Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4IonCoulombCrossSection.cc 26 // G4IonCoulombCrossSection.cc 27 //-------------------------------------------- 27 //------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class header file 29 // GEANT4 Class header file 30 // 30 // 31 // File name: G4IonCoulombCrossSection 31 // File name: G4IonCoulombCrossSection 32 // 32 // 33 // Author: Cristina Consolandi 33 // Author: Cristina Consolandi 34 // 34 // 35 // Creation date: 05.10.2010 from G4eCoulombSc 35 // Creation date: 05.10.2010 from G4eCoulombScatteringModel 36 // 36 // 37 // Class Description: 37 // Class Description: 38 // Computation of Screen-Coulomb Cross Sectio 38 // Computation of Screen-Coulomb Cross Section 39 // for protons, alpha and heavy Ions 39 // for protons, alpha and heavy Ions 40 // 40 // 41 // 41 // 42 // Reference: 42 // Reference: 43 // M.J. Boschini et al. "Nuclear and Non- 43 // M.J. Boschini et al. "Nuclear and Non-Ionizing Energy-Loss 44 // for Coulomb Scattered Particles from L 44 // for Coulomb Scattered Particles from Low Energy up to Relativistic 45 // Regime in Space Radiation Environment" 45 // Regime in Space Radiation Environment" 46 // Accepted for publication in the Procee 46 // Accepted for publication in the Proceedings of the ICATPP Conference 47 // on Cosmic Rays for Particle and Astrop 47 // on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo, 7-8 48 // October, 2010, to be published by Wor 48 // October, 2010, to be published by World Scientific (Singapore). 49 // 49 // 50 // Available for downloading at: 50 // Available for downloading at: 51 // http://arxiv.org/abs/1011.4822 51 // http://arxiv.org/abs/1011.4822 52 // 52 // 53 // ------------------------------------------- 53 // ------------------------------------------------------------------- 54 // 54 // 55 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 56 56 57 #include "G4IonCoulombCrossSection.hh" 57 #include "G4IonCoulombCrossSection.hh" 58 #include "G4PhysicalConstants.hh" 58 #include "G4PhysicalConstants.hh" 59 #include "Randomize.hh" 59 #include "Randomize.hh" 60 #include "G4Proton.hh" 60 #include "G4Proton.hh" 61 #include "G4Exp.hh" 61 #include "G4Exp.hh" 62 #include "G4Log.hh" 62 #include "G4Log.hh" 63 63 64 //....oooOO0OOooo........oooOO0OOooo........oo 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 65 65 66 using namespace std; 66 using namespace std; 67 67 68 const G4double a0 = CLHEP::electron_mass_c2/0. 68 const G4double a0 = CLHEP::electron_mass_c2/0.88534; 69 69 70 G4IonCoulombCrossSection::G4IonCoulombCrossSec 70 G4IonCoulombCrossSection::G4IonCoulombCrossSection(): 71 cosThetaMin(1.0), 71 cosThetaMin(1.0), 72 cosThetaMax(-1.0), 72 cosThetaMax(-1.0), 73 alpha2(fine_structure_const*fine_structure_ 73 alpha2(fine_structure_const*fine_structure_const) 74 { 74 { 75 fNistManager = G4NistManager::Instance(); 75 fNistManager = G4NistManager::Instance(); 76 fG4pow = G4Pow::GetInstance(); << 77 theProton = G4Proton::Proton(); 76 theProton = G4Proton::Proton(); 78 particle = nullptr; << 77 particle=0; 79 78 80 G4double p0 = electron_mass_c2*classic_elect 79 G4double p0 = electron_mass_c2*classic_electr_radius; 81 coeff = twopi*p0*p0; 80 coeff = twopi*p0*p0; 82 81 83 cosTetMinNuc=0; 82 cosTetMinNuc=0; 84 cosTetMaxNuc=0; 83 cosTetMaxNuc=0; 85 nucXSection =0; 84 nucXSection =0; 86 85 87 chargeSquare = spin = mass = 0.0; 86 chargeSquare = spin = mass = 0.0; 88 tkinLab = momLab2 = invbetaLab2 = tkin = mom 87 tkinLab = momLab2 = invbetaLab2 = tkin = mom2 = invbeta2 = 0.0; 89 88 90 targetZ = targetMass = screenZ = ScreenRSqua << 89 targetZ = targetMass = screenZ = ScreenRSquare = etag = ecut = 0.0; 91 } 90 } >> 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 92 >> 93 G4IonCoulombCrossSection::~G4IonCoulombCrossSection() >> 94 {} 92 95 93 //....oooOO0OOooo........oooOO0OOooo........oo 96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 94 97 95 void G4IonCoulombCrossSection::Initialise(cons 98 void G4IonCoulombCrossSection::Initialise(const G4ParticleDefinition* p, 96 G4do 99 G4double CosThetaLim) 97 { 100 { 98 SetupParticle(p); 101 SetupParticle(p); 99 nucXSection = tkin = targetZ = mom2 = 0.0; << 102 nucXSection = 0.0; 100 etag = DBL_MAX; << 103 tkin = targetZ = mom2 = DBL_MIN; >> 104 ecut = etag = DBL_MAX; 101 particle = p; 105 particle = p; 102 cosThetaMin = CosThetaLim; 106 cosThetaMin = CosThetaLim; 103 } 107 } 104 108 105 //....oooOO0OOooo........oooOO0OOooo........oo 109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 106 110 107 void G4IonCoulombCrossSection::SetupKinematic( << 111 void G4IonCoulombCrossSection::SetupKinematic(G4double ekin, >> 112 G4double cut, G4double tmass) 108 { 113 { 109 if(ekin != tkinLab || tmass != targetMass) { << 114 if(ekin != tkinLab || ecut != cut || tmass != targetMass) { 110 115 111 // lab 116 // lab 112 tkinLab = ekin; 117 tkinLab = ekin; 113 momLab2 = tkinLab*(tkinLab + 2.0*mass); 118 momLab2 = tkinLab*(tkinLab + 2.0*mass); 114 invbetaLab2 = 1.0 + mass*mass/momLab2; 119 invbetaLab2 = 1.0 + mass*mass/momLab2; 115 120 116 G4double etot = tkinLab + mass; 121 G4double etot = tkinLab + mass; 117 G4double ptot = sqrt(momLab2); 122 G4double ptot = sqrt(momLab2); 118 G4double m12 = mass*mass; 123 G4double m12 = mass*mass; >> 124 >> 125 targetMass = tmass; 119 // relativistic reduced mass from publucat 126 // relativistic reduced mass from publucation 120 // A.P. Martynenko, R.N. Faustov, Teoret. 127 // A.P. Martynenko, R.N. Faustov, Teoret. mat. Fiz. 64 (1985) 179 121 128 122 //incident particle & target nucleus 129 //incident particle & target nucleus 123 targetMass = tmass; << 124 G4double Ecm=sqrt(m12 + targetMass*targetM 130 G4double Ecm=sqrt(m12 + targetMass*targetMass + 2.0*etot*targetMass); 125 G4double mu_rel=mass*targetMass/Ecm; 131 G4double mu_rel=mass*targetMass/Ecm; 126 G4double momCM= ptot*targetMass/Ecm; 132 G4double momCM= ptot*targetMass/Ecm; 127 // relative system 133 // relative system 128 mom2 = momCM*momCM; 134 mom2 = momCM*momCM; 129 invbeta2 = 1.0 + mu_rel*mu_rel/mom2; 135 invbeta2 = 1.0 + mu_rel*mu_rel/mom2; 130 tkin = momCM*sqrt(invbeta2) - mu_rel;//Eki 136 tkin = momCM*sqrt(invbeta2) - mu_rel;//Ekin of mu_rel 131 137 132 cosTetMinNuc = cosThetaMin; 138 cosTetMinNuc = cosThetaMin; 133 cosTetMaxNuc = cosThetaMax; 139 cosTetMaxNuc = cosThetaMax; 134 } 140 } 135 } 141 } 136 142 137 //....oooOO0OOooo........oooOO0OOooo........oo 143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 144 139 void G4IonCoulombCrossSection::SetupTarget(G4d 145 void G4IonCoulombCrossSection::SetupTarget(G4double Z, G4double e, 140 G4int) << 146 G4int heavycorr) 141 { 147 { 142 if(Z != targetZ || e != etag) { 148 if(Z != targetZ || e != etag) { 143 etag = e; 149 etag = e; 144 targetZ = Z; 150 targetZ = Z; 145 G4int iz= G4lrint(Z); 151 G4int iz= G4lrint(Z); 146 152 147 SetScreenRSquare(iz); 153 SetScreenRSquare(iz); 148 screenZ = 0; 154 screenZ = 0; 149 screenZ = ScreenRSquare/mom2; 155 screenZ = ScreenRSquare/mom2; 150 //heavycorr = 0; << 151 // G4cout<< "heavycorr "<<heavycorr<<G4en 156 // G4cout<< "heavycorr "<<heavycorr<<G4endl; 152 157 153 G4double corr=5.*twopi*Z*std::sqrt(chargeS << 158 if(heavycorr!=0 && particle != theProton){ 154 corr=G4Exp(G4Log(corr)*0.04); << 159 G4double corr=5.*twopi*Z*std::sqrt(chargeSquare*alpha2); 155 screenZ *=0.5*(1.13 + corr*3.76*Z*Z*charge << 160 corr=G4Exp(G4Log(corr)*0.12); 156 // G4cout<<" heavycorr Z e corr....2As "<< << 161 screenZ *=0.5*(1.13 + corr*3.76*Z*Z*chargeSquare*invbeta2*alpha2); 157 // <<Z <<"\t"<<e/MeV <<"\t"<<screenZ<<G4e << 162 // G4cout<<" heavycorr Z e corr....2As "<< heavycorr << "\t" 158 << 163 // <<Z <<"\t"<<e/MeV <<"\t"<<screenZ<<G4endl; >> 164 }else{ >> 165 screenZ *= 0.5*(1.13 + 3.76*Z*Z*chargeSquare*invbeta2*alpha2); >> 166 // G4cout<<" heavycorr Z e....2As "<< heavycorr << "\t" >> 167 // <<Z <<"\t"<< e/MeV <<"\t" <<screenZ<<G4endl; >> 168 } >> 169 159 if(1 == iz && particle == theProton && cos 170 if(1 == iz && particle == theProton && cosTetMaxNuc < 0.0) { 160 cosTetMaxNuc = 0.0; 171 cosTetMaxNuc = 0.0; 161 } 172 } 162 } 173 } 163 } 174 } 164 175 165 //....oooOO0OOooo........oooOO0OOooo........oo 176 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 166 177 167 void G4IonCoulombCrossSection::SetScreenRSquar 178 void G4IonCoulombCrossSection::SetScreenRSquare(G4int iz) 168 { 179 { 169 //for proton Thomas-Fermi screening length << 180 //for proton Thomas-Fermi screening length 170 G4int Z1 = G4lrint(std::sqrt(chargeSquare)); 181 G4int Z1 = G4lrint(std::sqrt(chargeSquare)); 171 G4double Z113 = fG4pow->Z13(iz); << 182 G4double Z1023 = G4Exp(fNistManager->GetLOGZ(Z1)*0.23); 172 G4double Z1023 = fG4pow->powZ(Z1,0.23); << 183 G4double Z2023 = G4Exp(fNistManager->GetLOGZ(iz)*0.23); 173 G4double Z2023 = fG4pow->powZ(iz,0.23); << 184 174 G4double x=a0*(Z1023+Z2023); << 175 << 176 // Universal screening length 185 // Universal screening length 177 if(particle == theProton){ << 186 G4double x = a0*(Z1023+Z2023); 178 x = a0*Z113; << 179 } << 180 187 181 ScreenRSquare = alpha2*x*x; << 188 ScreenRSquare = alpha2*x*x; 182 } 189 } 183 190 184 //....oooOO0OOooo........oooOO0OOooo........oo 191 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 185 192 186 G4double G4IonCoulombCrossSection::NuclearCros 193 G4double G4IonCoulombCrossSection::NuclearCrossSection() 187 { 194 { 188 // This method needs initialisation before b 195 // This method needs initialisation before be called 189 // scattering with target nucleus 196 // scattering with target nucleus 190 G4double fac = coeff*targetZ*(targetZ)*charg << 197 G4double fac = coeff*targetZ*(targetZ + 1)*chargeSquare*invbeta2/mom2; 191 198 192 nucXSection = 0.0; 199 nucXSection = 0.0; 193 200 194 G4double x = 1.0 - cosTetMinNuc; 201 G4double x = 1.0 - cosTetMinNuc; 195 G4double x1 = x + screenZ; 202 G4double x1 = x + screenZ; 196 203 197 // scattering with nucleus 204 // scattering with nucleus 198 if(cosTetMaxNuc < cosTetMinNuc) { 205 if(cosTetMaxNuc < cosTetMinNuc) { 199 nucXSection = fac*(cosTetMinNuc - cosTetMa 206 nucXSection = fac*(cosTetMinNuc - cosTetMaxNuc)/ 200 (x1*(1.0 - cosTetMaxNuc + screenZ)); 207 (x1*(1.0 - cosTetMaxNuc + screenZ)); 201 } 208 } 202 209 203 return nucXSection; 210 return nucXSection; 204 } 211 } 205 212 206 //....oooOO0OOooo........oooOO0OOooo........oo 213 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 207 214 208 G4double G4IonCoulombCrossSection::SampleCosin 215 G4double G4IonCoulombCrossSection::SampleCosineTheta() 209 { 216 { 210 G4double z1 = 0.0; 217 G4double z1 = 0.0; 211 if(cosTetMaxNuc < cosTetMinNuc) { 218 if(cosTetMaxNuc < cosTetMinNuc) { 212 219 213 G4double x1 = 1. - cosTetMinNuc + screenZ; 220 G4double x1 = 1. - cosTetMinNuc + screenZ; 214 G4double x2 = 1. - cosTetMaxNuc + screenZ; 221 G4double x2 = 1. - cosTetMaxNuc + screenZ; 215 G4double dx = cosTetMinNuc - cosTetMaxNuc; 222 G4double dx = cosTetMinNuc - cosTetMaxNuc; 216 z1 = x1*x2/(x1 + G4UniformRand()*dx) - scr 223 z1 = x1*x2/(x1 + G4UniformRand()*dx) - screenZ; 217 } 224 } 218 return z1; 225 return z1; 219 } 226 } 220 227 221 //....oooOO0OOooo........oooOO0OOooo........oo 228 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 222 229 223 230 224 231 225 232 226 233