Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4MollerBhabhaModel 33 // File name: G4MollerBhabhaModel 33 // 34 // 34 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 36 // 36 // Creation date: 03.01.2002 37 // Creation date: 03.01.2002 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // 13-11-02 Minor fix - use normalised directi 41 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) 41 // 04-12-02 Change G4DynamicParticle construct 42 // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko) 42 // 23-12-02 Change interface in order to move 43 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanch 44 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 45 // 13-02-03 Add name (V.Ivanchenko) 45 // 08-04-05 Major optimisation of internal int 46 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 46 // 25-07-05 Add protection in calculation of r 47 // 25-07-05 Add protection in calculation of recoil direction for the case 47 // of complete energy transfer from e 48 // of complete energy transfer from e+ to e- (V.Ivanchenko) 48 // 06-02-06 ComputeCrossSectionPerElectron, Co 49 // 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 49 // 15-05-06 Fix MinEnergyCut (V.Ivanchenko) 50 // 15-05-06 Fix MinEnergyCut (V.Ivanchenko) 50 // 51 // 51 // 52 // 52 // Class Description: 53 // Class Description: 53 // 54 // 54 // Implementation of energy loss and delta-ele 55 // Implementation of energy loss and delta-electron production by e+/e- 55 // 56 // 56 // ------------------------------------------- 57 // ------------------------------------------------------------------- 57 // 58 // 58 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 59 //....oooOO0OOooo........oooOO0OOooo........oo 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 60 61 61 #include "G4MollerBhabhaModel.hh" 62 #include "G4MollerBhabhaModel.hh" 62 #include "G4PhysicalConstants.hh" 63 #include "G4PhysicalConstants.hh" 63 #include "G4SystemOfUnits.hh" 64 #include "G4SystemOfUnits.hh" 64 #include "G4Electron.hh" 65 #include "G4Electron.hh" 65 #include "G4Positron.hh" 66 #include "G4Positron.hh" 66 #include "Randomize.hh" 67 #include "Randomize.hh" 67 #include "G4ParticleChangeForLoss.hh" 68 #include "G4ParticleChangeForLoss.hh" 68 #include "G4Log.hh" << 69 #include "G4DeltaAngle.hh" << 70 69 71 //....oooOO0OOooo........oooOO0OOooo........oo 70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 72 71 73 using namespace std; 72 using namespace std; 74 73 75 G4MollerBhabhaModel::G4MollerBhabhaModel(const 74 G4MollerBhabhaModel::G4MollerBhabhaModel(const G4ParticleDefinition* p, 76 const 75 const G4String& nam) 77 : G4VEmModel(nam), 76 : G4VEmModel(nam), 78 particle(nullptr), << 77 particle(0), 79 isElectron(true), 78 isElectron(true), 80 twoln10(2.0*G4Log(10.0)), << 79 twoln10(2.0*log(10.0)), 81 lowLimit(0.02*keV), 80 lowLimit(0.02*keV), 82 isInitialised(false) 81 isInitialised(false) 83 { 82 { 84 theElectron = G4Electron::Electron(); 83 theElectron = G4Electron::Electron(); 85 if(nullptr != p) { SetParticle(p); } << 84 if(p) { SetParticle(p); } 86 fParticleChange = nullptr; << 85 fParticleChange = 0; 87 } 86 } 88 87 89 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 90 89 91 G4MollerBhabhaModel::~G4MollerBhabhaModel() = << 90 G4MollerBhabhaModel::~G4MollerBhabhaModel() >> 91 {} 92 92 93 //....oooOO0OOooo........oooOO0OOooo........oo 93 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 94 94 95 G4double G4MollerBhabhaModel::MaxSecondaryEner 95 G4double G4MollerBhabhaModel::MaxSecondaryEnergy(const G4ParticleDefinition*, 96 << 96 G4double kinEnergy) 97 { 97 { 98 G4double tmax = kinEnergy; 98 G4double tmax = kinEnergy; 99 if(isElectron) { tmax *= 0.5; } 99 if(isElectron) { tmax *= 0.5; } 100 return tmax; 100 return tmax; 101 } 101 } 102 102 103 //....oooOO0OOooo........oooOO0OOooo........oo 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 104 104 105 void G4MollerBhabhaModel::Initialise(const G4P 105 void G4MollerBhabhaModel::Initialise(const G4ParticleDefinition* p, 106 const G4D 106 const G4DataVector&) 107 { 107 { 108 if(p != particle) { SetParticle(p); } << 108 if(!particle) { SetParticle(p); } 109 109 110 if(isInitialised) { return; } 110 if(isInitialised) { return; } 111 111 112 isInitialised = true; 112 isInitialised = true; 113 fParticleChange = GetParticleChangeForLoss() 113 fParticleChange = GetParticleChangeForLoss(); 114 if(UseAngularGeneratorFlag() && !GetAngularD << 115 SetAngularDistribution(new G4DeltaAngle()) << 116 } << 117 } 114 } 118 115 119 //....oooOO0OOooo........oooOO0OOooo........oo 116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 120 117 121 G4double G4MollerBhabhaModel::ComputeCrossSect << 118 G4double 122 const G4ParticleDefinition* p, G4doub << 119 G4MollerBhabhaModel::ComputeCrossSectionPerElectron(const G4ParticleDefinition* p, 123 G4double cutEnergy, G4double maxEnergy) << 120 G4double kineticEnergy, >> 121 G4double cutEnergy, >> 122 G4double maxEnergy) 124 { 123 { 125 if(p != particle) { SetParticle(p); } << 124 if(!particle) { SetParticle(p); } 126 125 127 G4double cross = 0.0; 126 G4double cross = 0.0; 128 G4double tmax = MaxSecondaryEnergy(p, kineti 127 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 129 tmax = std::min(maxEnergy, tmax); 128 tmax = std::min(maxEnergy, tmax); 130 //G4cout << "E= " << kineticEnergy << " cut= << 129 131 // << " Emax= " << tmax << G4endl; << 132 if(cutEnergy < tmax) { 130 if(cutEnergy < tmax) { 133 131 134 G4double xmin = cutEnergy/kineticEnergy; 132 G4double xmin = cutEnergy/kineticEnergy; 135 G4double xmax = tmax/kineticEnergy; 133 G4double xmax = tmax/kineticEnergy; 136 G4double tau = kineticEnergy/electron_ma 134 G4double tau = kineticEnergy/electron_mass_c2; 137 G4double gam = tau + 1.0; 135 G4double gam = tau + 1.0; 138 G4double gamma2= gam*gam; 136 G4double gamma2= gam*gam; 139 G4double beta2 = tau*(tau + 2)/gamma2; 137 G4double beta2 = tau*(tau + 2)/gamma2; 140 138 141 //Moller (e-e-) scattering 139 //Moller (e-e-) scattering 142 if (isElectron) { 140 if (isElectron) { 143 141 144 G4double gg = (2.0*gam - 1.0)/gamma2; 142 G4double gg = (2.0*gam - 1.0)/gamma2; 145 cross = ((xmax - xmin)*(1.0 - gg + 1.0/( 143 cross = ((xmax - xmin)*(1.0 - gg + 1.0/(xmin*xmax) 146 + 1.0/((1.0-xmin << 144 + 1.0/((1.0-xmin)*(1.0 - xmax))) 147 - gg*G4Log( xmax*(1.0 - xmin)/(xmi << 145 - gg*log( xmax*(1.0 - xmin)/(xmin*(1.0 - xmax)) ) ) / beta2; 148 146 149 //Bhabha (e+e-) scattering 147 //Bhabha (e+e-) scattering 150 } else { 148 } else { 151 149 152 G4double y = 1.0/(1.0 + gam); 150 G4double y = 1.0/(1.0 + gam); 153 G4double y2 = y*y; 151 G4double y2 = y*y; 154 G4double y12 = 1.0 - 2.0*y; 152 G4double y12 = 1.0 - 2.0*y; 155 G4double b1 = 2.0 - y2; 153 G4double b1 = 2.0 - y2; 156 G4double b2 = y12*(3.0 + y2); 154 G4double b2 = y12*(3.0 + y2); 157 G4double y122= y12*y12; 155 G4double y122= y12*y12; 158 G4double b4 = y122*y12; 156 G4double b4 = y122*y12; 159 G4double b3 = b4 + y122; 157 G4double b3 = b4 + y122; 160 158 161 cross = (xmax - xmin)*(1.0/(beta2*xmin*x 159 cross = (xmax - xmin)*(1.0/(beta2*xmin*xmax) + b2 162 - 0.5*b3*(xmin + xmax) 160 - 0.5*b3*(xmin + xmax) 163 + b4*(xmin*xmin + xmin*xmax + xmax << 161 + b4*(xmin*xmin + xmin*xmax + xmax*xmax)/3.0) 164 - b1*G4Log(xmax/xmin); << 162 - b1*log(xmax/xmin); 165 } 163 } 166 164 167 cross *= twopi_mc2_rcl2/kineticEnergy; 165 cross *= twopi_mc2_rcl2/kineticEnergy; 168 } 166 } 169 return cross; 167 return cross; 170 } 168 } 171 169 172 //....oooOO0OOooo........oooOO0OOooo........oo 170 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 173 171 174 G4double G4MollerBhabhaModel::ComputeCrossSect 172 G4double G4MollerBhabhaModel::ComputeCrossSectionPerAtom( 175 con 173 const G4ParticleDefinition* p, 176 174 G4double kineticEnergy, 177 << 175 G4double Z, G4double, 178 176 G4double cutEnergy, 179 177 G4double maxEnergy) 180 { 178 { 181 return Z*ComputeCrossSectionPerElectron(p,ki 179 return Z*ComputeCrossSectionPerElectron(p,kineticEnergy,cutEnergy,maxEnergy); 182 } 180 } 183 181 184 //....oooOO0OOooo........oooOO0OOooo........oo 182 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 185 183 186 G4double G4MollerBhabhaModel::CrossSectionPerV 184 G4double G4MollerBhabhaModel::CrossSectionPerVolume( 187 con << 185 const G4Material* material, 188 con 186 const G4ParticleDefinition* p, 189 187 G4double kinEnergy, 190 188 G4double cutEnergy, 191 189 G4double maxEnergy) 192 { 190 { 193 G4double eDensity = material->GetElectronDen 191 G4double eDensity = material->GetElectronDensity(); 194 return eDensity*ComputeCrossSectionPerElectr 192 return eDensity*ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy); >> 193 /* >> 194 G4double Zeff = eDensity/material->GetTotNbOfAtomsPerVolume(); >> 195 G4double th = 0.25*sqrt(Zeff)*keV; >> 196 G4double cut; >> 197 if(isElectron) { cut = std::max(th*0.5, cutEnergy); } >> 198 else { cut = std::max(th, cutEnergy); } >> 199 G4double res = 0.0; >> 200 // below this threshold no bremsstrahlung >> 201 if (kinEnergy > th) { >> 202 res = eDensity*ComputeCrossSectionPerElectron(p,kinEnergy,cut,maxEnergy); >> 203 } >> 204 return res; >> 205 */ 195 } 206 } 196 207 197 //....oooOO0OOooo........oooOO0OOooo........oo 208 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 198 209 199 G4double G4MollerBhabhaModel::ComputeDEDXPerVo 210 G4double G4MollerBhabhaModel::ComputeDEDXPerVolume( 200 cons << 211 const G4Material* material, 201 cons 212 const G4ParticleDefinition* p, 202 213 G4double kineticEnergy, 203 214 G4double cut) 204 { 215 { 205 if(p != particle) { SetParticle(p); } << 216 if(!particle) { SetParticle(p); } 206 // calculate the dE/dx due to the ionization 217 // calculate the dE/dx due to the ionization by Seltzer-Berger formula 207 // checl low-energy limit 218 // checl low-energy limit 208 G4double electronDensity = material->GetElec 219 G4double electronDensity = material->GetElectronDensity(); 209 220 210 G4double Zeff = material->GetIonisation()-> << 221 G4double Zeff = electronDensity/material->GetTotNbOfAtomsPerVolume(); 211 G4double th = 0.25*sqrt(Zeff)*keV; 222 G4double th = 0.25*sqrt(Zeff)*keV; 212 G4double tkin = std::max(kineticEnergy, th); << 223 // G4double cut; >> 224 // if(isElectron) { cut = std::max(th*0.5, cutEnergy); } >> 225 // else { cut = std::max(th, cutEnergy); } >> 226 G4double tkin = kineticEnergy; >> 227 if (kineticEnergy < th) { tkin = th; } 213 228 214 G4double tau = tkin/electron_mass_c2; 229 G4double tau = tkin/electron_mass_c2; 215 G4double gam = tau + 1.0; 230 G4double gam = tau + 1.0; 216 G4double gamma2= gam*gam; 231 G4double gamma2= gam*gam; 217 G4double bg2 = tau*(tau + 2); 232 G4double bg2 = tau*(tau + 2); 218 G4double beta2 = bg2/gamma2; 233 G4double beta2 = bg2/gamma2; 219 234 220 G4double eexc = material->GetIonisation()-> 235 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 221 eexc /= electron_mass_c2; 236 eexc /= electron_mass_c2; 222 G4double eexc2 = eexc*eexc; 237 G4double eexc2 = eexc*eexc; 223 238 224 G4double d = std::min(cut, MaxSecondaryEnerg 239 G4double d = std::min(cut, MaxSecondaryEnergy(p, tkin))/electron_mass_c2; 225 G4double dedx; 240 G4double dedx; 226 241 227 // electron 242 // electron 228 if (isElectron) { 243 if (isElectron) { 229 244 230 dedx = G4Log(2.0*(tau + 2.0)/eexc2) - 1.0 << 245 dedx = log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2 231 + G4Log((tau-d)*d) + tau/(tau-d) << 246 + log((tau-d)*d) + tau/(tau-d) 232 + (0.5*d*d + (2.0*tau + 1.)*G4Log(1. << 247 + (0.5*d*d + (2.0*tau + 1.)*log(1. - d/tau))/gamma2; 233 248 234 //positron 249 //positron 235 } else { 250 } else { 236 251 237 G4double d2 = d*d*0.5; 252 G4double d2 = d*d*0.5; 238 G4double d3 = d2*d/1.5; 253 G4double d3 = d2*d/1.5; 239 G4double d4 = d3*d*0.75; 254 G4double d4 = d3*d*0.75; 240 G4double y = 1.0/(1.0 + gam); 255 G4double y = 1.0/(1.0 + gam); 241 dedx = G4Log(2.0*(tau + 2.0)/eexc2) + G4Lo << 256 dedx = log(2.0*(tau + 2.0)/eexc2) + log(tau*d) 242 - beta2*(tau + 2.0*d - y*(3.0*d2 257 - beta2*(tau + 2.0*d - y*(3.0*d2 243 + y*(d - d3 + y*(d2 - tau*d3 + d4)))) 258 + y*(d - d3 + y*(d2 - tau*d3 + d4))))/tau; 244 } 259 } 245 260 246 //density correction 261 //density correction 247 G4double x = G4Log(bg2)/twoln10; << 262 G4double x = log(bg2)/twoln10; 248 dedx -= material->GetIonisation()->DensityCo 263 dedx -= material->GetIonisation()->DensityCorrection(x); 249 264 250 // now you can compute the total ionization 265 // now you can compute the total ionization loss 251 dedx *= twopi_mc2_rcl2*electronDensity/beta2 266 dedx *= twopi_mc2_rcl2*electronDensity/beta2; 252 if (dedx < 0.0) { dedx = 0.0; } 267 if (dedx < 0.0) { dedx = 0.0; } 253 268 254 // lowenergy extrapolation 269 // lowenergy extrapolation 255 270 256 if (kineticEnergy < th) { 271 if (kineticEnergy < th) { 257 x = kineticEnergy/th; 272 x = kineticEnergy/th; 258 if(x > 0.25) { dedx /= sqrt(x); } 273 if(x > 0.25) { dedx /= sqrt(x); } 259 else { dedx *= 1.4*sqrt(x)/(0.1 + x); } 274 else { dedx *= 1.4*sqrt(x)/(0.1 + x); } 260 } 275 } 261 return dedx; 276 return dedx; 262 } 277 } 263 278 264 //....oooOO0OOooo........oooOO0OOooo........oo 279 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 265 280 266 void << 281 void G4MollerBhabhaModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 267 G4MollerBhabhaModel::SampleSecondaries(std::ve << 282 const G4MaterialCutsCouple*, 268 const G << 283 const G4DynamicParticle* dp, 269 const G << 284 G4double cutEnergy, 270 G4doubl << 285 G4double maxEnergy) 271 G4doubl << 272 { 286 { 273 G4double kineticEnergy = dp->GetKineticEnerg 287 G4double kineticEnergy = dp->GetKineticEnergy(); 274 //G4cout << "G4MollerBhabhaModel::SampleSeco << 288 //const G4Material* mat = couple->GetMaterial(); 275 // << " in " << couple->GetMaterial()- << 289 //G4double Zeff = mat->GetElectronDensity()/mat->GetTotNbOfAtomsPerVolume(); >> 290 // G4double th = 0.25*sqrt(Zeff)*keV; 276 G4double tmax; 291 G4double tmax; 277 G4double tmin = cutEnergy; 292 G4double tmin = cutEnergy; 278 if(isElectron) { 293 if(isElectron) { 279 tmax = 0.5*kineticEnergy; 294 tmax = 0.5*kineticEnergy; 280 } else { 295 } else { 281 tmax = kineticEnergy; 296 tmax = kineticEnergy; 282 } 297 } 283 if(maxEnergy < tmax) { tmax = maxEnergy; } 298 if(maxEnergy < tmax) { tmax = maxEnergy; } 284 if(tmin >= tmax) { return; } 299 if(tmin >= tmax) { return; } 285 300 286 G4double energy = kineticEnergy + electron_m 301 G4double energy = kineticEnergy + electron_mass_c2; >> 302 G4double totalMomentum = sqrt(kineticEnergy*(energy + electron_mass_c2)); 287 G4double xmin = tmin/kineticEnergy; 303 G4double xmin = tmin/kineticEnergy; 288 G4double xmax = tmax/kineticEnergy; 304 G4double xmax = tmax/kineticEnergy; 289 G4double gam = energy/electron_mass_c2; 305 G4double gam = energy/electron_mass_c2; 290 G4double gamma2 = gam*gam; 306 G4double gamma2 = gam*gam; 291 G4double beta2 = 1.0 - 1.0/gamma2; 307 G4double beta2 = 1.0 - 1.0/gamma2; 292 G4double x, z, grej; << 308 G4double x, z, q, grej; 293 CLHEP::HepRandomEngine* rndmEngine = G4Rando << 309 294 G4double rndm[2]; << 310 G4ThreeVector direction = dp->GetMomentumDirection(); 295 311 296 //Moller (e-e-) scattering 312 //Moller (e-e-) scattering 297 if (isElectron) { 313 if (isElectron) { 298 314 299 G4double gg = (2.0*gam - 1.0)/gamma2; 315 G4double gg = (2.0*gam - 1.0)/gamma2; 300 G4double y = 1.0 - xmax; 316 G4double y = 1.0 - xmax; 301 grej = 1.0 - gg*xmax + xmax*xmax*(1.0 - gg 317 grej = 1.0 - gg*xmax + xmax*xmax*(1.0 - gg + (1.0 - gg*y)/(y*y)); 302 318 303 do { 319 do { 304 rndmEngine->flatArray(2, rndm); << 320 q = G4UniformRand(); 305 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xm << 321 x = xmin*xmax/(xmin*(1.0 - q) + xmax*q); 306 y = 1.0 - x; 322 y = 1.0 - x; 307 z = 1.0 - gg*x + x*x*(1.0 - gg + (1.0 - 323 z = 1.0 - gg*x + x*x*(1.0 - gg + (1.0 - gg*y)/(y*y)); 308 /* 324 /* 309 if(z > grej) { 325 if(z > grej) { 310 G4cout << "G4MollerBhabhaModel::Sample 326 G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! " 311 << "Majorant " << grej << " < " 327 << "Majorant " << grej << " < " 312 << z << " for x= " << x 328 << z << " for x= " << x 313 << " e-e- scattering" 329 << " e-e- scattering" 314 << G4endl; 330 << G4endl; 315 } 331 } 316 */ 332 */ 317 // Loop checking, 03-Aug-2015, Vladimir << 333 } while(grej * G4UniformRand() > z); 318 } while(grej * rndm[1] > z); << 319 334 320 //Bhabha (e+e-) scattering 335 //Bhabha (e+e-) scattering 321 } else { 336 } else { 322 337 323 G4double y = 1.0/(1.0 + gam); 338 G4double y = 1.0/(1.0 + gam); 324 G4double y2 = y*y; 339 G4double y2 = y*y; 325 G4double y12 = 1.0 - 2.0*y; 340 G4double y12 = 1.0 - 2.0*y; 326 G4double b1 = 2.0 - y2; 341 G4double b1 = 2.0 - y2; 327 G4double b2 = y12*(3.0 + y2); 342 G4double b2 = y12*(3.0 + y2); 328 G4double y122= y12*y12; 343 G4double y122= y12*y12; 329 G4double b4 = y122*y12; 344 G4double b4 = y122*y12; 330 G4double b3 = b4 + y122; 345 G4double b3 = b4 + y122; 331 346 332 y = xmax*xmax; 347 y = xmax*xmax; 333 grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + 348 grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + y*b2 - xmin*b1)*beta2; 334 do { 349 do { 335 rndmEngine->flatArray(2, rndm); << 350 q = G4UniformRand(); 336 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xm << 351 x = xmin*xmax/(xmin*(1.0 - q) + xmax*q); 337 y = x*x; 352 y = x*x; 338 z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*b1 353 z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*b1)*beta2; 339 /* 354 /* 340 if(z > grej) { 355 if(z > grej) { 341 G4cout << "G4MollerBhabhaModel::Sample 356 G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! " 342 << "Majorant " << grej << " < " 357 << "Majorant " << grej << " < " 343 << z << " for x= " << x 358 << z << " for x= " << x 344 << " e+e- scattering" 359 << " e+e- scattering" 345 << G4endl; 360 << G4endl; 346 } 361 } 347 */ 362 */ 348 // Loop checking, 03-Aug-2015, Vladimir << 363 } while(grej * G4UniformRand() > z); 349 } while(grej * rndm[1] > z); << 350 } 364 } 351 365 352 G4double deltaKinEnergy = x * kineticEnergy; 366 G4double deltaKinEnergy = x * kineticEnergy; 353 367 354 G4ThreeVector deltaDirection; << 368 G4double deltaMomentum = >> 369 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); >> 370 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) / >> 371 (deltaMomentum * totalMomentum); >> 372 G4double sint = (1.0 - cost)*(1. + cost); >> 373 if(sint > 0.0) { sint = sqrt(sint); } >> 374 else { sint = 0.0; } 355 375 356 if(UseAngularGeneratorFlag()) { << 376 G4double phi = twopi * G4UniformRand() ; 357 const G4Material* mat = couple->GetMateri << 358 G4int Z = SelectRandomAtomNumber(mat); << 359 377 360 deltaDirection = << 378 G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost) ; 361 GetAngularDistribution()->SampleDirectio << 379 deltaDirection.rotateUz(direction); 362 << 363 } else { << 364 << 365 G4double deltaMomentum = << 366 sqrt(deltaKinEnergy * (deltaKinEnergy + << 367 G4double cost = deltaKinEnergy * (energy + << 368 (deltaMomentum * dp->GetTotalMomentum()) << 369 if(cost > 1.0) { cost = 1.0; } << 370 G4double sint = sqrt((1.0 - cost)*(1.0 + c << 371 << 372 G4double phi = twopi * rndmEngine->flat() << 373 << 374 deltaDirection.set(sint*cos(phi),sint*sin( << 375 deltaDirection.rotateUz(dp->GetMomentumDir << 376 } << 377 << 378 // create G4DynamicParticle object for delta << 379 auto delta = new G4DynamicParticle(theElectr << 380 vdp->push_back(delta); << 381 380 382 // primary change 381 // primary change 383 kineticEnergy -= deltaKinEnergy; 382 kineticEnergy -= deltaKinEnergy; 384 G4ThreeVector finalP = dp->GetMomentum() - d << 385 finalP = finalP.unit(); << 386 << 387 fParticleChange->SetProposedKineticEnergy(ki 383 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 388 fParticleChange->SetProposedMomentumDirectio << 384 >> 385 G4ThreeVector dir = totalMomentum*direction - deltaMomentum*deltaDirection; >> 386 direction = dir.unit(); >> 387 fParticleChange->SetProposedMomentumDirection(direction); >> 388 >> 389 // create G4DynamicParticle object for delta ray >> 390 G4DynamicParticle* delta = new G4DynamicParticle(theElectron, >> 391 deltaDirection,deltaKinEnergy); >> 392 vdp->push_back(delta); 389 } 393 } 390 394 391 //....oooOO0OOooo........oooOO0OOooo........oo 395 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 392 396