Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4KleinNishinaCompton.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4KleinNishinaCompton.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4KleinNishinaCompton.cc (Version 10.0.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4KleinNishinaCompton.cc 74309 2013-10-03 06:42:30Z gcosmo $
 26 //                                                 27 //
 27 // -------------------------------------------     28 // -------------------------------------------------------------------
 28 //                                                 29 //
 29 // GEANT4 Class file                               30 // GEANT4 Class file
 30 //                                                 31 //
 31 //                                                 32 //
 32 // File name:     G4KleinNishinaCompton            33 // File name:     G4KleinNishinaCompton
 33 //                                                 34 //
 34 // Author:        Vladimir Ivanchenko on base      35 // Author:        Vladimir Ivanchenko on base of Michel Maire code
 35 //                                                 36 //
 36 // Creation date: 15.03.2005                       37 // Creation date: 15.03.2005
 37 //                                                 38 //
 38 // Modifications:                                  39 // Modifications:
 39 // 18-04-05 Use G4ParticleChangeForGamma (V.Iv     40 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko)
 40 // 27-03-06 Remove upper limit of cross sectio     41 // 27-03-06 Remove upper limit of cross section (V.Ivantchenko)
 41 //                                                 42 //
 42 // Class Description:                              43 // Class Description:
 43 //                                                 44 //
 44 // -------------------------------------------     45 // -------------------------------------------------------------------
 45 //                                                 46 //
 46 //....oooOO0OOooo........oooOO0OOooo........oo     47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 47 //....oooOO0OOooo........oooOO0OOooo........oo     48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 48                                                    49 
 49 #include "G4KleinNishinaCompton.hh"                50 #include "G4KleinNishinaCompton.hh"
 50 #include "G4PhysicalConstants.hh"                  51 #include "G4PhysicalConstants.hh"
 51 #include "G4SystemOfUnits.hh"                      52 #include "G4SystemOfUnits.hh"
 52 #include "G4Electron.hh"                           53 #include "G4Electron.hh"
 53 #include "G4Gamma.hh"                              54 #include "G4Gamma.hh"
 54 #include "Randomize.hh"                            55 #include "Randomize.hh"
 55 #include "G4DataVector.hh"                         56 #include "G4DataVector.hh"
 56 #include "G4ParticleChangeForGamma.hh"             57 #include "G4ParticleChangeForGamma.hh"
 57 #include "G4Log.hh"                                58 #include "G4Log.hh"
 58 #include "G4Exp.hh"                                59 #include "G4Exp.hh"
 59                                                    60 
 60 //....oooOO0OOooo........oooOO0OOooo........oo     61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 61                                                    62 
 62 using namespace std;                               63 using namespace std;
 63                                                    64 
                                                   >>  65 static const G4double
                                                   >>  66     d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527   *barn, d4=-1.9798e+1*barn,
                                                   >>  67     e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn,
                                                   >>  68     f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn;
                                                   >>  69 
 64 G4KleinNishinaCompton::G4KleinNishinaCompton(c     70 G4KleinNishinaCompton::G4KleinNishinaCompton(const G4ParticleDefinition*,
 65                                              c     71                                              const G4String& nam)
 66   : G4VEmModel(nam)                                72   : G4VEmModel(nam)
 67 {                                                  73 {
 68   theGamma = G4Gamma::Gamma();                     74   theGamma = G4Gamma::Gamma();
 69   theElectron = G4Electron::Electron();            75   theElectron = G4Electron::Electron();
 70   lowestSecondaryEnergy = 100.0*eV;            <<  76   lowestGammaEnergy = 1.0*eV;
 71   fParticleChange = nullptr;                   <<  77   fParticleChange = 0;
 72 }                                                  78 }
 73                                                    79 
 74 //....oooOO0OOooo........oooOO0OOooo........oo     80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 75                                                    81 
 76 G4KleinNishinaCompton::~G4KleinNishinaCompton( <<  82 G4KleinNishinaCompton::~G4KleinNishinaCompton()
                                                   >>  83 {}
 77                                                    84 
 78 //....oooOO0OOooo........oooOO0OOooo........oo     85 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 79                                                    86 
 80 void G4KleinNishinaCompton::Initialise(const G     87 void G4KleinNishinaCompton::Initialise(const G4ParticleDefinition* p,
 81                                        const G     88                                        const G4DataVector& cuts)
 82 {                                                  89 {
 83   if(IsMaster()) { InitialiseElementSelectors(     90   if(IsMaster()) { InitialiseElementSelectors(p, cuts); }
 84   if(nullptr == fParticleChange) {             <<  91   if(!fParticleChange) { fParticleChange = GetParticleChangeForGamma(); }
 85     fParticleChange = GetParticleChangeForGamm << 
 86   }                                            << 
 87 }                                                  92 }
 88                                                    93 
 89 //....oooOO0OOooo........oooOO0OOooo........oo     94 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 90                                                    95 
 91 void G4KleinNishinaCompton::InitialiseLocal(co     96 void G4KleinNishinaCompton::InitialiseLocal(const G4ParticleDefinition*,
 92                                             G4 <<  97               G4VEmModel* masterModel)
 93 {                                                  98 {
 94   SetElementSelectors(masterModel->GetElementS     99   SetElementSelectors(masterModel->GetElementSelectors());
 95 }                                                 100 }
 96                                                   101 
 97 //....oooOO0OOooo........oooOO0OOooo........oo    102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 98                                                   103 
 99 G4double G4KleinNishinaCompton::ComputeCrossSe    104 G4double G4KleinNishinaCompton::ComputeCrossSectionPerAtom(
100                                        const G    105                                        const G4ParticleDefinition*,
101                                              G    106                                              G4double GammaEnergy,
102                                              G    107                                              G4double Z, G4double,
103                                              G    108                                              G4double, G4double)
104 {                                                 109 {
105   G4double xSection = 0.0 ;                       110   G4double xSection = 0.0 ;
106   if (GammaEnergy <= LowEnergyLimit()) { retur << 111   if ( Z < 0.9999 )                 return xSection;
                                                   >> 112   if ( GammaEnergy < 0.1*keV      ) return xSection;
                                                   >> 113   //  if ( GammaEnergy > (100.*GeV/Z) ) return xSection;
107                                                   114 
108   static const G4double a = 20.0 , b = 230.0 ,    115   static const G4double a = 20.0 , b = 230.0 , c = 440.0;
109                                                << 
110   static const G4double                        << 
111   d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLH << 
112   d3= 6.7527   *CLHEP::barn, d4=-1.9798e+1*CLH << 
113   e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLH << 
114   e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLH << 
115   f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLH << 
116   f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLH << 
117                                                   116        
118   G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z =    117   G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
119            p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z =    118            p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
120                                                   119 
121   G4double T0  = 15.0*keV;                        120   G4double T0  = 15.0*keV; 
122   if (Z < 1.5) { T0 = 40.0*keV; }              << 121   if (Z < 1.5) T0 = 40.0*keV; 
123                                                   122 
124   G4double X   = max(GammaEnergy, T0) / electr    123   G4double X   = max(GammaEnergy, T0) / electron_mass_c2;
125   xSection = p1Z*G4Log(1.+2.*X)/X                 124   xSection = p1Z*G4Log(1.+2.*X)/X
126                + (p2Z + p3Z*X + p4Z*X*X)/(1. +    125                + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
127                                                << 126     
128   //  modification for low energy. (special ca    127   //  modification for low energy. (special case for Hydrogen)
129   if (GammaEnergy < T0) {                         128   if (GammaEnergy < T0) {
130     static const G4double dT0 = keV;           << 129     G4double dT0 = 1.*keV;
131     X = (T0+dT0) / electron_mass_c2 ;             130     X = (T0+dT0) / electron_mass_c2 ;
132     G4double sigma = p1Z*G4Log(1.+2*X)/X          131     G4double sigma = p1Z*G4Log(1.+2*X)/X
133                     + (p2Z + p3Z*X + p4Z*X*X)/    132                     + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
134     G4double   c1 = -T0*(sigma-xSection)/(xSec    133     G4double   c1 = -T0*(sigma-xSection)/(xSection*dT0);             
135     G4double   c2 = 0.150;                        134     G4double   c2 = 0.150; 
136     if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); << 135     if (Z > 1.5) c2 = 0.375-0.0556*G4Log(Z);
137     G4double    y = G4Log(GammaEnergy/T0);        136     G4double    y = G4Log(GammaEnergy/T0);
138     xSection *= G4Exp(-y*(c1+c2*y));              137     xSection *= G4Exp(-y*(c1+c2*y));          
139   }                                               138   }
140   // G4cout<<"e= "<< GammaEnergy<<" Z= "<<Z<<" << 139   //  G4cout << "e= " << GammaEnergy << " Z= " << Z << " cross= " << xSection << G4endl;
141   return xSection;                                140   return xSection;
142 }                                                 141 }
143                                                   142 
144 //....oooOO0OOooo........oooOO0OOooo........oo    143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
145                                                   144 
146 void G4KleinNishinaCompton::SampleSecondaries( << 145 void G4KleinNishinaCompton::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
147                             std::vector<G4Dyna << 146                 const G4MaterialCutsCouple*,
148                             const G4MaterialCu << 147                 const G4DynamicParticle* aDynamicGamma,
149                             const G4DynamicPar << 148                 G4double,
150                             G4double,          << 149                 G4double)
151                             G4double)          << 
152 {                                                 150 {
153   // The scattered gamma energy is sampled acc    151   // The scattered gamma energy is sampled according to Klein - Nishina formula.
154   // The random number techniques of Butcher &    152   // The random number techniques of Butcher & Messel are used 
155   // (Nuc Phys 20(1960),15).                      153   // (Nuc Phys 20(1960),15).
156   // Note : Effects due to binding of atomic e    154   // Note : Effects due to binding of atomic electrons are negliged.
157                                                   155  
158   G4double gamEnergy0 = aDynamicGamma->GetKine    156   G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy();
159                                                   157 
160   // do nothing below the threshold            << 158   // extra protection
161   if(gamEnergy0 <= LowEnergyLimit()) { return; << 159   if(gamEnergy0 < lowestGammaEnergy) {
                                                   >> 160     fParticleChange->ProposeTrackStatus(fStopAndKill);
                                                   >> 161     fParticleChange->ProposeLocalEnergyDeposit(gamEnergy0);
                                                   >> 162     fParticleChange->SetProposedKineticEnergy(0.0);
                                                   >> 163     return;
                                                   >> 164   }
162                                                   165 
163   G4double E0_m = gamEnergy0 / electron_mass_c    166   G4double E0_m = gamEnergy0 / electron_mass_c2 ;
164                                                   167 
165   G4ThreeVector gamDirection0 = aDynamicGamma-    168   G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection();
166                                                   169 
167   //                                              170   //
168   // sample the energy rate of the scattered g    171   // sample the energy rate of the scattered gamma 
169   //                                              172   //
170                                                   173 
171   G4double epsilon, epsilonsq, onecost, sint2,    174   G4double epsilon, epsilonsq, onecost, sint2, greject ;
172                                                   175 
173   G4double eps0       = 1./(1. + 2.*E0_m);        176   G4double eps0       = 1./(1. + 2.*E0_m);
174   G4double epsilon0sq = eps0*eps0;                177   G4double epsilon0sq = eps0*eps0;
175   G4double alpha1     = - G4Log(eps0);            178   G4double alpha1     = - G4Log(eps0);
176   G4double alpha2     = alpha1 + 0.5*(1.- epsi << 179   G4double alpha2     = 0.5*(1.- epsilon0sq);
177                                                << 
178   CLHEP::HepRandomEngine* rndmEngineMod = G4Ra << 
179   G4double rndm[3];                            << 
180                                                   180 
181   static const G4int nlooplim = 1000;          << 
182   G4int nloop = 0;                             << 
183   do {                                            181   do {
184     ++nloop;                                   << 182     if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) {
185     // false interaction if too many iteration << 183       epsilon   = G4Exp(-alpha1*G4UniformRand());   // eps0**r
186     if(nloop > nlooplim) { return; }           << 
187                                                << 
188     // 3 random numbers to sample scattering   << 
189     rndmEngineMod->flatArray(3, rndm);         << 
190                                                << 
191     if ( alpha1 > alpha2*rndm[0] ) {           << 
192       epsilon   = G4Exp(-alpha1*rndm[1]);   // << 
193       epsilonsq = epsilon*epsilon;                184       epsilonsq = epsilon*epsilon; 
194                                                   185 
195     } else {                                      186     } else {
196       epsilonsq = epsilon0sq + (1.- epsilon0sq << 187       epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand();
197       epsilon   = sqrt(epsilonsq);                188       epsilon   = sqrt(epsilonsq);
198     };                                            189     };
199                                                   190 
200     onecost = (1.- epsilon)/(epsilon*E0_m);       191     onecost = (1.- epsilon)/(epsilon*E0_m);
201     sint2   = onecost*(2.-onecost);               192     sint2   = onecost*(2.-onecost);
202     greject = 1. - epsilon*sint2/(1.+ epsilons    193     greject = 1. - epsilon*sint2/(1.+ epsilonsq);
203                                                   194 
204     // Loop checking, 03-Aug-2015, Vladimir Iv << 195   } while (greject < G4UniformRand());
205   } while (greject < rndm[2]);                 << 
206                                                   196  
207   //                                              197   //
208   // scattered gamma angles. ( Z - axis along     198   // scattered gamma angles. ( Z - axis along the parent gamma)
209   //                                              199   //
210                                                   200 
211   if(sint2 < 0.0) { sint2 = 0.0; }                201   if(sint2 < 0.0) { sint2 = 0.0; }
212   G4double cosTeta = 1. - onecost;                202   G4double cosTeta = 1. - onecost; 
213   G4double sinTeta = sqrt (sint2);                203   G4double sinTeta = sqrt (sint2);
214   G4double Phi     = twopi * rndmEngineMod->fl << 204   G4double Phi     = twopi * G4UniformRand();
215                                                   205 
216   //                                              206   //
217   // update G4VParticleChange for the scattere    207   // update G4VParticleChange for the scattered gamma
218   //                                              208   //
219                                                   209    
220   G4ThreeVector gamDirection1(sinTeta*cos(Phi)    210   G4ThreeVector gamDirection1(sinTeta*cos(Phi), sinTeta*sin(Phi), cosTeta);
221   gamDirection1.rotateUz(gamDirection0);          211   gamDirection1.rotateUz(gamDirection0);
222   G4double gamEnergy1 = epsilon*gamEnergy0;       212   G4double gamEnergy1 = epsilon*gamEnergy0;
223   G4double edep = 0.0;                         << 213   if(gamEnergy1 > lowestGammaEnergy) {
224   if(gamEnergy1 > lowestSecondaryEnergy) {     << 
225     fParticleChange->ProposeMomentumDirection(    214     fParticleChange->ProposeMomentumDirection(gamDirection1);
226     fParticleChange->SetProposedKineticEnergy(    215     fParticleChange->SetProposedKineticEnergy(gamEnergy1);
227   } else {                                        216   } else { 
228     fParticleChange->ProposeTrackStatus(fStopA    217     fParticleChange->ProposeTrackStatus(fStopAndKill);
                                                   >> 218     fParticleChange->ProposeLocalEnergyDeposit(gamEnergy1);
229     fParticleChange->SetProposedKineticEnergy(    219     fParticleChange->SetProposedKineticEnergy(0.0);
230     edep = gamEnergy1;                         << 
231   }                                               220   }
232                                                   221 
233   //                                              222   //
234   // kinematic of the scattered electron          223   // kinematic of the scattered electron
235   //                                              224   //
236                                                   225 
237   G4double eKinEnergy = gamEnergy0 - gamEnergy    226   G4double eKinEnergy = gamEnergy0 - gamEnergy1;
238                                                   227 
239   if(eKinEnergy > lowestSecondaryEnergy) {     << 228   if(eKinEnergy > DBL_MIN) {
240     G4ThreeVector eDirection = gamEnergy0*gamD    229     G4ThreeVector eDirection = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1;
241     eDirection = eDirection.unit();               230     eDirection = eDirection.unit();
242                                                   231 
243     // create G4DynamicParticle object for the    232     // create G4DynamicParticle object for the electron.
244     auto dp = new G4DynamicParticle(theElectro << 233     G4DynamicParticle* dp = new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
245     fvect->push_back(dp);                         234     fvect->push_back(dp);
246   } else {                                     << 
247     edep += eKinEnergy;                        << 
248   }                                            << 
249   // energy balance                            << 
250   if(edep > 0.0) {                             << 
251     fParticleChange->ProposeLocalEnergyDeposit << 
252   }                                               235   }
253 }                                                 236 }
254                                                   237 
255 //....oooOO0OOooo........oooOO0OOooo........oo    238 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
256                                                   239 
257                                                   240 
258                                                   241