Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4KleinNishinaCompton.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4KleinNishinaCompton.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4KleinNishinaCompton.cc (Version 8.1.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4KleinNishinaCompton.cc,v 1.8 2006/06/29 19:53:04 gunter Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-08-01-patch-01 $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4KleinNishinaCompton            34 // File name:     G4KleinNishinaCompton
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko on base      36 // Author:        Vladimir Ivanchenko on base of Michel Maire code
 35 //                                                 37 //
 36 // Creation date: 15.03.2005                       38 // Creation date: 15.03.2005
 37 //                                                 39 //
 38 // Modifications:                                  40 // Modifications:
 39 // 18-04-05 Use G4ParticleChangeForGamma (V.Iv     41 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko)
 40 // 27-03-06 Remove upper limit of cross sectio     42 // 27-03-06 Remove upper limit of cross section (V.Ivantchenko)
 41 //                                                 43 //
 42 // Class Description:                              44 // Class Description:
 43 //                                                 45 //
 44 // -------------------------------------------     46 // -------------------------------------------------------------------
 45 //                                                 47 //
 46 //....oooOO0OOooo........oooOO0OOooo........oo     48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 47 //....oooOO0OOooo........oooOO0OOooo........oo     49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 48                                                    50 
 49 #include "G4KleinNishinaCompton.hh"                51 #include "G4KleinNishinaCompton.hh"
 50 #include "G4PhysicalConstants.hh"              << 
 51 #include "G4SystemOfUnits.hh"                  << 
 52 #include "G4Electron.hh"                           52 #include "G4Electron.hh"
 53 #include "G4Gamma.hh"                              53 #include "G4Gamma.hh"
 54 #include "Randomize.hh"                            54 #include "Randomize.hh"
 55 #include "G4DataVector.hh"                         55 #include "G4DataVector.hh"
 56 #include "G4ParticleChangeForGamma.hh"             56 #include "G4ParticleChangeForGamma.hh"
 57 #include "G4Log.hh"                            << 
 58 #include "G4Exp.hh"                            << 
 59                                                    57 
 60 //....oooOO0OOooo........oooOO0OOooo........oo     58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 61                                                    59 
 62 using namespace std;                               60 using namespace std;
 63                                                    61 
 64 G4KleinNishinaCompton::G4KleinNishinaCompton(c     62 G4KleinNishinaCompton::G4KleinNishinaCompton(const G4ParticleDefinition*,
 65                                              c     63                                              const G4String& nam)
 66   : G4VEmModel(nam)                                64   : G4VEmModel(nam)
 67 {                                                  65 {
 68   theGamma = G4Gamma::Gamma();                     66   theGamma = G4Gamma::Gamma();
 69   theElectron = G4Electron::Electron();            67   theElectron = G4Electron::Electron();
 70   lowestSecondaryEnergy = 100.0*eV;            <<  68   lowestGammaEnergy = 1.0*eV;
 71   fParticleChange = nullptr;                   << 
 72 }                                                  69 }
 73                                                    70 
 74 //....oooOO0OOooo........oooOO0OOooo........oo     71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 75                                                    72 
 76 G4KleinNishinaCompton::~G4KleinNishinaCompton( <<  73 G4KleinNishinaCompton::~G4KleinNishinaCompton()
                                                   >>  74 {}
 77                                                    75 
 78 //....oooOO0OOooo........oooOO0OOooo........oo     76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 79                                                    77 
 80 void G4KleinNishinaCompton::Initialise(const G <<  78 void G4KleinNishinaCompton::Initialise(const G4ParticleDefinition*,
 81                                        const G <<  79                                        const G4DataVector&)
 82 {                                                  80 {
 83   if(IsMaster()) { InitialiseElementSelectors( <<  81   if(pParticleChange)
 84   if(nullptr == fParticleChange) {             <<  82     fParticleChange = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
 85     fParticleChange = GetParticleChangeForGamm <<  83   else
 86   }                                            <<  84     fParticleChange = new G4ParticleChangeForGamma();
 87 }                                              << 
 88                                                << 
 89 //....oooOO0OOooo........oooOO0OOooo........oo << 
 90                                                << 
 91 void G4KleinNishinaCompton::InitialiseLocal(co << 
 92                                             G4 << 
 93 {                                              << 
 94   SetElementSelectors(masterModel->GetElementS << 
 95 }                                                  85 }
 96                                                    86 
 97 //....oooOO0OOooo........oooOO0OOooo........oo     87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 98                                                    88 
 99 G4double G4KleinNishinaCompton::ComputeCrossSe     89 G4double G4KleinNishinaCompton::ComputeCrossSectionPerAtom(
100                                        const G     90                                        const G4ParticleDefinition*,
101                                              G     91                                              G4double GammaEnergy,
102                                              G     92                                              G4double Z, G4double,
103                                              G     93                                              G4double, G4double)
104 {                                                  94 {
105   G4double xSection = 0.0 ;                    <<  95   G4double CrossSection = 0.0 ;
106   if (GammaEnergy <= LowEnergyLimit()) { retur <<  96   if ( Z < 0.9999 )                 return CrossSection;
                                                   >>  97   if ( GammaEnergy < 0.1*keV      ) return CrossSection;
                                                   >>  98   //  if ( GammaEnergy > (100.*GeV/Z) ) return CrossSection;
107                                                    99 
108   static const G4double a = 20.0 , b = 230.0 ,    100   static const G4double a = 20.0 , b = 230.0 , c = 440.0;
109                                                << 101   
110   static const G4double                           102   static const G4double
111   d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLH << 103     d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527   *barn, d4=-1.9798e+1*barn,
112   d3= 6.7527   *CLHEP::barn, d4=-1.9798e+1*CLH << 104     e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn,
113   e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLH << 105     f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn;
114   e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLH << 106      
115   f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLH << 
116   f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLH << 
117                                                << 
118   G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z =    107   G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
119            p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z =    108            p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
120                                                   109 
121   G4double T0  = 15.0*keV;                        110   G4double T0  = 15.0*keV; 
122   if (Z < 1.5) { T0 = 40.0*keV; }              << 111   if (Z < 1.5) T0 = 40.0*keV; 
123                                                   112 
124   G4double X   = max(GammaEnergy, T0) / electr    113   G4double X   = max(GammaEnergy, T0) / electron_mass_c2;
125   xSection = p1Z*G4Log(1.+2.*X)/X              << 114   CrossSection = p1Z*std::log(1.+2.*X)/X
126                + (p2Z + p3Z*X + p4Z*X*X)/(1. +    115                + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
127                                                << 116     
128   //  modification for low energy. (special ca    117   //  modification for low energy. (special case for Hydrogen)
129   if (GammaEnergy < T0) {                         118   if (GammaEnergy < T0) {
130     static const G4double dT0 = keV;           << 119     G4double dT0 = 1.*keV;
131     X = (T0+dT0) / electron_mass_c2 ;             120     X = (T0+dT0) / electron_mass_c2 ;
132     G4double sigma = p1Z*G4Log(1.+2*X)/X       << 121     G4double sigma = p1Z*log(1.+2*X)/X
133                     + (p2Z + p3Z*X + p4Z*X*X)/    122                     + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
134     G4double   c1 = -T0*(sigma-xSection)/(xSec << 123     G4double   c1 = -T0*(sigma-CrossSection)/(CrossSection*dT0);             
135     G4double   c2 = 0.150;                        124     G4double   c2 = 0.150; 
136     if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); << 125     if (Z > 1.5) c2 = 0.375-0.0556*log(Z);
137     G4double    y = G4Log(GammaEnergy/T0);     << 126     G4double    y = log(GammaEnergy/T0);
138     xSection *= G4Exp(-y*(c1+c2*y));           << 127     CrossSection *= exp(-y*(c1+c2*y));          
139   }                                               128   }
140   // G4cout<<"e= "<< GammaEnergy<<" Z= "<<Z<<" << 129   //  G4cout << "e= " << GammaEnergy << " Z= " << Z << " cross= " << CrossSection << G4endl;
141   return xSection;                             << 130   return CrossSection;
142 }                                                 131 }
143                                                   132 
144 //....oooOO0OOooo........oooOO0OOooo........oo    133 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
145                                                   134 
146 void G4KleinNishinaCompton::SampleSecondaries( << 135 std::vector<G4DynamicParticle*>* G4KleinNishinaCompton::SampleSecondaries(
147                             std::vector<G4Dyna << 136                              const G4MaterialCutsCouple*,
148                             const G4MaterialCu << 137                              const G4DynamicParticle* aDynamicGamma,
149                             const G4DynamicPar << 138                                    G4double,
150                             G4double,          << 139                                    G4double)
151                             G4double)          << 
152 {                                                 140 {
153   // The scattered gamma energy is sampled acc    141   // The scattered gamma energy is sampled according to Klein - Nishina formula.
154   // The random number techniques of Butcher &    142   // The random number techniques of Butcher & Messel are used 
155   // (Nuc Phys 20(1960),15).                      143   // (Nuc Phys 20(1960),15).
156   // Note : Effects due to binding of atomic e    144   // Note : Effects due to binding of atomic electrons are negliged.
157                                                   145  
158   G4double gamEnergy0 = aDynamicGamma->GetKine    146   G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy();
159                                                << 
160   // do nothing below the threshold            << 
161   if(gamEnergy0 <= LowEnergyLimit()) { return; << 
162                                                << 
163   G4double E0_m = gamEnergy0 / electron_mass_c    147   G4double E0_m = gamEnergy0 / electron_mass_c2 ;
164                                                   148 
165   G4ThreeVector gamDirection0 = aDynamicGamma-    149   G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection();
166                                                   150 
167   //                                              151   //
168   // sample the energy rate of the scattered g    152   // sample the energy rate of the scattered gamma 
169   //                                              153   //
170                                                   154 
171   G4double epsilon, epsilonsq, onecost, sint2,    155   G4double epsilon, epsilonsq, onecost, sint2, greject ;
172                                                   156 
173   G4double eps0       = 1./(1. + 2.*E0_m);     << 157   G4double epsilon0   = 1./(1. + 2.*E0_m);
174   G4double epsilon0sq = eps0*eps0;             << 158   G4double epsilon0sq = epsilon0*epsilon0;
175   G4double alpha1     = - G4Log(eps0);         << 159   G4double alpha1     = - log(epsilon0);
176   G4double alpha2     = alpha1 + 0.5*(1.- epsi << 160   G4double alpha2     = 0.5*(1.- epsilon0sq);
177                                                   161 
178   CLHEP::HepRandomEngine* rndmEngineMod = G4Ra << 
179   G4double rndm[3];                            << 
180                                                << 
181   static const G4int nlooplim = 1000;          << 
182   G4int nloop = 0;                             << 
183   do {                                            162   do {
184     ++nloop;                                   << 163     if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) {
185     // false interaction if too many iteration << 164       epsilon   = exp(-alpha1*G4UniformRand());   // epsilon0**r
186     if(nloop > nlooplim) { return; }           << 
187                                                << 
188     // 3 random numbers to sample scattering   << 
189     rndmEngineMod->flatArray(3, rndm);         << 
190                                                << 
191     if ( alpha1 > alpha2*rndm[0] ) {           << 
192       epsilon   = G4Exp(-alpha1*rndm[1]);   // << 
193       epsilonsq = epsilon*epsilon;                165       epsilonsq = epsilon*epsilon; 
194                                                   166 
195     } else {                                      167     } else {
196       epsilonsq = epsilon0sq + (1.- epsilon0sq << 168       epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand();
197       epsilon   = sqrt(epsilonsq);                169       epsilon   = sqrt(epsilonsq);
198     };                                            170     };
199                                                   171 
200     onecost = (1.- epsilon)/(epsilon*E0_m);       172     onecost = (1.- epsilon)/(epsilon*E0_m);
201     sint2   = onecost*(2.-onecost);               173     sint2   = onecost*(2.-onecost);
202     greject = 1. - epsilon*sint2/(1.+ epsilons    174     greject = 1. - epsilon*sint2/(1.+ epsilonsq);
203                                                   175 
204     // Loop checking, 03-Aug-2015, Vladimir Iv << 176   } while (greject < G4UniformRand());
205   } while (greject < rndm[2]);                 << 
206                                                   177  
207   //                                              178   //
208   // scattered gamma angles. ( Z - axis along     179   // scattered gamma angles. ( Z - axis along the parent gamma)
209   //                                              180   //
210                                                   181 
211   if(sint2 < 0.0) { sint2 = 0.0; }             << 
212   G4double cosTeta = 1. - onecost;                182   G4double cosTeta = 1. - onecost; 
213   G4double sinTeta = sqrt (sint2);                183   G4double sinTeta = sqrt (sint2);
214   G4double Phi     = twopi * rndmEngineMod->fl << 184   G4double Phi     = twopi * G4UniformRand();
                                                   >> 185   G4double dirx = sinTeta*cos(Phi), diry = sinTeta*sin(Phi), dirz = cosTeta;
215                                                   186 
216   //                                              187   //
217   // update G4VParticleChange for the scattere    188   // update G4VParticleChange for the scattered gamma
218   //                                              189   //
219                                                   190    
220   G4ThreeVector gamDirection1(sinTeta*cos(Phi) << 191   G4ThreeVector gamDirection1 ( dirx,diry,dirz );
221   gamDirection1.rotateUz(gamDirection0);          192   gamDirection1.rotateUz(gamDirection0);
222   G4double gamEnergy1 = epsilon*gamEnergy0;       193   G4double gamEnergy1 = epsilon*gamEnergy0;
223   G4double edep = 0.0;                         << 194   fParticleChange->SetProposedKineticEnergy(gamEnergy1);
224   if(gamEnergy1 > lowestSecondaryEnergy) {     << 195   if(gamEnergy1 > lowestGammaEnergy) {
225     fParticleChange->ProposeMomentumDirection(    196     fParticleChange->ProposeMomentumDirection(gamDirection1);
226     fParticleChange->SetProposedKineticEnergy( << 
227   } else {                                        197   } else { 
228     fParticleChange->ProposeTrackStatus(fStopA    198     fParticleChange->ProposeTrackStatus(fStopAndKill);
229     fParticleChange->SetProposedKineticEnergy( << 199     gamEnergy1 += fParticleChange->GetLocalEnergyDeposit();
230     edep = gamEnergy1;                         << 200     fParticleChange->ProposeLocalEnergyDeposit(gamEnergy1);
231   }                                               201   }
232                                                   202 
                                                   >> 203   std::vector<G4DynamicParticle*>* fvect = new std::vector<G4DynamicParticle*>;
                                                   >> 204  
233   //                                              205   //
234   // kinematic of the scattered electron          206   // kinematic of the scattered electron
235   //                                              207   //
236                                                   208 
237   G4double eKinEnergy = gamEnergy0 - gamEnergy    209   G4double eKinEnergy = gamEnergy0 - gamEnergy1;
238                                                   210 
239   if(eKinEnergy > lowestSecondaryEnergy) {     << 211   if(eKinEnergy > DBL_MIN) {
240     G4ThreeVector eDirection = gamEnergy0*gamD    212     G4ThreeVector eDirection = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1;
241     eDirection = eDirection.unit();               213     eDirection = eDirection.unit();
242                                                   214 
243     // create G4DynamicParticle object for the    215     // create G4DynamicParticle object for the electron.
244     auto dp = new G4DynamicParticle(theElectro << 216     G4DynamicParticle* dp = new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
245     fvect->push_back(dp);                         217     fvect->push_back(dp);
246   } else {                                     << 
247     edep += eKinEnergy;                        << 
248   }                                            << 
249   // energy balance                            << 
250   if(edep > 0.0) {                             << 
251     fParticleChange->ProposeLocalEnergyDeposit << 
252   }                                               218   }
                                                   >> 219   return fvect;
253 }                                                 220 }
254                                                   221 
255 //....oooOO0OOooo........oooOO0OOooo........oo    222 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
256                                                   223 
257                                                   224 
258                                                   225