Integration of Cerenkov cross-section for the case of 1970 // passing across border between intervals 1986 // passing across border between intervals 1971 1987 1972 G4double G4PAIxSection::SumOverBordCerenkov( << 1988 G4double G4PAIxSection::SumOverBordCerenkov( G4int i , >> 1989 G4double en0 ) 1973 { 1990 { 1974 G4double x0,x1,y0,yy1,a,b,e0,c,d,result; 1991 G4double x0,x1,y0,yy1,a,b,e0,c,d,result; 1975 1992 1976 e0 = en0; 1993 e0 = en0; 1977 x0 = fSplineEnergy[i]; 1994 x0 = fSplineEnergy[i]; 1978 x1 = fSplineEnergy[i+1]; 1995 x1 = fSplineEnergy[i+1]; 1979 y0 = fdNdxCerenkov[i]; 1996 y0 = fdNdxCerenkov[i]; 1980 yy1 = fdNdxCerenkov[i+1]; 1997 yy1 = fdNdxCerenkov[i+1]; 1981 1998 1982 //G4cout<<"SumBordC, i = "<<i<<"; en0 = "< << 1999 // G4cout<<G4endl; 1983 //<<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl << 2000 // G4cout<<"SumBordC, i = "<<i<<"; en0 = "<<en0<<"; x0 ="<<x0<<"; x1 = "<<x1 >> 2001 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 1984 c = x1/x0; 2002 c = x1/x0; 1985 d = e0/x0; 2003 d = e0/x0; 1986 a = log10(yy1/y0)/log10(c); 2004 a = log10(yy1/y0)/log10(c); 1987 //G4cout << " a= " << a << " c=" << c < << 2005 if(a > 10.0) return 0.; 1988 << 2006 // b0 = log10(y0) - a*log10(x0); 1989 b = 0.0; << 2007 b = y0/pow(x0,a); // pow(10.,b0); 1990 if(a < 20.) b = y0/pow(x0,a); << 1991 2008 1992 a += 1.0; 2009 a += 1.0; 1993 if( a == 0 ) result = b*log(x0/e0); 2010 if( a == 0 ) result = b*log(x0/e0); 1994 else result = y0*(x0 - e0*pow(d,a- 2011 else result = y0*(x0 - e0*pow(d,a-1))/a; 1995 a += 1.0; 2012 a += 1.0; 1996 2013 1997 if( a == 0 ) fIntegralCerenkov[0] += b*log 2014 if( a == 0 ) fIntegralCerenkov[0] += b*log(x0/e0); 1998 else fIntegralCerenkov[0] += y0*(x 2015 else fIntegralCerenkov[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 1999 2016 >> 2017 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = "<<b<<"; result = "<<result<<G4endl; >> 2018 2000 x0 = fSplineEnergy[i - 1]; 2019 x0 = fSplineEnergy[i - 1]; 2001 x1 = fSplineEnergy[i - 2]; 2020 x1 = fSplineEnergy[i - 2]; 2002 y0 = fdNdxCerenkov[i - 1]; 2021 y0 = fdNdxCerenkov[i - 1]; 2003 yy1 = fdNdxCerenkov[i - 2]; 2022 yy1 = fdNdxCerenkov[i - 2]; 2004 2023 2005 // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 2024 // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 2006 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4 2025 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 2007 2026 2008 c = x1/x0; 2027 c = x1/x0; 2009 d = e0/x0; 2028 d = e0/x0; 2010 a = log10(yy1/y0)/log10(c); << 2029 a = log10(yy1/y0)/log10(x1/x0); 2011 << 2030 // b0 = log10(y0) - a*log10(x0); 2012 b = 0.0; << 2031 b = y0/pow(x0,a); // pow(10.,b0); 2013 if(a < 20.) b = y0/pow(x0,a); << 2014 2032 2015 a += 1.0; 2033 a += 1.0; 2016 if( a == 0 ) result += b*log(e0/x0); 2034 if( a == 0 ) result += b*log(e0/x0); 2017 else result += y0*(e0*pow(d,a-1) - 2035 else result += y0*(e0*pow(d,a-1) - x0 )/a; 2018 a += 1.0; 2036 a += 1.0; 2019 2037 2020 if( a == 0 ) fIntegralCerenkov[0] += b*log << 2038 if( a == 0 ) fIntegralCerenkov[0] += b*log(e0/x0); 2021 else fIntegralCerenkov[0] += y0*(e << 2039 else fIntegralCerenkov[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; >> 2040 >> 2041 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = " >> 2042 // <<b<<"; result = "<<result<<G4endl; 2022 2043 2023 //G4cout<<" a="<< a <<" b="<< b <<" res << 2024 return result; 2044 return result; >> 2045 2025 } 2046 } 2026 2047 2027 ///////////////////////////////////////////// 2048 /////////////////////////////////////////////////////////////////////////////// 2028 // 2049 // 2029 // Integration of MM-Cerenkov cross-section f 2050 // Integration of MM-Cerenkov cross-section for the case of 2030 // passing across border between intervals 2051 // passing across border between intervals 2031 2052 2032 G4double G4PAIxSection::SumOverBordMM( G4int << 2053 G4double G4PAIxSection::SumOverBordMM( G4int i , >> 2054 G4double en0 ) 2033 { 2055 { 2034 G4double x0,x1,y0,yy1,a,b,e0,c,d,result; 2056 G4double x0,x1,y0,yy1,a,b,e0,c,d,result; 2035 2057 2036 e0 = en0; 2058 e0 = en0; 2037 x0 = fSplineEnergy[i]; 2059 x0 = fSplineEnergy[i]; 2038 x1 = fSplineEnergy[i+1]; 2060 x1 = fSplineEnergy[i+1]; 2039 y0 = fdNdxMM[i]; 2061 y0 = fdNdxMM[i]; 2040 yy1 = fdNdxMM[i+1]; 2062 yy1 = fdNdxMM[i+1]; 2041 2063 >> 2064 // G4cout<<G4endl; 2042 // G4cout<<"SumBordC, i = "<<i<<"; en0 = 2065 // G4cout<<"SumBordC, i = "<<i<<"; en0 = "<<en0<<"; x0 ="<<x0<<"; x1 = "<<x1 2043 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G 2066 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 2044 c = x1/x0; 2067 c = x1/x0; 2045 d = e0/x0; 2068 d = e0/x0; 2046 a = log10(yy1/y0)/log10(c); 2069 a = log10(yy1/y0)/log10(c); 2047 << 2070 if(a > 10.0) return 0.; 2048 if(a > 20.0) b = 0.0; << 2071 // b0 = log10(y0) - a*log10(x0); 2049 else b = y0/pow(x0,a); << 2072 b = y0/pow(x0,a); // pow(10.,b0); 2050 2073 2051 a += 1.0; 2074 a += 1.0; 2052 if( a == 0 ) result = b*log(x0/e0); 2075 if( a == 0 ) result = b*log(x0/e0); 2053 else result = y0*(x0 - e0*pow(d,a- 2076 else result = y0*(x0 - e0*pow(d,a-1))/a; 2054 a += 1.0; 2077 a += 1.0; 2055 2078 2056 if( a == 0 ) fIntegralMM[0] += b*log(x0/e0 2079 if( a == 0 ) fIntegralMM[0] += b*log(x0/e0); 2057 else fIntegralMM[0] += y0*(x0*x0 - 2080 else fIntegralMM[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 2058 2081 2059 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b << 2082 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = "<<b<<"; result = "<<result<<G4endl; 2060 2083 2061 x0 = fSplineEnergy[i - 1]; 2084 x0 = fSplineEnergy[i - 1]; 2062 x1 = fSplineEnergy[i - 2]; 2085 x1 = fSplineEnergy[i - 2]; 2063 y0 = fdNdxMM[i - 1]; 2086 y0 = fdNdxMM[i - 1]; 2064 yy1 = fdNdxMM[i - 2]; 2087 yy1 = fdNdxMM[i - 2]; 2065 2088 2066 // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 2089 // G4cout<<"x0 ="<<x0<<"; x1 = "<<x1 2067 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4 2090 // <<"; y0 = "<<y0<<"; yy1 = "<<yy1<<G4endl; 2068 2091 2069 c = x1/x0; 2092 c = x1/x0; 2070 d = e0/x0; 2093 d = e0/x0; 2071 a = log10(yy1/y0)/log10(x1/x0); 2094 a = log10(yy1/y0)/log10(x1/x0); 2072 << 2095 // b0 = log10(y0) - a*log10(x0); 2073 if(a > 20.0) b = 0.0; << 2096 b = y0/pow(x0,a); // pow(10.,b0); 2074 else b = y0/pow(x0,a); << 2075 2097 2076 a += 1.0; 2098 a += 1.0; 2077 if( a == 0 ) result += b*log(e0/x0); 2099 if( a == 0 ) result += b*log(e0/x0); 2078 else result += y0*(e0*pow(d,a-1) - 2100 else result += y0*(e0*pow(d,a-1) - x0 )/a; 2079 a += 1.0; 2101 a += 1.0; 2080 2102 2081 if( a == 0 ) fIntegralMM[0] += b*log(e0/x0 << 2103 if( a == 0 ) fIntegralMM[0] += b*log(e0/x0); 2082 else fIntegralMM[0] += y0*(e0*e0*p << 2104 else fIntegralMM[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 2083 2105 2084 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b 2106 // G4cout<<"a = "<<a<<"; b0 = "<<b0<<"; b = " 2085 // <<b<<"; result = "<<result<<G4endl; 2107 // <<b<<"; result = "<<result<<G4endl; 2086 2108 2087 return result; 2109 return result; 2088 2110 2089 } 2111 } 2090 2112 2091 ///////////////////////////////////////////// 2113 /////////////////////////////////////////////////////////////////////////////// 2092 // 2114 // 2093 // Integration of Plasmon cross-section for t 2115 // Integration of Plasmon cross-section for the case of 2094 // passing across border between intervals 2116 // passing across border between intervals 2095 2117 2096 G4double G4PAIxSection::SumOverBordPlasmon( G 2118 G4double G4PAIxSection::SumOverBordPlasmon( G4int i , 2097 2119 G4double en0 ) 2098 { 2120 { 2099 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 2121 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 2100 2122 2101 e0 = en0; 2123 e0 = en0; 2102 x0 = fSplineEnergy[i]; 2124 x0 = fSplineEnergy[i]; 2103 x1 = fSplineEnergy[i+1]; 2125 x1 = fSplineEnergy[i+1]; 2104 y0 = fdNdxPlasmon[i]; 2126 y0 = fdNdxPlasmon[i]; 2105 yy1 = fdNdxPlasmon[i+1]; 2127 yy1 = fdNdxPlasmon[i+1]; 2106 2128 2107 c = x1/x0; 2129 c = x1/x0; 2108 d = e0/x0; 2130 d = e0/x0; 2109 a = log10(yy1/y0)/log10(c); 2131 a = log10(yy1/y0)/log10(c); 2110 << 2132 if(a > 10.0) return 0.; 2111 if(a > 20.0) b = 0.0; << 2133 // b0 = log10(y0) - a*log10(x0); 2112 else b = y0/pow(x0,a); << 2134 b = y0/pow(x0,a); //pow(10.,b); 2113 2135 2114 a += 1.0; 2136 a += 1.0; 2115 if( a == 0 ) result = b*log(x0/e0); 2137 if( a == 0 ) result = b*log(x0/e0); 2116 else result = y0*(x0 - e0*pow(d,a- 2138 else result = y0*(x0 - e0*pow(d,a-1))/a; 2117 a += 1.0; 2139 a += 1.0; 2118 2140 2119 if( a == 0 ) fIntegralPlasmon[0] += b*log( 2141 if( a == 0 ) fIntegralPlasmon[0] += b*log(x0/e0); 2120 else fIntegralPlasmon[0] += y0*(x0 2142 else fIntegralPlasmon[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 2121 2143 2122 x0 = fSplineEnergy[i - 1]; 2144 x0 = fSplineEnergy[i - 1]; 2123 x1 = fSplineEnergy[i - 2]; 2145 x1 = fSplineEnergy[i - 2]; 2124 y0 = fdNdxPlasmon[i - 1]; 2146 y0 = fdNdxPlasmon[i - 1]; 2125 yy1 = fdNdxPlasmon[i - 2]; 2147 yy1 = fdNdxPlasmon[i - 2]; 2126 2148 2127 c = x1/x0; 2149 c = x1/x0; 2128 d = e0/x0; 2150 d = e0/x0; 2129 a = log10(yy1/y0)/log10(c); 2151 a = log10(yy1/y0)/log10(c); 2130 << 2152 // b0 = log10(y0) - a*log10(x0); 2131 if(a > 20.0) b = 0.0; << 2153 b = y0/pow(x0,a);// pow(10.,b0); 2132 else b = y0/pow(x0,a); << 2133 2154 2134 a += 1.0; 2155 a += 1.0; 2135 if( a == 0 ) result += b*log(e0/x0); 2156 if( a == 0 ) result += b*log(e0/x0); 2136 else result += y0*(e0*pow(d,a-1) - 2157 else result += y0*(e0*pow(d,a-1) - x0)/a; 2137 a += 1.0; 2158 a += 1.0; 2138 2159 2139 if( a == 0 ) fIntegralPlasmon[0] += b*lo 2160 if( a == 0 ) fIntegralPlasmon[0] += b*log(e0/x0); 2140 else fIntegralPlasmon[0] += y0*( 2161 else fIntegralPlasmon[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 2141 2162 2142 return result; 2163 return result; >> 2164 2143 } 2165 } 2144 2166 2145 ///////////////////////////////////////////// 2167 /////////////////////////////////////////////////////////////////////////////// 2146 // 2168 // 2147 // Integration of resonance cross-section for 2169 // Integration of resonance cross-section for the case of 2148 // passing across border between intervals 2170 // passing across border between intervals 2149 2171 2150 G4double G4PAIxSection::SumOverBordResonance( 2172 G4double G4PAIxSection::SumOverBordResonance( G4int i , 2151 2173 G4double en0 ) 2152 { 2174 { 2153 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 2175 G4double x0,x1,y0,yy1,a,b,c,d,e0,result; 2154 2176 2155 e0 = en0; 2177 e0 = en0; 2156 x0 = fSplineEnergy[i]; 2178 x0 = fSplineEnergy[i]; 2157 x1 = fSplineEnergy[i+1]; 2179 x1 = fSplineEnergy[i+1]; 2158 y0 = fdNdxResonance[i]; 2180 y0 = fdNdxResonance[i]; 2159 yy1 = fdNdxResonance[i+1]; 2181 yy1 = fdNdxResonance[i+1]; 2160 2182 2161 c = x1/x0; 2183 c = x1/x0; 2162 d = e0/x0; 2184 d = e0/x0; 2163 a = log10(yy1/y0)/log10(c); 2185 a = log10(yy1/y0)/log10(c); 2164 << 2186 if(a > 10.0) return 0.; 2165 if(a > 20.0) b = 0.0; << 2187 // b0 = log10(y0) - a*log10(x0); 2166 else b = y0/pow(x0,a); << 2188 b = y0/pow(x0,a); //pow(10.,b); 2167 2189 2168 a += 1.0; 2190 a += 1.0; 2169 if( a == 0 ) result = b*log(x0/e0); 2191 if( a == 0 ) result = b*log(x0/e0); 2170 else result = y0*(x0 - e0*pow(d,a- 2192 else result = y0*(x0 - e0*pow(d,a-1))/a; 2171 a += 1.0; 2193 a += 1.0; 2172 2194 2173 if( a == 0 ) fIntegralResonance[0] += b*lo 2195 if( a == 0 ) fIntegralResonance[0] += b*log(x0/e0); 2174 else fIntegralResonance[0] += y0*( 2196 else fIntegralResonance[0] += y0*(x0*x0 - e0*e0*pow(d,a-2))/a; 2175 2197 2176 x0 = fSplineEnergy[i - 1]; 2198 x0 = fSplineEnergy[i - 1]; 2177 x1 = fSplineEnergy[i - 2]; 2199 x1 = fSplineEnergy[i - 2]; 2178 y0 = fdNdxResonance[i - 1]; 2200 y0 = fdNdxResonance[i - 1]; 2179 yy1 = fdNdxResonance[i - 2]; 2201 yy1 = fdNdxResonance[i - 2]; 2180 2202 2181 c = x1/x0; 2203 c = x1/x0; 2182 d = e0/x0; 2204 d = e0/x0; 2183 a = log10(yy1/y0)/log10(c); 2205 a = log10(yy1/y0)/log10(c); 2184 << 2206 // b0 = log10(y0) - a*log10(x0); 2185 if(a > 20.0) b = 0.0; << 2207 b = y0/pow(x0,a);// pow(10.,b0); 2186 else b = y0/pow(x0,a); << 2187 2208 2188 a += 1.0; 2209 a += 1.0; 2189 if( a == 0 ) result += b*log(e0/x0); 2210 if( a == 0 ) result += b*log(e0/x0); 2190 else result += y0*(e0*pow(d,a-1) - 2211 else result += y0*(e0*pow(d,a-1) - x0)/a; 2191 a += 1.0; 2212 a += 1.0; 2192 2213 2193 if( a == 0 ) fIntegralResonance[0] += b*lo << 2214 if( a == 0 ) fIntegralResonance[0] += b*log(e0/x0); 2194 else fIntegralResonance[0] += y0*( << 2215 else fIntegralResonance[0] += y0*(e0*e0*pow(d,a-2) - x0*x0)/a; 2195 2216 2196 return result; 2217 return result; 2197 2218 2198 } 2219 } 2199 2220 2200 ///////////////////////////////////////////// 2221 ///////////////////////////////////////////////////////////////////////// 2201 // 2222 // 2202 // Returns random PAI-total energy loss over 2223 // Returns random PAI-total energy loss over step 2203 2224 2204 G4double G4PAIxSection::GetStepEnergyLoss( G4 2225 G4double G4PAIxSection::GetStepEnergyLoss( G4double step ) 2205 { 2226 { 2206 G4long numOfCollisions; 2227 G4long numOfCollisions; 2207 G4double meanNumber, loss = 0.0; 2228 G4double meanNumber, loss = 0.0; 2208 2229 2209 // G4cout<<" G4PAIxSection::GetStepEnergyLo 2230 // G4cout<<" G4PAIxSection::GetStepEnergyLoss "<<G4endl; 2210 2231 2211 meanNumber = fIntegralPAIxSection[1]*step; 2232 meanNumber = fIntegralPAIxSection[1]*step; 2212 numOfCollisions = G4Poisson(meanNumber); 2233 numOfCollisions = G4Poisson(meanNumber); 2213 2234 2214 // G4cout<<"numOfCollisions = "<<numOfColli << 2235 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2215 2236 2216 while(numOfCollisions) 2237 while(numOfCollisions) 2217 { 2238 { 2218 loss += GetEnergyTransfer(); << 2239 loss += GetEnergyTransfer(); 2219 numOfCollisions--; << 2240 numOfCollisions--; 2220 // Loop checking, 03-Aug-2015, Vladimir I << 2221 } 2241 } 2222 // G4cout<<"PAI energy loss = "<<loss/keV<< 2242 // G4cout<<"PAI energy loss = "<<loss/keV<<" keV"<<G4endl; 2223 2243 2224 return loss; 2244 return loss; 2225 } 2245 } 2226 2246 2227 ///////////////////////////////////////////// 2247 ///////////////////////////////////////////////////////////////////////// 2228 // 2248 // 2229 // Returns random PAI-total energy transfer i 2249 // Returns random PAI-total energy transfer in one collision 2230 2250 2231 G4double G4PAIxSection::GetEnergyTransfer() 2251 G4double G4PAIxSection::GetEnergyTransfer() 2232 { 2252 { 2233 G4int iTransfer ; 2253 G4int iTransfer ; 2234 2254 2235 G4double energyTransfer, position; 2255 G4double energyTransfer, position; 2236 2256 2237 position = fIntegralPAIxSection[1]*G4Unifor 2257 position = fIntegralPAIxSection[1]*G4UniformRand(); 2238 2258 2239 for( iTransfer = 1; iTransfer <= fSplineNum 2259 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2240 { 2260 { 2241 if( position >= fIntegralPAIxSection[iTra << 2261 if( position >= fIntegralPAIxSection[iTransfer] ) break; 2242 } 2262 } 2243 if(iTransfer > fSplineNumber) iTransfer--; 2263 if(iTransfer > fSplineNumber) iTransfer--; 2244 2264 2245 energyTransfer = fSplineEnergy[iTransfer]; 2265 energyTransfer = fSplineEnergy[iTransfer]; 2246 2266 2247 if(iTransfer > 1) 2267 if(iTransfer > 1) 2248 { 2268 { 2249 energyTransfer -= (fSplineEnergy[iTransfe 2269 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2250 } 2270 } 2251 return energyTransfer; 2271 return energyTransfer; 2252 } 2272 } 2253 2273 2254 ///////////////////////////////////////////// 2274 ///////////////////////////////////////////////////////////////////////// 2255 // 2275 // 2256 // Returns random Cerenkov energy loss over s 2276 // Returns random Cerenkov energy loss over step 2257 2277 2258 G4double G4PAIxSection::GetStepCerenkovLoss( 2278 G4double G4PAIxSection::GetStepCerenkovLoss( G4double step ) 2259 { 2279 { 2260 G4long numOfCollisions; 2280 G4long numOfCollisions; 2261 G4double meanNumber, loss = 0.0; 2281 G4double meanNumber, loss = 0.0; 2262 2282 2263 // G4cout<<" G4PAIxSection::GetStepCerenkov 2283 // G4cout<<" G4PAIxSection::GetStepCerenkovLoss "<<G4endl; 2264 2284 2265 meanNumber = fIntegralCerenkov[1]*step; 2285 meanNumber = fIntegralCerenkov[1]*step; 2266 numOfCollisions = G4Poisson(meanNumber); 2286 numOfCollisions = G4Poisson(meanNumber); 2267 2287 2268 // G4cout<<"numOfCollisions = "<<numOfCol 2288 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2269 2289 2270 while(numOfCollisions) 2290 while(numOfCollisions) 2271 { 2291 { 2272 loss += GetCerenkovEnergyTransfer(); 2292 loss += GetCerenkovEnergyTransfer(); 2273 numOfCollisions--; 2293 numOfCollisions--; 2274 // Loop checking, 03-Aug-2015, Vladimir I << 2275 } 2294 } 2276 // G4cout<<"PAI Cerenkov loss = "<<loss/keV 2295 // G4cout<<"PAI Cerenkov loss = "<<loss/keV<<" keV"<<G4endl; 2277 2296 2278 return loss; 2297 return loss; 2279 } 2298 } 2280 2299 2281 ///////////////////////////////////////////// 2300 ///////////////////////////////////////////////////////////////////////// 2282 // 2301 // 2283 // Returns random MM-Cerenkov energy loss ove 2302 // Returns random MM-Cerenkov energy loss over step 2284 2303 2285 G4double G4PAIxSection::GetStepMMLoss( G4doub 2304 G4double G4PAIxSection::GetStepMMLoss( G4double step ) 2286 { 2305 { 2287 G4long numOfCollisions; 2306 G4long numOfCollisions; 2288 G4double meanNumber, loss = 0.0; 2307 G4double meanNumber, loss = 0.0; 2289 2308 2290 // G4cout<<" G4PAIxSection::GetStepMMLoss " 2309 // G4cout<<" G4PAIxSection::GetStepMMLoss "<<G4endl; 2291 2310 2292 meanNumber = fIntegralMM[1]*step; 2311 meanNumber = fIntegralMM[1]*step; 2293 numOfCollisions = G4Poisson(meanNumber); 2312 numOfCollisions = G4Poisson(meanNumber); 2294 2313 2295 // G4cout<<"numOfCollisions = "<<numOfCol 2314 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2296 2315 2297 while(numOfCollisions) 2316 while(numOfCollisions) 2298 { 2317 { 2299 loss += GetMMEnergyTransfer(); 2318 loss += GetMMEnergyTransfer(); 2300 numOfCollisions--; 2319 numOfCollisions--; 2301 // Loop checking, 03-Aug-2015, Vladimir I << 2302 } 2320 } 2303 // G4cout<<"PAI MM-Cerenkov loss = "<<loss/ 2321 // G4cout<<"PAI MM-Cerenkov loss = "<<loss/keV<<" keV"<<G4endl; 2304 2322 2305 return loss; 2323 return loss; 2306 } 2324 } 2307 2325 2308 ///////////////////////////////////////////// 2326 ///////////////////////////////////////////////////////////////////////// 2309 // 2327 // 2310 // Returns Cerenkov energy transfer in one co 2328 // Returns Cerenkov energy transfer in one collision 2311 2329 2312 G4double G4PAIxSection::GetCerenkovEnergyTran 2330 G4double G4PAIxSection::GetCerenkovEnergyTransfer() 2313 { 2331 { 2314 G4int iTransfer ; 2332 G4int iTransfer ; 2315 2333 2316 G4double energyTransfer, position; 2334 G4double energyTransfer, position; 2317 2335 2318 position = fIntegralCerenkov[1]*G4UniformRa 2336 position = fIntegralCerenkov[1]*G4UniformRand(); 2319 2337 2320 for( iTransfer = 1; iTransfer <= fSplineNum 2338 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2321 { 2339 { 2322 if( position >= fIntegralCerenkov[iTr 2340 if( position >= fIntegralCerenkov[iTransfer] ) break; 2323 } 2341 } 2324 if(iTransfer > fSplineNumber) iTransfer--; 2342 if(iTransfer > fSplineNumber) iTransfer--; 2325 2343 2326 energyTransfer = fSplineEnergy[iTransfer]; 2344 energyTransfer = fSplineEnergy[iTransfer]; 2327 2345 2328 if(iTransfer > 1) 2346 if(iTransfer > 1) 2329 { 2347 { 2330 energyTransfer -= (fSplineEnergy[iTransfe 2348 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2331 } 2349 } 2332 return energyTransfer; 2350 return energyTransfer; 2333 } 2351 } 2334 2352 2335 ///////////////////////////////////////////// 2353 ///////////////////////////////////////////////////////////////////////// 2336 // 2354 // 2337 // Returns MM-Cerenkov energy transfer in one 2355 // Returns MM-Cerenkov energy transfer in one collision 2338 2356 2339 G4double G4PAIxSection::GetMMEnergyTransfer() 2357 G4double G4PAIxSection::GetMMEnergyTransfer() 2340 { 2358 { 2341 G4int iTransfer ; 2359 G4int iTransfer ; 2342 2360 2343 G4double energyTransfer, position; 2361 G4double energyTransfer, position; 2344 2362 2345 position = fIntegralMM[1]*G4UniformRand(); 2363 position = fIntegralMM[1]*G4UniformRand(); 2346 2364 2347 for( iTransfer = 1; iTransfer <= fSplineNum 2365 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2348 { 2366 { 2349 if( position >= fIntegralMM[iTransfer] ) << 2367 if( position >= fIntegralMM[iTransfer] ) break; 2350 } 2368 } 2351 if(iTransfer > fSplineNumber) iTransfer--; 2369 if(iTransfer > fSplineNumber) iTransfer--; 2352 2370 2353 energyTransfer = fSplineEnergy[iTransfer]; 2371 energyTransfer = fSplineEnergy[iTransfer]; 2354 2372 2355 if(iTransfer > 1) 2373 if(iTransfer > 1) 2356 { 2374 { 2357 energyTransfer -= (fSplineEnergy[iTransfe 2375 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2358 } 2376 } 2359 return energyTransfer; 2377 return energyTransfer; 2360 } 2378 } 2361 2379 2362 ///////////////////////////////////////////// 2380 ///////////////////////////////////////////////////////////////////////// 2363 // 2381 // 2364 // Returns random plasmon energy loss over st 2382 // Returns random plasmon energy loss over step 2365 2383 2366 G4double G4PAIxSection::GetStepPlasmonLoss( G 2384 G4double G4PAIxSection::GetStepPlasmonLoss( G4double step ) 2367 { 2385 { 2368 G4long numOfCollisions; 2386 G4long numOfCollisions; 2369 G4double meanNumber, loss = 0.0; 2387 G4double meanNumber, loss = 0.0; 2370 2388 2371 // G4cout<<" G4PAIxSection::GetStepPlasmonL 2389 // G4cout<<" G4PAIxSection::GetStepPlasmonLoss "<<G4endl; 2372 2390 2373 meanNumber = fIntegralPlasmon[1]*step; 2391 meanNumber = fIntegralPlasmon[1]*step; 2374 numOfCollisions = G4Poisson(meanNumber); 2392 numOfCollisions = G4Poisson(meanNumber); 2375 2393 2376 // G4cout<<"numOfCollisions = "<<numOfCol 2394 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2377 2395 2378 while(numOfCollisions) 2396 while(numOfCollisions) 2379 { 2397 { 2380 loss += GetPlasmonEnergyTransfer(); 2398 loss += GetPlasmonEnergyTransfer(); 2381 numOfCollisions--; 2399 numOfCollisions--; 2382 // Loop checking, 03-Aug-2015, Vladimir I << 2383 } 2400 } 2384 // G4cout<<"PAI Plasmon loss = "<<loss/keV< 2401 // G4cout<<"PAI Plasmon loss = "<<loss/keV<<" keV"<<G4endl; 2385 2402 2386 return loss; 2403 return loss; 2387 } 2404 } 2388 2405 2389 ///////////////////////////////////////////// 2406 ///////////////////////////////////////////////////////////////////////// 2390 // 2407 // 2391 // Returns plasmon energy transfer in one col 2408 // Returns plasmon energy transfer in one collision 2392 2409 2393 G4double G4PAIxSection::GetPlasmonEnergyTrans 2410 G4double G4PAIxSection::GetPlasmonEnergyTransfer() 2394 { 2411 { 2395 G4int iTransfer ; 2412 G4int iTransfer ; 2396 2413 2397 G4double energyTransfer, position; 2414 G4double energyTransfer, position; 2398 2415 2399 position = fIntegralPlasmon[1]*G4UniformRan 2416 position = fIntegralPlasmon[1]*G4UniformRand(); 2400 2417 2401 for( iTransfer = 1; iTransfer <= fSplineNum 2418 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2402 { 2419 { 2403 if( position >= fIntegralPlasmon[iTransfe << 2420 if( position >= fIntegralPlasmon[iTransfer] ) break; 2404 } 2421 } 2405 if(iTransfer > fSplineNumber) iTransfer--; 2422 if(iTransfer > fSplineNumber) iTransfer--; 2406 2423 2407 energyTransfer = fSplineEnergy[iTransfer]; 2424 energyTransfer = fSplineEnergy[iTransfer]; 2408 2425 2409 if(iTransfer > 1) 2426 if(iTransfer > 1) 2410 { 2427 { 2411 energyTransfer -= (fSplineEnergy[iTransfe 2428 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2412 } 2429 } 2413 return energyTransfer; 2430 return energyTransfer; 2414 } 2431 } 2415 2432 2416 ///////////////////////////////////////////// 2433 ///////////////////////////////////////////////////////////////////////// 2417 // 2434 // 2418 // Returns random resonance energy loss over 2435 // Returns random resonance energy loss over step 2419 2436 2420 G4double G4PAIxSection::GetStepResonanceLoss( 2437 G4double G4PAIxSection::GetStepResonanceLoss( G4double step ) 2421 { 2438 { 2422 G4long numOfCollisions; 2439 G4long numOfCollisions; 2423 G4double meanNumber, loss = 0.0; 2440 G4double meanNumber, loss = 0.0; 2424 2441 2425 // G4cout<<" G4PAIxSection::GetStepCreLosnk 2442 // G4cout<<" G4PAIxSection::GetStepCreLosnkovs "<<G4endl; 2426 2443 2427 meanNumber = fIntegralResonance[1]*step; 2444 meanNumber = fIntegralResonance[1]*step; 2428 numOfCollisions = G4Poisson(meanNumber); 2445 numOfCollisions = G4Poisson(meanNumber); 2429 2446 2430 // G4cout<<"numOfCollisions = "<<numOfCol 2447 // G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl; 2431 2448 2432 while(numOfCollisions) 2449 while(numOfCollisions) 2433 { 2450 { 2434 loss += GetResonanceEnergyTransfer(); 2451 loss += GetResonanceEnergyTransfer(); 2435 numOfCollisions--; 2452 numOfCollisions--; 2436 // Loop checking, 03-Aug-2015, Vladimir I << 2437 } 2453 } 2438 // G4cout<<"PAI resonance loss = "<<loss/ke 2454 // G4cout<<"PAI resonance loss = "<<loss/keV<<" keV"<<G4endl; 2439 2455 2440 return loss; 2456 return loss; 2441 } 2457 } 2442 2458 2443 2459 2444 ///////////////////////////////////////////// 2460 ///////////////////////////////////////////////////////////////////////// 2445 // 2461 // 2446 // Returns resonance energy transfer in one c 2462 // Returns resonance energy transfer in one collision 2447 2463 2448 G4double G4PAIxSection::GetResonanceEnergyTra 2464 G4double G4PAIxSection::GetResonanceEnergyTransfer() 2449 { 2465 { 2450 G4int iTransfer ; 2466 G4int iTransfer ; 2451 2467 2452 G4double energyTransfer, position; 2468 G4double energyTransfer, position; 2453 2469 2454 position = fIntegralResonance[1]*G4UniformR 2470 position = fIntegralResonance[1]*G4UniformRand(); 2455 2471 2456 for( iTransfer = 1; iTransfer <= fSplineNum 2472 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2457 { 2473 { 2458 if( position >= fIntegralResonance[iTrans << 2474 if( position >= fIntegralResonance[iTransfer] ) break; 2459 } 2475 } 2460 if(iTransfer > fSplineNumber) iTransfer--; 2476 if(iTransfer > fSplineNumber) iTransfer--; 2461 2477 2462 energyTransfer = fSplineEnergy[iTransfer]; 2478 energyTransfer = fSplineEnergy[iTransfer]; 2463 2479 2464 if(iTransfer > 1) 2480 if(iTransfer > 1) 2465 { 2481 { 2466 energyTransfer -= (fSplineEnergy[iTransfe 2482 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2467 } 2483 } 2468 return energyTransfer; 2484 return energyTransfer; 2469 } 2485 } 2470 2486 2471 2487 2472 ///////////////////////////////////////////// 2488 ///////////////////////////////////////////////////////////////////////// 2473 // 2489 // 2474 // Returns Rutherford energy transfer in one 2490 // Returns Rutherford energy transfer in one collision 2475 2491 2476 G4double G4PAIxSection::GetRutherfordEnergyTr 2492 G4double G4PAIxSection::GetRutherfordEnergyTransfer() 2477 { 2493 { 2478 G4int iTransfer ; 2494 G4int iTransfer ; 2479 2495 2480 G4double energyTransfer, position; 2496 G4double energyTransfer, position; 2481 2497 2482 position = (fIntegralPlasmon[1]-fIntegralRe 2498 position = (fIntegralPlasmon[1]-fIntegralResonance[1])*G4UniformRand(); 2483 2499 2484 for( iTransfer = 1; iTransfer <= fSplineNum 2500 for( iTransfer = 1; iTransfer <= fSplineNumber; iTransfer++ ) 2485 { 2501 { 2486 if( position >= (fIntegralPlasmon[iTransf << 2502 if( position >= (fIntegralPlasmon[iTransfer]-fIntegralResonance[iTransfer]) ) break; 2487 } 2503 } 2488 if(iTransfer > fSplineNumber) iTransfer--; 2504 if(iTransfer > fSplineNumber) iTransfer--; 2489 2505 2490 energyTransfer = fSplineEnergy[iTransfer]; 2506 energyTransfer = fSplineEnergy[iTransfer]; 2491 2507 2492 if(iTransfer > 1) 2508 if(iTransfer > 1) 2493 { 2509 { 2494 energyTransfer -= (fSplineEnergy[iTransfe 2510 energyTransfer -= (fSplineEnergy[iTransfer]-fSplineEnergy[iTransfer-1])*G4UniformRand(); 2495 } 2511 } 2496 return energyTransfer; 2512 return energyTransfer; 2497 } 2513 } 2498 2514 2499 ///////////////////////////////////////////// 2515 ///////////////////////////////////////////////////////////////////////////// 2500 // 2516 // 2501 2517 2502 void G4PAIxSection::CallError(G4int i, const 2518 void G4PAIxSection::CallError(G4int i, const G4String& methodName) const 2503 { 2519 { 2504 G4String head = "G4PAIxSection::" + methodN 2520 G4String head = "G4PAIxSection::" + methodName + "()"; 2505 G4ExceptionDescription ed; 2521 G4ExceptionDescription ed; 2506 ed << "Wrong index " << i << " fSplineNumbe 2522 ed << "Wrong index " << i << " fSplineNumber= " << fSplineNumber; 2507 G4Exception(head,"pai001",FatalException,ed 2523 G4Exception(head,"pai001",FatalException,ed); 2508 } 2524 } 2509 2525 2510 ///////////////////////////////////////////// 2526 ///////////////////////////////////////////////////////////////////////////// 2511 // 2527 // 2512 // Init array of Lorentz factors 2528 // Init array of Lorentz factors 2513 // 2529 // 2514 2530 2515 G4int G4PAIxSection::fNumberOfGammas = 111; 2531 G4int G4PAIxSection::fNumberOfGammas = 111; 2516 2532 2517 const G4double G4PAIxSection::fLorentzFactor[ 2533 const G4double G4PAIxSection::fLorentzFactor[112] = // fNumberOfGammas+1 2518 { 2534 { 2519 0.0, 2535 0.0, 2520 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.1 2536 1.094989e+00, 1.107813e+00, 1.122369e+00, 1.138890e+00, 1.157642e+00, 2521 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.2 2537 1.178925e+00, 1.203082e+00, 1.230500e+00, 1.261620e+00, 1.296942e+00, // 10 2522 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.4 2538 1.337032e+00, 1.382535e+00, 1.434181e+00, 1.492800e+00, 1.559334e+00, 2523 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.9 2539 1.634850e+00, 1.720562e+00, 1.817845e+00, 1.928263e+00, 2.053589e+00, // 20 2524 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.7 2540 2.195835e+00, 2.357285e+00, 2.540533e+00, 2.748522e+00, 2.984591e+00, 2525 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.2 2541 3.252533e+00, 3.556649e+00, 3.901824e+00, 4.293602e+00, 4.738274e+00, // 30 2526 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.2 2542 5.242981e+00, 5.815829e+00, 6.466019e+00, 7.203990e+00, 8.041596e+00, 2527 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.2 2543 8.992288e+00, 1.007133e+01, 1.129606e+01, 1.268614e+01, 1.426390e+01, // 40 2528 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.3 2544 1.605467e+01, 1.808721e+01, 2.039417e+01, 2.301259e+01, 2.598453e+01, 2529 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.2 2545 2.935771e+01, 3.318630e+01, 3.753180e+01, 4.246399e+01, 4.806208e+01, // 50 2530 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.9 2546 5.441597e+01, 6.162770e+01, 6.981310e+01, 7.910361e+01, 8.964844e+01, 2531 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.4 2547 1.016169e+02, 1.152013e+02, 1.306197e+02, 1.481198e+02, 1.679826e+02, // 60 2532 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.7 2548 1.905270e+02, 2.161152e+02, 2.451581e+02, 2.781221e+02, 3.155365e+02, 2533 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.2 2549 3.580024e+02, 4.062016e+02, 4.609081e+02, 5.230007e+02, 5.934765e+02, // 70 2534 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.8 2550 6.734672e+02, 7.642575e+02, 8.673056e+02, 9.842662e+02, 1.117018e+03, 2535 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.8 2551 1.267692e+03, 1.438709e+03, 1.632816e+03, 1.853128e+03, 2.103186e+03, // 80 2536 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.4 2552 2.387004e+03, 2.709140e+03, 3.074768e+03, 3.489760e+03, 3.960780e+03, 2537 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.5 2553 4.495394e+03, 5.102185e+03, 5.790900e+03, 6.572600e+03, 7.459837e+03, // 90 2538 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.2 2554 8.466860e+03, 9.609843e+03, 1.090714e+04, 1.237959e+04, 1.405083e+04, 2539 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.3 2555 1.594771e+04, 1.810069e+04, 2.054434e+04, 2.331792e+04, 2.646595e+04, // 100 2540 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.3 2556 3.003901e+04, 3.409446e+04, 3.869745e+04, 4.392189e+04, 4.985168e+04, 2541 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.2 2557 5.658206e+04, 6.422112e+04, 7.289153e+04, 8.273254e+04, 9.390219e+04, // 110 2542 1.065799e+05 2558 1.065799e+05 2543 }; 2559 }; 2544 2560 2545 ///////////////////////////////////////////// 2561 /////////////////////////////////////////////////////////////////////// 2546 // 2562 // 2547 // The number of gamma for creation of splin 2563 // The number of gamma for creation of spline (near ion-min , G ~ 4 ) 2548 // 2564 // 2549 2565 2550 const 2566 const 2551 G4int G4PAIxSection::fRefGammaNumber = 29; 2567 G4int G4PAIxSection::fRefGammaNumber = 29; 2552 2568 2553 2569 2554 // 2570 // 2555 // end of G4PAIxSection implementation file 2571 // end of G4PAIxSection implementation file 2556 // 2572 // 2557 ///////////////////////////////////////////// 2573 //////////////////////////////////////////////////////////////////////////// 2558 2574 2559 2575