Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // ------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4MollerBhabhaModel 33 // 34 // Author: Vladimir Ivanchenko on base 35 // 36 // Creation date: 03.01.2002 37 // 38 // Modifications: 39 // 40 // 13-11-02 Minor fix - use normalised directi 41 // 04-12-02 Change G4DynamicParticle construct 42 // 23-12-02 Change interface in order to move 43 // 27-01-03 Make models region aware (V.Ivanch 44 // 13-02-03 Add name (V.Ivanchenko) 45 // 08-04-05 Major optimisation of internal int 46 // 25-07-05 Add protection in calculation of r 47 // of complete energy transfer from e 48 // 06-02-06 ComputeCrossSectionPerElectron, Co 49 // 15-05-06 Fix MinEnergyCut (V.Ivanchenko) 50 // 51 // 52 // Class Description: 53 // 54 // Implementation of energy loss and delta-ele 55 // 56 // ------------------------------------------- 57 // 58 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oo 60 61 #include "G4MollerBhabhaModel.hh" 62 #include "G4PhysicalConstants.hh" 63 #include "G4SystemOfUnits.hh" 64 #include "G4Electron.hh" 65 #include "G4Positron.hh" 66 #include "Randomize.hh" 67 #include "G4ParticleChangeForLoss.hh" 68 #include "G4Log.hh" 69 #include "G4DeltaAngle.hh" 70 71 //....oooOO0OOooo........oooOO0OOooo........oo 72 73 using namespace std; 74 75 G4MollerBhabhaModel::G4MollerBhabhaModel(const 76 const 77 : G4VEmModel(nam), 78 particle(nullptr), 79 isElectron(true), 80 twoln10(2.0*G4Log(10.0)), 81 lowLimit(0.02*keV), 82 isInitialised(false) 83 { 84 theElectron = G4Electron::Electron(); 85 if(nullptr != p) { SetParticle(p); } 86 fParticleChange = nullptr; 87 } 88 89 //....oooOO0OOooo........oooOO0OOooo........oo 90 91 G4MollerBhabhaModel::~G4MollerBhabhaModel() = 92 93 //....oooOO0OOooo........oooOO0OOooo........oo 94 95 G4double G4MollerBhabhaModel::MaxSecondaryEner 96 97 { 98 G4double tmax = kinEnergy; 99 if(isElectron) { tmax *= 0.5; } 100 return tmax; 101 } 102 103 //....oooOO0OOooo........oooOO0OOooo........oo 104 105 void G4MollerBhabhaModel::Initialise(const G4P 106 const G4D 107 { 108 if(p != particle) { SetParticle(p); } 109 110 if(isInitialised) { return; } 111 112 isInitialised = true; 113 fParticleChange = GetParticleChangeForLoss() 114 if(UseAngularGeneratorFlag() && !GetAngularD 115 SetAngularDistribution(new G4DeltaAngle()) 116 } 117 } 118 119 //....oooOO0OOooo........oooOO0OOooo........oo 120 121 G4double G4MollerBhabhaModel::ComputeCrossSect 122 const G4ParticleDefinition* p, G4doub 123 G4double cutEnergy, G4double maxEnergy) 124 { 125 if(p != particle) { SetParticle(p); } 126 127 G4double cross = 0.0; 128 G4double tmax = MaxSecondaryEnergy(p, kineti 129 tmax = std::min(maxEnergy, tmax); 130 //G4cout << "E= " << kineticEnergy << " cut= 131 // << " Emax= " << tmax << G4endl; 132 if(cutEnergy < tmax) { 133 134 G4double xmin = cutEnergy/kineticEnergy; 135 G4double xmax = tmax/kineticEnergy; 136 G4double tau = kineticEnergy/electron_ma 137 G4double gam = tau + 1.0; 138 G4double gamma2= gam*gam; 139 G4double beta2 = tau*(tau + 2)/gamma2; 140 141 //Moller (e-e-) scattering 142 if (isElectron) { 143 144 G4double gg = (2.0*gam - 1.0)/gamma2; 145 cross = ((xmax - xmin)*(1.0 - gg + 1.0/( 146 + 1.0/((1.0-xmin 147 - gg*G4Log( xmax*(1.0 - xmin)/(xmi 148 149 //Bhabha (e+e-) scattering 150 } else { 151 152 G4double y = 1.0/(1.0 + gam); 153 G4double y2 = y*y; 154 G4double y12 = 1.0 - 2.0*y; 155 G4double b1 = 2.0 - y2; 156 G4double b2 = y12*(3.0 + y2); 157 G4double y122= y12*y12; 158 G4double b4 = y122*y12; 159 G4double b3 = b4 + y122; 160 161 cross = (xmax - xmin)*(1.0/(beta2*xmin*x 162 - 0.5*b3*(xmin + xmax) 163 + b4*(xmin*xmin + xmin*xmax + xmax 164 - b1*G4Log(xmax/xmin); 165 } 166 167 cross *= twopi_mc2_rcl2/kineticEnergy; 168 } 169 return cross; 170 } 171 172 //....oooOO0OOooo........oooOO0OOooo........oo 173 174 G4double G4MollerBhabhaModel::ComputeCrossSect 175 con 176 177 178 179 180 { 181 return Z*ComputeCrossSectionPerElectron(p,ki 182 } 183 184 //....oooOO0OOooo........oooOO0OOooo........oo 185 186 G4double G4MollerBhabhaModel::CrossSectionPerV 187 con 188 con 189 190 191 192 { 193 G4double eDensity = material->GetElectronDen 194 return eDensity*ComputeCrossSectionPerElectr 195 } 196 197 //....oooOO0OOooo........oooOO0OOooo........oo 198 199 G4double G4MollerBhabhaModel::ComputeDEDXPerVo 200 cons 201 cons 202 203 204 { 205 if(p != particle) { SetParticle(p); } 206 // calculate the dE/dx due to the ionization 207 // checl low-energy limit 208 G4double electronDensity = material->GetElec 209 210 G4double Zeff = material->GetIonisation()-> 211 G4double th = 0.25*sqrt(Zeff)*keV; 212 G4double tkin = std::max(kineticEnergy, th); 213 214 G4double tau = tkin/electron_mass_c2; 215 G4double gam = tau + 1.0; 216 G4double gamma2= gam*gam; 217 G4double bg2 = tau*(tau + 2); 218 G4double beta2 = bg2/gamma2; 219 220 G4double eexc = material->GetIonisation()-> 221 eexc /= electron_mass_c2; 222 G4double eexc2 = eexc*eexc; 223 224 G4double d = std::min(cut, MaxSecondaryEnerg 225 G4double dedx; 226 227 // electron 228 if (isElectron) { 229 230 dedx = G4Log(2.0*(tau + 2.0)/eexc2) - 1.0 231 + G4Log((tau-d)*d) + tau/(tau-d) 232 + (0.5*d*d + (2.0*tau + 1.)*G4Log(1. 233 234 //positron 235 } else { 236 237 G4double d2 = d*d*0.5; 238 G4double d3 = d2*d/1.5; 239 G4double d4 = d3*d*0.75; 240 G4double y = 1.0/(1.0 + gam); 241 dedx = G4Log(2.0*(tau + 2.0)/eexc2) + G4Lo 242 - beta2*(tau + 2.0*d - y*(3.0*d2 243 + y*(d - d3 + y*(d2 - tau*d3 + d4)))) 244 } 245 246 //density correction 247 G4double x = G4Log(bg2)/twoln10; 248 dedx -= material->GetIonisation()->DensityCo 249 250 // now you can compute the total ionization 251 dedx *= twopi_mc2_rcl2*electronDensity/beta2 252 if (dedx < 0.0) { dedx = 0.0; } 253 254 // lowenergy extrapolation 255 256 if (kineticEnergy < th) { 257 x = kineticEnergy/th; 258 if(x > 0.25) { dedx /= sqrt(x); } 259 else { dedx *= 1.4*sqrt(x)/(0.1 + x); } 260 } 261 return dedx; 262 } 263 264 //....oooOO0OOooo........oooOO0OOooo........oo 265 266 void 267 G4MollerBhabhaModel::SampleSecondaries(std::ve 268 const G 269 const G 270 G4doubl 271 G4doubl 272 { 273 G4double kineticEnergy = dp->GetKineticEnerg 274 //G4cout << "G4MollerBhabhaModel::SampleSeco 275 // << " in " << couple->GetMaterial()- 276 G4double tmax; 277 G4double tmin = cutEnergy; 278 if(isElectron) { 279 tmax = 0.5*kineticEnergy; 280 } else { 281 tmax = kineticEnergy; 282 } 283 if(maxEnergy < tmax) { tmax = maxEnergy; } 284 if(tmin >= tmax) { return; } 285 286 G4double energy = kineticEnergy + electron_m 287 G4double xmin = tmin/kineticEnergy; 288 G4double xmax = tmax/kineticEnergy; 289 G4double gam = energy/electron_mass_c2; 290 G4double gamma2 = gam*gam; 291 G4double beta2 = 1.0 - 1.0/gamma2; 292 G4double x, z, grej; 293 CLHEP::HepRandomEngine* rndmEngine = G4Rando 294 G4double rndm[2]; 295 296 //Moller (e-e-) scattering 297 if (isElectron) { 298 299 G4double gg = (2.0*gam - 1.0)/gamma2; 300 G4double y = 1.0 - xmax; 301 grej = 1.0 - gg*xmax + xmax*xmax*(1.0 - gg 302 303 do { 304 rndmEngine->flatArray(2, rndm); 305 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xm 306 y = 1.0 - x; 307 z = 1.0 - gg*x + x*x*(1.0 - gg + (1.0 - 308 /* 309 if(z > grej) { 310 G4cout << "G4MollerBhabhaModel::Sample 311 << "Majorant " << grej << " < " 312 << z << " for x= " << x 313 << " e-e- scattering" 314 << G4endl; 315 } 316 */ 317 // Loop checking, 03-Aug-2015, Vladimir 318 } while(grej * rndm[1] > z); 319 320 //Bhabha (e+e-) scattering 321 } else { 322 323 G4double y = 1.0/(1.0 + gam); 324 G4double y2 = y*y; 325 G4double y12 = 1.0 - 2.0*y; 326 G4double b1 = 2.0 - y2; 327 G4double b2 = y12*(3.0 + y2); 328 G4double y122= y12*y12; 329 G4double b4 = y122*y12; 330 G4double b3 = b4 + y122; 331 332 y = xmax*xmax; 333 grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + 334 do { 335 rndmEngine->flatArray(2, rndm); 336 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xm 337 y = x*x; 338 z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*b1 339 /* 340 if(z > grej) { 341 G4cout << "G4MollerBhabhaModel::Sample 342 << "Majorant " << grej << " < " 343 << z << " for x= " << x 344 << " e+e- scattering" 345 << G4endl; 346 } 347 */ 348 // Loop checking, 03-Aug-2015, Vladimir 349 } while(grej * rndm[1] > z); 350 } 351 352 G4double deltaKinEnergy = x * kineticEnergy; 353 354 G4ThreeVector deltaDirection; 355 356 if(UseAngularGeneratorFlag()) { 357 const G4Material* mat = couple->GetMateri 358 G4int Z = SelectRandomAtomNumber(mat); 359 360 deltaDirection = 361 GetAngularDistribution()->SampleDirectio 362 363 } else { 364 365 G4double deltaMomentum = 366 sqrt(deltaKinEnergy * (deltaKinEnergy + 367 G4double cost = deltaKinEnergy * (energy + 368 (deltaMomentum * dp->GetTotalMomentum()) 369 if(cost > 1.0) { cost = 1.0; } 370 G4double sint = sqrt((1.0 - cost)*(1.0 + c 371 372 G4double phi = twopi * rndmEngine->flat() 373 374 deltaDirection.set(sint*cos(phi),sint*sin( 375 deltaDirection.rotateUz(dp->GetMomentumDir 376 } 377 378 // create G4DynamicParticle object for delta 379 auto delta = new G4DynamicParticle(theElectr 380 vdp->push_back(delta); 381 382 // primary change 383 kineticEnergy -= deltaKinEnergy; 384 G4ThreeVector finalP = dp->GetMomentum() - d 385 finalP = finalP.unit(); 386 387 fParticleChange->SetProposedKineticEnergy(ki 388 fParticleChange->SetProposedMomentumDirectio 389 } 390 391 //....oooOO0OOooo........oooOO0OOooo........oo 392