Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class file 29 // GEANT4 Class file 30 // 30 // 31 // 31 // 32 // File name: G4KleinNishinaCompton 32 // File name: G4KleinNishinaCompton 33 // 33 // 34 // Author: Vladimir Ivanchenko on base 34 // Author: Vladimir Ivanchenko on base of Michel Maire code 35 // 35 // 36 // Creation date: 15.03.2005 36 // Creation date: 15.03.2005 37 // 37 // 38 // Modifications: 38 // Modifications: 39 // 18-04-05 Use G4ParticleChangeForGamma (V.Iv 39 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko) 40 // 27-03-06 Remove upper limit of cross sectio 40 // 27-03-06 Remove upper limit of cross section (V.Ivantchenko) 41 // 41 // 42 // Class Description: 42 // Class Description: 43 // 43 // 44 // ------------------------------------------- 44 // ------------------------------------------------------------------- 45 // 45 // 46 //....oooOO0OOooo........oooOO0OOooo........oo 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 47 //....oooOO0OOooo........oooOO0OOooo........oo 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 48 48 49 #include "G4KleinNishinaCompton.hh" 49 #include "G4KleinNishinaCompton.hh" 50 #include "G4PhysicalConstants.hh" 50 #include "G4PhysicalConstants.hh" 51 #include "G4SystemOfUnits.hh" 51 #include "G4SystemOfUnits.hh" 52 #include "G4Electron.hh" 52 #include "G4Electron.hh" 53 #include "G4Gamma.hh" 53 #include "G4Gamma.hh" 54 #include "Randomize.hh" 54 #include "Randomize.hh" 55 #include "G4DataVector.hh" 55 #include "G4DataVector.hh" 56 #include "G4ParticleChangeForGamma.hh" 56 #include "G4ParticleChangeForGamma.hh" 57 #include "G4Log.hh" 57 #include "G4Log.hh" 58 #include "G4Exp.hh" 58 #include "G4Exp.hh" 59 59 60 //....oooOO0OOooo........oooOO0OOooo........oo 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 61 61 62 using namespace std; 62 using namespace std; 63 63 64 G4KleinNishinaCompton::G4KleinNishinaCompton(c 64 G4KleinNishinaCompton::G4KleinNishinaCompton(const G4ParticleDefinition*, 65 c 65 const G4String& nam) 66 : G4VEmModel(nam) 66 : G4VEmModel(nam) 67 { 67 { 68 theGamma = G4Gamma::Gamma(); 68 theGamma = G4Gamma::Gamma(); 69 theElectron = G4Electron::Electron(); 69 theElectron = G4Electron::Electron(); 70 lowestSecondaryEnergy = 100.0*eV; 70 lowestSecondaryEnergy = 100.0*eV; 71 fParticleChange = nullptr; 71 fParticleChange = nullptr; 72 } 72 } 73 73 74 //....oooOO0OOooo........oooOO0OOooo........oo 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 75 76 G4KleinNishinaCompton::~G4KleinNishinaCompton( << 76 G4KleinNishinaCompton::~G4KleinNishinaCompton() >> 77 {} 77 78 78 //....oooOO0OOooo........oooOO0OOooo........oo 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 79 80 80 void G4KleinNishinaCompton::Initialise(const G 81 void G4KleinNishinaCompton::Initialise(const G4ParticleDefinition* p, 81 const G 82 const G4DataVector& cuts) 82 { 83 { 83 if(IsMaster()) { InitialiseElementSelectors( 84 if(IsMaster()) { InitialiseElementSelectors(p, cuts); } 84 if(nullptr == fParticleChange) { 85 if(nullptr == fParticleChange) { 85 fParticleChange = GetParticleChangeForGamm 86 fParticleChange = GetParticleChangeForGamma(); 86 } 87 } 87 } 88 } 88 89 89 //....oooOO0OOooo........oooOO0OOooo........oo 90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 90 91 91 void G4KleinNishinaCompton::InitialiseLocal(co 92 void G4KleinNishinaCompton::InitialiseLocal(const G4ParticleDefinition*, 92 G4 93 G4VEmModel* masterModel) 93 { 94 { 94 SetElementSelectors(masterModel->GetElementS 95 SetElementSelectors(masterModel->GetElementSelectors()); 95 } 96 } 96 97 97 //....oooOO0OOooo........oooOO0OOooo........oo 98 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 98 99 99 G4double G4KleinNishinaCompton::ComputeCrossSe 100 G4double G4KleinNishinaCompton::ComputeCrossSectionPerAtom( 100 const G 101 const G4ParticleDefinition*, 101 G 102 G4double GammaEnergy, 102 G 103 G4double Z, G4double, 103 G 104 G4double, G4double) 104 { 105 { 105 G4double xSection = 0.0 ; 106 G4double xSection = 0.0 ; 106 if (GammaEnergy <= LowEnergyLimit()) { retur 107 if (GammaEnergy <= LowEnergyLimit()) { return xSection; } 107 108 108 static const G4double a = 20.0 , b = 230.0 , 109 static const G4double a = 20.0 , b = 230.0 , c = 440.0; 109 110 110 static const G4double 111 static const G4double 111 d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLH 112 d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLHEP::barn, 112 d3= 6.7527 *CLHEP::barn, d4=-1.9798e+1*CLH 113 d3= 6.7527 *CLHEP::barn, d4=-1.9798e+1*CLHEP::barn, 113 e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLH 114 e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLHEP::barn, 114 e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLH 115 e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLHEP::barn, 115 f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLH 116 f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLHEP::barn, 116 f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLH 117 f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLHEP::barn; 117 118 118 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = 119 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z), 119 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = 120 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z); 120 121 121 G4double T0 = 15.0*keV; 122 G4double T0 = 15.0*keV; 122 if (Z < 1.5) { T0 = 40.0*keV; } 123 if (Z < 1.5) { T0 = 40.0*keV; } 123 124 124 G4double X = max(GammaEnergy, T0) / electr 125 G4double X = max(GammaEnergy, T0) / electron_mass_c2; 125 xSection = p1Z*G4Log(1.+2.*X)/X 126 xSection = p1Z*G4Log(1.+2.*X)/X 126 + (p2Z + p3Z*X + p4Z*X*X)/(1. + 127 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X); 127 128 128 // modification for low energy. (special ca 129 // modification for low energy. (special case for Hydrogen) 129 if (GammaEnergy < T0) { 130 if (GammaEnergy < T0) { 130 static const G4double dT0 = keV; 131 static const G4double dT0 = keV; 131 X = (T0+dT0) / electron_mass_c2 ; 132 X = (T0+dT0) / electron_mass_c2 ; 132 G4double sigma = p1Z*G4Log(1.+2*X)/X 133 G4double sigma = p1Z*G4Log(1.+2*X)/X 133 + (p2Z + p3Z*X + p4Z*X*X)/ 134 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X); 134 G4double c1 = -T0*(sigma-xSection)/(xSec 135 G4double c1 = -T0*(sigma-xSection)/(xSection*dT0); 135 G4double c2 = 0.150; 136 G4double c2 = 0.150; 136 if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); 137 if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); } 137 G4double y = G4Log(GammaEnergy/T0); 138 G4double y = G4Log(GammaEnergy/T0); 138 xSection *= G4Exp(-y*(c1+c2*y)); 139 xSection *= G4Exp(-y*(c1+c2*y)); 139 } 140 } 140 // G4cout<<"e= "<< GammaEnergy<<" Z= "<<Z<<" 141 // G4cout<<"e= "<< GammaEnergy<<" Z= "<<Z<<" cross= " << xSection << G4endl; 141 return xSection; 142 return xSection; 142 } 143 } 143 144 144 //....oooOO0OOooo........oooOO0OOooo........oo 145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 145 146 146 void G4KleinNishinaCompton::SampleSecondaries( 147 void G4KleinNishinaCompton::SampleSecondaries( 147 std::vector<G4Dyna 148 std::vector<G4DynamicParticle*>* fvect, 148 const G4MaterialCu 149 const G4MaterialCutsCouple*, 149 const G4DynamicPar 150 const G4DynamicParticle* aDynamicGamma, 150 G4double, 151 G4double, 151 G4double) 152 G4double) 152 { 153 { 153 // The scattered gamma energy is sampled acc 154 // The scattered gamma energy is sampled according to Klein - Nishina formula. 154 // The random number techniques of Butcher & 155 // The random number techniques of Butcher & Messel are used 155 // (Nuc Phys 20(1960),15). 156 // (Nuc Phys 20(1960),15). 156 // Note : Effects due to binding of atomic e 157 // Note : Effects due to binding of atomic electrons are negliged. 157 158 158 G4double gamEnergy0 = aDynamicGamma->GetKine 159 G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy(); 159 160 160 // do nothing below the threshold 161 // do nothing below the threshold 161 if(gamEnergy0 <= LowEnergyLimit()) { return; 162 if(gamEnergy0 <= LowEnergyLimit()) { return; } 162 163 163 G4double E0_m = gamEnergy0 / electron_mass_c 164 G4double E0_m = gamEnergy0 / electron_mass_c2 ; 164 165 165 G4ThreeVector gamDirection0 = aDynamicGamma- 166 G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection(); 166 167 167 // 168 // 168 // sample the energy rate of the scattered g 169 // sample the energy rate of the scattered gamma 169 // 170 // 170 171 171 G4double epsilon, epsilonsq, onecost, sint2, 172 G4double epsilon, epsilonsq, onecost, sint2, greject ; 172 173 173 G4double eps0 = 1./(1. + 2.*E0_m); 174 G4double eps0 = 1./(1. + 2.*E0_m); 174 G4double epsilon0sq = eps0*eps0; 175 G4double epsilon0sq = eps0*eps0; 175 G4double alpha1 = - G4Log(eps0); 176 G4double alpha1 = - G4Log(eps0); 176 G4double alpha2 = alpha1 + 0.5*(1.- epsi 177 G4double alpha2 = alpha1 + 0.5*(1.- epsilon0sq); 177 178 178 CLHEP::HepRandomEngine* rndmEngineMod = G4Ra 179 CLHEP::HepRandomEngine* rndmEngineMod = G4Random::getTheEngine(); 179 G4double rndm[3]; 180 G4double rndm[3]; 180 181 181 static const G4int nlooplim = 1000; 182 static const G4int nlooplim = 1000; 182 G4int nloop = 0; 183 G4int nloop = 0; 183 do { 184 do { 184 ++nloop; 185 ++nloop; 185 // false interaction if too many iteration 186 // false interaction if too many iterations 186 if(nloop > nlooplim) { return; } 187 if(nloop > nlooplim) { return; } 187 188 188 // 3 random numbers to sample scattering 189 // 3 random numbers to sample scattering 189 rndmEngineMod->flatArray(3, rndm); 190 rndmEngineMod->flatArray(3, rndm); 190 191 191 if ( alpha1 > alpha2*rndm[0] ) { 192 if ( alpha1 > alpha2*rndm[0] ) { 192 epsilon = G4Exp(-alpha1*rndm[1]); // 193 epsilon = G4Exp(-alpha1*rndm[1]); // eps0**r 193 epsilonsq = epsilon*epsilon; 194 epsilonsq = epsilon*epsilon; 194 195 195 } else { 196 } else { 196 epsilonsq = epsilon0sq + (1.- epsilon0sq 197 epsilonsq = epsilon0sq + (1.- epsilon0sq)*rndm[1]; 197 epsilon = sqrt(epsilonsq); 198 epsilon = sqrt(epsilonsq); 198 }; 199 }; 199 200 200 onecost = (1.- epsilon)/(epsilon*E0_m); 201 onecost = (1.- epsilon)/(epsilon*E0_m); 201 sint2 = onecost*(2.-onecost); 202 sint2 = onecost*(2.-onecost); 202 greject = 1. - epsilon*sint2/(1.+ epsilons 203 greject = 1. - epsilon*sint2/(1.+ epsilonsq); 203 204 204 // Loop checking, 03-Aug-2015, Vladimir Iv 205 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 205 } while (greject < rndm[2]); 206 } while (greject < rndm[2]); 206 207 207 // 208 // 208 // scattered gamma angles. ( Z - axis along 209 // scattered gamma angles. ( Z - axis along the parent gamma) 209 // 210 // 210 211 211 if(sint2 < 0.0) { sint2 = 0.0; } 212 if(sint2 < 0.0) { sint2 = 0.0; } 212 G4double cosTeta = 1. - onecost; 213 G4double cosTeta = 1. - onecost; 213 G4double sinTeta = sqrt (sint2); 214 G4double sinTeta = sqrt (sint2); 214 G4double Phi = twopi * rndmEngineMod->fl 215 G4double Phi = twopi * rndmEngineMod->flat(); 215 216 216 // 217 // 217 // update G4VParticleChange for the scattere 218 // update G4VParticleChange for the scattered gamma 218 // 219 // 219 220 220 G4ThreeVector gamDirection1(sinTeta*cos(Phi) 221 G4ThreeVector gamDirection1(sinTeta*cos(Phi), sinTeta*sin(Phi), cosTeta); 221 gamDirection1.rotateUz(gamDirection0); 222 gamDirection1.rotateUz(gamDirection0); 222 G4double gamEnergy1 = epsilon*gamEnergy0; 223 G4double gamEnergy1 = epsilon*gamEnergy0; 223 G4double edep = 0.0; 224 G4double edep = 0.0; 224 if(gamEnergy1 > lowestSecondaryEnergy) { 225 if(gamEnergy1 > lowestSecondaryEnergy) { 225 fParticleChange->ProposeMomentumDirection( 226 fParticleChange->ProposeMomentumDirection(gamDirection1); 226 fParticleChange->SetProposedKineticEnergy( 227 fParticleChange->SetProposedKineticEnergy(gamEnergy1); 227 } else { 228 } else { 228 fParticleChange->ProposeTrackStatus(fStopA 229 fParticleChange->ProposeTrackStatus(fStopAndKill); 229 fParticleChange->SetProposedKineticEnergy( 230 fParticleChange->SetProposedKineticEnergy(0.0); 230 edep = gamEnergy1; 231 edep = gamEnergy1; 231 } 232 } 232 233 233 // 234 // 234 // kinematic of the scattered electron 235 // kinematic of the scattered electron 235 // 236 // 236 237 237 G4double eKinEnergy = gamEnergy0 - gamEnergy 238 G4double eKinEnergy = gamEnergy0 - gamEnergy1; 238 239 239 if(eKinEnergy > lowestSecondaryEnergy) { 240 if(eKinEnergy > lowestSecondaryEnergy) { 240 G4ThreeVector eDirection = gamEnergy0*gamD 241 G4ThreeVector eDirection = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1; 241 eDirection = eDirection.unit(); 242 eDirection = eDirection.unit(); 242 243 243 // create G4DynamicParticle object for the 244 // create G4DynamicParticle object for the electron. 244 auto dp = new G4DynamicParticle(theElectro << 245 G4DynamicParticle* dp = new G4DynamicParticle(theElectron,eDirection,eKinEnergy); 245 fvect->push_back(dp); 246 fvect->push_back(dp); 246 } else { 247 } else { 247 edep += eKinEnergy; 248 edep += eKinEnergy; 248 } 249 } 249 // energy balance 250 // energy balance 250 if(edep > 0.0) { 251 if(edep > 0.0) { 251 fParticleChange->ProposeLocalEnergyDeposit 252 fParticleChange->ProposeLocalEnergyDeposit(edep); 252 } 253 } 253 } 254 } 254 255 255 //....oooOO0OOooo........oooOO0OOooo........oo 256 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 256 257 257 258 258 259