Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4MollerBhabhaModel.cc 74790 2013-10-22 07:31:37Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4MollerBhabhaModel 33 // File name: G4MollerBhabhaModel 33 // 34 // 34 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 36 // 36 // Creation date: 03.01.2002 37 // Creation date: 03.01.2002 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // 13-11-02 Minor fix - use normalised directi 41 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) 41 // 04-12-02 Change G4DynamicParticle construct 42 // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko) 42 // 23-12-02 Change interface in order to move 43 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanch 44 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 45 // 13-02-03 Add name (V.Ivanchenko) 45 // 08-04-05 Major optimisation of internal int 46 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 46 // 25-07-05 Add protection in calculation of r 47 // 25-07-05 Add protection in calculation of recoil direction for the case 47 // of complete energy transfer from e 48 // of complete energy transfer from e+ to e- (V.Ivanchenko) 48 // 06-02-06 ComputeCrossSectionPerElectron, Co 49 // 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 49 // 15-05-06 Fix MinEnergyCut (V.Ivanchenko) 50 // 15-05-06 Fix MinEnergyCut (V.Ivanchenko) 50 // 51 // 51 // 52 // 52 // Class Description: 53 // Class Description: 53 // 54 // 54 // Implementation of energy loss and delta-ele 55 // Implementation of energy loss and delta-electron production by e+/e- 55 // 56 // 56 // ------------------------------------------- 57 // ------------------------------------------------------------------- 57 // 58 // 58 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 59 //....oooOO0OOooo........oooOO0OOooo........oo 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 60 61 61 #include "G4MollerBhabhaModel.hh" 62 #include "G4MollerBhabhaModel.hh" 62 #include "G4PhysicalConstants.hh" 63 #include "G4PhysicalConstants.hh" 63 #include "G4SystemOfUnits.hh" 64 #include "G4SystemOfUnits.hh" 64 #include "G4Electron.hh" 65 #include "G4Electron.hh" 65 #include "G4Positron.hh" 66 #include "G4Positron.hh" 66 #include "Randomize.hh" 67 #include "Randomize.hh" 67 #include "G4ParticleChangeForLoss.hh" 68 #include "G4ParticleChangeForLoss.hh" 68 #include "G4Log.hh" 69 #include "G4Log.hh" 69 #include "G4DeltaAngle.hh" 70 #include "G4DeltaAngle.hh" 70 71 71 //....oooOO0OOooo........oooOO0OOooo........oo 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 72 73 73 using namespace std; 74 using namespace std; 74 75 75 G4MollerBhabhaModel::G4MollerBhabhaModel(const 76 G4MollerBhabhaModel::G4MollerBhabhaModel(const G4ParticleDefinition* p, 76 const 77 const G4String& nam) 77 : G4VEmModel(nam), 78 : G4VEmModel(nam), 78 particle(nullptr), << 79 particle(0), 79 isElectron(true), 80 isElectron(true), 80 twoln10(2.0*G4Log(10.0)), 81 twoln10(2.0*G4Log(10.0)), 81 lowLimit(0.02*keV), 82 lowLimit(0.02*keV), 82 isInitialised(false) 83 isInitialised(false) 83 { 84 { 84 theElectron = G4Electron::Electron(); 85 theElectron = G4Electron::Electron(); 85 if(nullptr != p) { SetParticle(p); } << 86 if(p) { SetParticle(p); } 86 fParticleChange = nullptr; << 87 fParticleChange = 0; 87 } 88 } 88 89 89 //....oooOO0OOooo........oooOO0OOooo........oo 90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 90 91 91 G4MollerBhabhaModel::~G4MollerBhabhaModel() = << 92 G4MollerBhabhaModel::~G4MollerBhabhaModel() >> 93 {} 92 94 93 //....oooOO0OOooo........oooOO0OOooo........oo 95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 94 96 95 G4double G4MollerBhabhaModel::MaxSecondaryEner 97 G4double G4MollerBhabhaModel::MaxSecondaryEnergy(const G4ParticleDefinition*, 96 << 98 G4double kinEnergy) 97 { 99 { 98 G4double tmax = kinEnergy; 100 G4double tmax = kinEnergy; 99 if(isElectron) { tmax *= 0.5; } 101 if(isElectron) { tmax *= 0.5; } 100 return tmax; 102 return tmax; 101 } 103 } 102 104 103 //....oooOO0OOooo........oooOO0OOooo........oo 105 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 104 106 105 void G4MollerBhabhaModel::Initialise(const G4P 107 void G4MollerBhabhaModel::Initialise(const G4ParticleDefinition* p, 106 const G4D 108 const G4DataVector&) 107 { 109 { 108 if(p != particle) { SetParticle(p); } << 110 if(!particle) { SetParticle(p); } 109 111 110 if(isInitialised) { return; } 112 if(isInitialised) { return; } 111 113 112 isInitialised = true; 114 isInitialised = true; 113 fParticleChange = GetParticleChangeForLoss() 115 fParticleChange = GetParticleChangeForLoss(); 114 if(UseAngularGeneratorFlag() && !GetAngularD 116 if(UseAngularGeneratorFlag() && !GetAngularDistribution()) { 115 SetAngularDistribution(new G4DeltaAngle()) 117 SetAngularDistribution(new G4DeltaAngle()); 116 } 118 } 117 } 119 } 118 120 119 //....oooOO0OOooo........oooOO0OOooo........oo 121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 120 122 121 G4double G4MollerBhabhaModel::ComputeCrossSect << 123 G4double 122 const G4ParticleDefinition* p, G4doub << 124 G4MollerBhabhaModel::ComputeCrossSectionPerElectron(const G4ParticleDefinition* p, 123 G4double cutEnergy, G4double maxEnergy) << 125 G4double kineticEnergy, >> 126 G4double cutEnergy, >> 127 G4double maxEnergy) 124 { 128 { 125 if(p != particle) { SetParticle(p); } << 129 if(!particle) { SetParticle(p); } 126 130 127 G4double cross = 0.0; 131 G4double cross = 0.0; 128 G4double tmax = MaxSecondaryEnergy(p, kineti 132 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 129 tmax = std::min(maxEnergy, tmax); 133 tmax = std::min(maxEnergy, tmax); 130 //G4cout << "E= " << kineticEnergy << " cut= << 134 131 // << " Emax= " << tmax << G4endl; << 132 if(cutEnergy < tmax) { 135 if(cutEnergy < tmax) { 133 136 134 G4double xmin = cutEnergy/kineticEnergy; 137 G4double xmin = cutEnergy/kineticEnergy; 135 G4double xmax = tmax/kineticEnergy; 138 G4double xmax = tmax/kineticEnergy; 136 G4double tau = kineticEnergy/electron_ma 139 G4double tau = kineticEnergy/electron_mass_c2; 137 G4double gam = tau + 1.0; 140 G4double gam = tau + 1.0; 138 G4double gamma2= gam*gam; 141 G4double gamma2= gam*gam; 139 G4double beta2 = tau*(tau + 2)/gamma2; 142 G4double beta2 = tau*(tau + 2)/gamma2; 140 143 141 //Moller (e-e-) scattering 144 //Moller (e-e-) scattering 142 if (isElectron) { 145 if (isElectron) { 143 146 144 G4double gg = (2.0*gam - 1.0)/gamma2; 147 G4double gg = (2.0*gam - 1.0)/gamma2; 145 cross = ((xmax - xmin)*(1.0 - gg + 1.0/( 148 cross = ((xmax - xmin)*(1.0 - gg + 1.0/(xmin*xmax) 146 + 1.0/((1.0-xmin << 149 + 1.0/((1.0-xmin)*(1.0 - xmax))) 147 - gg*G4Log( xmax*(1.0 - xmin)/(xmi 150 - gg*G4Log( xmax*(1.0 - xmin)/(xmin*(1.0 - xmax)) ) ) / beta2; 148 151 149 //Bhabha (e+e-) scattering 152 //Bhabha (e+e-) scattering 150 } else { 153 } else { 151 154 152 G4double y = 1.0/(1.0 + gam); 155 G4double y = 1.0/(1.0 + gam); 153 G4double y2 = y*y; 156 G4double y2 = y*y; 154 G4double y12 = 1.0 - 2.0*y; 157 G4double y12 = 1.0 - 2.0*y; 155 G4double b1 = 2.0 - y2; 158 G4double b1 = 2.0 - y2; 156 G4double b2 = y12*(3.0 + y2); 159 G4double b2 = y12*(3.0 + y2); 157 G4double y122= y12*y12; 160 G4double y122= y12*y12; 158 G4double b4 = y122*y12; 161 G4double b4 = y122*y12; 159 G4double b3 = b4 + y122; 162 G4double b3 = b4 + y122; 160 163 161 cross = (xmax - xmin)*(1.0/(beta2*xmin*x 164 cross = (xmax - xmin)*(1.0/(beta2*xmin*xmax) + b2 162 - 0.5*b3*(xmin + xmax) 165 - 0.5*b3*(xmin + xmax) 163 + b4*(xmin*xmin + xmin*xmax + xmax << 166 + b4*(xmin*xmin + xmin*xmax + xmax*xmax)/3.0) 164 - b1*G4Log(xmax/xmin); 167 - b1*G4Log(xmax/xmin); 165 } 168 } 166 169 167 cross *= twopi_mc2_rcl2/kineticEnergy; 170 cross *= twopi_mc2_rcl2/kineticEnergy; 168 } 171 } 169 return cross; 172 return cross; 170 } 173 } 171 174 172 //....oooOO0OOooo........oooOO0OOooo........oo 175 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 173 176 174 G4double G4MollerBhabhaModel::ComputeCrossSect 177 G4double G4MollerBhabhaModel::ComputeCrossSectionPerAtom( 175 con 178 const G4ParticleDefinition* p, 176 179 G4double kineticEnergy, 177 << 180 G4double Z, G4double, 178 181 G4double cutEnergy, 179 182 G4double maxEnergy) 180 { 183 { 181 return Z*ComputeCrossSectionPerElectron(p,ki 184 return Z*ComputeCrossSectionPerElectron(p,kineticEnergy,cutEnergy,maxEnergy); 182 } 185 } 183 186 184 //....oooOO0OOooo........oooOO0OOooo........oo 187 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 185 188 186 G4double G4MollerBhabhaModel::CrossSectionPerV 189 G4double G4MollerBhabhaModel::CrossSectionPerVolume( 187 con << 190 const G4Material* material, 188 con 191 const G4ParticleDefinition* p, 189 192 G4double kinEnergy, 190 193 G4double cutEnergy, 191 194 G4double maxEnergy) 192 { 195 { 193 G4double eDensity = material->GetElectronDen 196 G4double eDensity = material->GetElectronDensity(); 194 return eDensity*ComputeCrossSectionPerElectr 197 return eDensity*ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy); >> 198 /* >> 199 G4double Zeff = eDensity/material->GetTotNbOfAtomsPerVolume(); >> 200 G4double th = 0.25*sqrt(Zeff)*keV; >> 201 G4double cut; >> 202 if(isElectron) { cut = std::max(th*0.5, cutEnergy); } >> 203 else { cut = std::max(th, cutEnergy); } >> 204 G4double res = 0.0; >> 205 // below this threshold no bremsstrahlung >> 206 if (kinEnergy > th) { >> 207 res = eDensity*ComputeCrossSectionPerElectron(p,kinEnergy,cut,maxEnergy); >> 208 } >> 209 return res; >> 210 */ 195 } 211 } 196 212 197 //....oooOO0OOooo........oooOO0OOooo........oo 213 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 198 214 199 G4double G4MollerBhabhaModel::ComputeDEDXPerVo 215 G4double G4MollerBhabhaModel::ComputeDEDXPerVolume( 200 cons << 216 const G4Material* material, 201 cons 217 const G4ParticleDefinition* p, 202 218 G4double kineticEnergy, 203 219 G4double cut) 204 { 220 { 205 if(p != particle) { SetParticle(p); } << 221 if(!particle) { SetParticle(p); } 206 // calculate the dE/dx due to the ionization 222 // calculate the dE/dx due to the ionization by Seltzer-Berger formula 207 // checl low-energy limit 223 // checl low-energy limit 208 G4double electronDensity = material->GetElec 224 G4double electronDensity = material->GetElectronDensity(); 209 225 210 G4double Zeff = material->GetIonisation()-> << 226 G4double Zeff = electronDensity/material->GetTotNbOfAtomsPerVolume(); 211 G4double th = 0.25*sqrt(Zeff)*keV; 227 G4double th = 0.25*sqrt(Zeff)*keV; 212 G4double tkin = std::max(kineticEnergy, th); << 228 // G4double cut; >> 229 // if(isElectron) { cut = std::max(th*0.5, cutEnergy); } >> 230 // else { cut = std::max(th, cutEnergy); } >> 231 G4double tkin = kineticEnergy; >> 232 if (kineticEnergy < th) { tkin = th; } 213 233 214 G4double tau = tkin/electron_mass_c2; 234 G4double tau = tkin/electron_mass_c2; 215 G4double gam = tau + 1.0; 235 G4double gam = tau + 1.0; 216 G4double gamma2= gam*gam; 236 G4double gamma2= gam*gam; 217 G4double bg2 = tau*(tau + 2); 237 G4double bg2 = tau*(tau + 2); 218 G4double beta2 = bg2/gamma2; 238 G4double beta2 = bg2/gamma2; 219 239 220 G4double eexc = material->GetIonisation()-> 240 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 221 eexc /= electron_mass_c2; 241 eexc /= electron_mass_c2; 222 G4double eexc2 = eexc*eexc; 242 G4double eexc2 = eexc*eexc; 223 243 224 G4double d = std::min(cut, MaxSecondaryEnerg 244 G4double d = std::min(cut, MaxSecondaryEnergy(p, tkin))/electron_mass_c2; 225 G4double dedx; 245 G4double dedx; 226 246 227 // electron 247 // electron 228 if (isElectron) { 248 if (isElectron) { 229 249 230 dedx = G4Log(2.0*(tau + 2.0)/eexc2) - 1.0 250 dedx = G4Log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2 231 + G4Log((tau-d)*d) + tau/(tau-d) 251 + G4Log((tau-d)*d) + tau/(tau-d) 232 + (0.5*d*d + (2.0*tau + 1.)*G4Log(1. 252 + (0.5*d*d + (2.0*tau + 1.)*G4Log(1. - d/tau))/gamma2; 233 253 234 //positron 254 //positron 235 } else { 255 } else { 236 256 237 G4double d2 = d*d*0.5; 257 G4double d2 = d*d*0.5; 238 G4double d3 = d2*d/1.5; 258 G4double d3 = d2*d/1.5; 239 G4double d4 = d3*d*0.75; 259 G4double d4 = d3*d*0.75; 240 G4double y = 1.0/(1.0 + gam); 260 G4double y = 1.0/(1.0 + gam); 241 dedx = G4Log(2.0*(tau + 2.0)/eexc2) + G4Lo 261 dedx = G4Log(2.0*(tau + 2.0)/eexc2) + G4Log(tau*d) 242 - beta2*(tau + 2.0*d - y*(3.0*d2 262 - beta2*(tau + 2.0*d - y*(3.0*d2 243 + y*(d - d3 + y*(d2 - tau*d3 + d4)))) 263 + y*(d - d3 + y*(d2 - tau*d3 + d4))))/tau; 244 } 264 } 245 265 246 //density correction 266 //density correction 247 G4double x = G4Log(bg2)/twoln10; 267 G4double x = G4Log(bg2)/twoln10; 248 dedx -= material->GetIonisation()->DensityCo 268 dedx -= material->GetIonisation()->DensityCorrection(x); 249 269 250 // now you can compute the total ionization 270 // now you can compute the total ionization loss 251 dedx *= twopi_mc2_rcl2*electronDensity/beta2 271 dedx *= twopi_mc2_rcl2*electronDensity/beta2; 252 if (dedx < 0.0) { dedx = 0.0; } 272 if (dedx < 0.0) { dedx = 0.0; } 253 273 254 // lowenergy extrapolation 274 // lowenergy extrapolation 255 275 256 if (kineticEnergy < th) { 276 if (kineticEnergy < th) { 257 x = kineticEnergy/th; 277 x = kineticEnergy/th; 258 if(x > 0.25) { dedx /= sqrt(x); } 278 if(x > 0.25) { dedx /= sqrt(x); } 259 else { dedx *= 1.4*sqrt(x)/(0.1 + x); } 279 else { dedx *= 1.4*sqrt(x)/(0.1 + x); } 260 } 280 } 261 return dedx; 281 return dedx; 262 } 282 } 263 283 264 //....oooOO0OOooo........oooOO0OOooo........oo 284 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 265 285 266 void 286 void 267 G4MollerBhabhaModel::SampleSecondaries(std::ve 287 G4MollerBhabhaModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 268 const G << 288 const G4MaterialCutsCouple* couple, 269 const G << 289 const G4DynamicParticle* dp, 270 G4doubl << 290 G4double cutEnergy, 271 G4doubl << 291 G4double maxEnergy) 272 { 292 { 273 G4double kineticEnergy = dp->GetKineticEnerg 293 G4double kineticEnergy = dp->GetKineticEnergy(); 274 //G4cout << "G4MollerBhabhaModel::SampleSeco << 294 //const G4Material* mat = couple->GetMaterial(); 275 // << " in " << couple->GetMaterial()- << 295 //G4double Zeff = mat->GetElectronDensity()/mat->GetTotNbOfAtomsPerVolume(); >> 296 // G4double th = 0.25*sqrt(Zeff)*keV; 276 G4double tmax; 297 G4double tmax; 277 G4double tmin = cutEnergy; 298 G4double tmin = cutEnergy; 278 if(isElectron) { 299 if(isElectron) { 279 tmax = 0.5*kineticEnergy; 300 tmax = 0.5*kineticEnergy; 280 } else { 301 } else { 281 tmax = kineticEnergy; 302 tmax = kineticEnergy; 282 } 303 } 283 if(maxEnergy < tmax) { tmax = maxEnergy; } 304 if(maxEnergy < tmax) { tmax = maxEnergy; } 284 if(tmin >= tmax) { return; } 305 if(tmin >= tmax) { return; } 285 306 286 G4double energy = kineticEnergy + electron_m 307 G4double energy = kineticEnergy + electron_mass_c2; 287 G4double xmin = tmin/kineticEnergy; 308 G4double xmin = tmin/kineticEnergy; 288 G4double xmax = tmax/kineticEnergy; 309 G4double xmax = tmax/kineticEnergy; 289 G4double gam = energy/electron_mass_c2; 310 G4double gam = energy/electron_mass_c2; 290 G4double gamma2 = gam*gam; 311 G4double gamma2 = gam*gam; 291 G4double beta2 = 1.0 - 1.0/gamma2; 312 G4double beta2 = 1.0 - 1.0/gamma2; 292 G4double x, z, grej; << 313 G4double x, z, q, grej; 293 CLHEP::HepRandomEngine* rndmEngine = G4Rando << 294 G4double rndm[2]; << 295 314 296 //Moller (e-e-) scattering 315 //Moller (e-e-) scattering 297 if (isElectron) { 316 if (isElectron) { 298 317 299 G4double gg = (2.0*gam - 1.0)/gamma2; 318 G4double gg = (2.0*gam - 1.0)/gamma2; 300 G4double y = 1.0 - xmax; 319 G4double y = 1.0 - xmax; 301 grej = 1.0 - gg*xmax + xmax*xmax*(1.0 - gg 320 grej = 1.0 - gg*xmax + xmax*xmax*(1.0 - gg + (1.0 - gg*y)/(y*y)); 302 321 303 do { 322 do { 304 rndmEngine->flatArray(2, rndm); << 323 q = G4UniformRand(); 305 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xm << 324 x = xmin*xmax/(xmin*(1.0 - q) + xmax*q); 306 y = 1.0 - x; 325 y = 1.0 - x; 307 z = 1.0 - gg*x + x*x*(1.0 - gg + (1.0 - 326 z = 1.0 - gg*x + x*x*(1.0 - gg + (1.0 - gg*y)/(y*y)); 308 /* 327 /* 309 if(z > grej) { 328 if(z > grej) { 310 G4cout << "G4MollerBhabhaModel::Sample 329 G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! " 311 << "Majorant " << grej << " < " 330 << "Majorant " << grej << " < " 312 << z << " for x= " << x 331 << z << " for x= " << x 313 << " e-e- scattering" 332 << " e-e- scattering" 314 << G4endl; 333 << G4endl; 315 } 334 } 316 */ 335 */ 317 // Loop checking, 03-Aug-2015, Vladimir << 336 } while(grej * G4UniformRand() > z); 318 } while(grej * rndm[1] > z); << 319 337 320 //Bhabha (e+e-) scattering 338 //Bhabha (e+e-) scattering 321 } else { 339 } else { 322 340 323 G4double y = 1.0/(1.0 + gam); 341 G4double y = 1.0/(1.0 + gam); 324 G4double y2 = y*y; 342 G4double y2 = y*y; 325 G4double y12 = 1.0 - 2.0*y; 343 G4double y12 = 1.0 - 2.0*y; 326 G4double b1 = 2.0 - y2; 344 G4double b1 = 2.0 - y2; 327 G4double b2 = y12*(3.0 + y2); 345 G4double b2 = y12*(3.0 + y2); 328 G4double y122= y12*y12; 346 G4double y122= y12*y12; 329 G4double b4 = y122*y12; 347 G4double b4 = y122*y12; 330 G4double b3 = b4 + y122; 348 G4double b3 = b4 + y122; 331 349 332 y = xmax*xmax; 350 y = xmax*xmax; 333 grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + 351 grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + y*b2 - xmin*b1)*beta2; 334 do { 352 do { 335 rndmEngine->flatArray(2, rndm); << 353 q = G4UniformRand(); 336 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xm << 354 x = xmin*xmax/(xmin*(1.0 - q) + xmax*q); 337 y = x*x; 355 y = x*x; 338 z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*b1 356 z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*b1)*beta2; 339 /* 357 /* 340 if(z > grej) { 358 if(z > grej) { 341 G4cout << "G4MollerBhabhaModel::Sample 359 G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! " 342 << "Majorant " << grej << " < " 360 << "Majorant " << grej << " < " 343 << z << " for x= " << x 361 << z << " for x= " << x 344 << " e+e- scattering" 362 << " e+e- scattering" 345 << G4endl; 363 << G4endl; 346 } 364 } 347 */ 365 */ 348 // Loop checking, 03-Aug-2015, Vladimir << 366 } while(grej * G4UniformRand() > z); 349 } while(grej * rndm[1] > z); << 350 } 367 } 351 368 352 G4double deltaKinEnergy = x * kineticEnergy; 369 G4double deltaKinEnergy = x * kineticEnergy; 353 370 354 G4ThreeVector deltaDirection; 371 G4ThreeVector deltaDirection; 355 372 356 if(UseAngularGeneratorFlag()) { 373 if(UseAngularGeneratorFlag()) { 357 const G4Material* mat = couple->GetMateri 374 const G4Material* mat = couple->GetMaterial(); 358 G4int Z = SelectRandomAtomNumber(mat); 375 G4int Z = SelectRandomAtomNumber(mat); 359 376 360 deltaDirection = 377 deltaDirection = 361 GetAngularDistribution()->SampleDirectio 378 GetAngularDistribution()->SampleDirection(dp, deltaKinEnergy, Z, mat); 362 379 363 } else { 380 } else { 364 381 365 G4double deltaMomentum = 382 G4double deltaMomentum = 366 sqrt(deltaKinEnergy * (deltaKinEnergy + 383 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); 367 G4double cost = deltaKinEnergy * (energy + 384 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) / 368 (deltaMomentum * dp->GetTotalMomentum()) 385 (deltaMomentum * dp->GetTotalMomentum()); 369 if(cost > 1.0) { cost = 1.0; } 386 if(cost > 1.0) { cost = 1.0; } 370 G4double sint = sqrt((1.0 - cost)*(1.0 + c 387 G4double sint = sqrt((1.0 - cost)*(1.0 + cost)); 371 388 372 G4double phi = twopi * rndmEngine->flat() << 389 G4double phi = twopi * G4UniformRand() ; 373 390 374 deltaDirection.set(sint*cos(phi),sint*sin( 391 deltaDirection.set(sint*cos(phi),sint*sin(phi), cost) ; 375 deltaDirection.rotateUz(dp->GetMomentumDir 392 deltaDirection.rotateUz(dp->GetMomentumDirection()); 376 } 393 } 377 394 378 // create G4DynamicParticle object for delta 395 // create G4DynamicParticle object for delta ray 379 auto delta = new G4DynamicParticle(theElectr << 396 G4DynamicParticle* delta = >> 397 new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy); 380 vdp->push_back(delta); 398 vdp->push_back(delta); 381 399 382 // primary change 400 // primary change 383 kineticEnergy -= deltaKinEnergy; 401 kineticEnergy -= deltaKinEnergy; 384 G4ThreeVector finalP = dp->GetMomentum() - d 402 G4ThreeVector finalP = dp->GetMomentum() - delta->GetMomentum(); 385 finalP = finalP.unit(); 403 finalP = finalP.unit(); 386 404 387 fParticleChange->SetProposedKineticEnergy(ki 405 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 388 fParticleChange->SetProposedMomentumDirectio 406 fParticleChange->SetProposedMomentumDirection(finalP); 389 } 407 } 390 408 391 //....oooOO0OOooo........oooOO0OOooo........oo 409 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 392 410