Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4GoudsmitSaundersonTable.cc 95473 2016-02-12 09:36:21Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ----------------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class implementation file 30 // GEANT4 Class implementation file 30 // 31 // 31 // File name: G4GoudsmitSaundersonTable 32 // File name: G4GoudsmitSaundersonTable 32 // 33 // 33 // Author: Mihaly Novak / (Omrane Kadri 34 // Author: Mihaly Novak / (Omrane Kadri) 34 // 35 // 35 // Creation date: 20.02.2009 36 // Creation date: 20.02.2009 36 // 37 // 37 // Class description: 38 // Class description: 38 // Class to handle multiple scattering angul 39 // Class to handle multiple scattering angular distributions precomputed by 39 // using Kawrakow-Bielajew Goudsmit-Saunders 40 // using Kawrakow-Bielajew Goudsmit-Saunderson MSC model based on the screened 40 // Rutherford DCS for elastic scattering of 41 // Rutherford DCS for elastic scattering of electrons/positrons [1,2]. This 41 // class is used by G4GoudsmitSaundersonMscM 42 // class is used by G4GoudsmitSaundersonMscModel to sample the angular 42 // deflection of electrons/positrons after t 43 // deflection of electrons/positrons after travelling a given path. 43 // 44 // 44 // Modifications: 45 // Modifications: 45 // 04.03.2009 V.Ivanchenko cleanup and format 46 // 04.03.2009 V.Ivanchenko cleanup and format according to Geant4 EM style 46 // 26.08.2009 O.Kadri: avoiding unuseful calcu 47 // 26.08.2009 O.Kadri: avoiding unuseful calculations and optimizing the root 47 // finding parameter error 48 // finding parameter error's within SampleTheta method 48 // 08.02.2010 O.Kadri: reduce delared variable 49 // 08.02.2010 O.Kadri: reduce delared variables; reduce error of finding root 49 // in secant method 50 // in secant method 50 // 26.03.2010 O.Kadri: minimum of used arrays 51 // 26.03.2010 O.Kadri: minimum of used arrays in computation within the dichotomie 51 // finding method the erro 52 // finding method the error was the lowest value of uvalues 52 // 12.05.2010 O.Kadri: changing of sqrt((b-a)* 53 // 12.05.2010 O.Kadri: changing of sqrt((b-a)*(b-a)) with fabs(b-a) 53 // 18.05.2015 M. Novak This class has been com 54 // 18.05.2015 M. Novak This class has been completely replaced (only the original 54 // class name was kept; class descr 55 // class name was kept; class description was also inserted): 55 // A new version of Kawrakow-Bielaj 56 // A new version of Kawrakow-Bielajew Goudsmit-Saunderson MSC model 56 // based on the screened Rutherford 57 // based on the screened Rutherford DCS for elastic scattering of 57 // electrons/positrons has been int 58 // electrons/positrons has been introduced[1,2]. The corresponding MSC 58 // angular distributions over a 2D 59 // angular distributions over a 2D parameter grid have been recomputed 59 // and the CDFs are now stored in a 60 // and the CDFs are now stored in a variable transformed (smooth) form 60 // together with the corresponding 61 // together with the corresponding rational interpolation parameters. 61 // The new version is several times 62 // The new version is several times faster, more robust and accurate 62 // compared to the earlier version 63 // compared to the earlier version (G4GoudsmitSaundersonMscModel class 63 // that use these data has been als 64 // that use these data has been also completely replaced) 64 // 28.04.2017 M. Novak: New representation of << 65 // significantly reduced data size. << 66 // 23.08.2017 M. Novak: Added funtionality to << 67 // base GS angular distributions an << 68 // parameter, first and second mome << 69 // activated in the GS-MSC model. << 70 // 65 // 71 // References: 66 // References: 72 // [1] A.F.Bielajew, NIMB, 111 (1996) 195-20 67 // [1] A.F.Bielajew, NIMB, 111 (1996) 195-208 73 // [2] I.Kawrakow, A.F.Bielajew, NIMB 134(19 68 // [2] I.Kawrakow, A.F.Bielajew, NIMB 134(1998) 325-336 74 // 69 // 75 // ------------------------------------------- 70 // ----------------------------------------------------------------------------- 76 71 77 #include "G4GoudsmitSaundersonTable.hh" 72 #include "G4GoudsmitSaundersonTable.hh" 78 73 79 << 80 #include "G4PhysicalConstants.hh" << 81 #include "Randomize.hh" 74 #include "Randomize.hh" 82 #include "G4Log.hh" << 75 #include "G4PhysicalConstants.hh" 83 #include "G4Exp.hh" << 84 << 85 #include "G4GSMottCorrection.hh" << 86 #include "G4MaterialTable.hh" 76 #include "G4MaterialTable.hh" 87 #include "G4Material.hh" 77 #include "G4Material.hh" 88 #include "G4MaterialCutsCouple.hh" << 78 #include "G4Log.hh" 89 #include "G4ProductionCutsTable.hh" << 79 #include "G4Exp.hh" 90 #include "G4EmParameters.hh" << 91 << 92 #include "G4String.hh" << 93 80 94 #include <fstream> 81 #include <fstream> 95 #include <cstdlib> 82 #include <cstdlib> >> 83 #include <cstdio> 96 #include <cmath> 84 #include <cmath> 97 85 98 #include <iostream> << 99 #include <iomanip> << 100 86 101 // perecomputed GS angular distributions, base << 87 const G4double G4GoudsmitSaundersonTable::fgLambdaValues[] ={ 102 // are the same for e- and e+ so make sure we << 88 1.000000000000e+00, 1.165914401180e+00, 1.359356390879e+00, 1.584893192461e+00, 103 G4bool G4GoudsmitSaundersonTable::gIsInitialis << 89 1.847849797422e+00, 2.154434690032e+00, 2.511886431510e+00, 2.928644564625e+00, 104 // << 90 3.414548873834e+00, 3.981071705535e+00, 4.641588833613e+00, 5.411695265465e+00, 105 std::vector<G4GoudsmitSaundersonTable::GSMSCAn << 91 6.309573444802e+00, 7.356422544596e+00, 8.576958985909e+00, 1.000000000000e+01, 106 std::vector<G4GoudsmitSaundersonTable::GSMSCAn << 92 1.165914401180e+01, 1.359356390879e+01, 1.584893192461e+01, 1.847849797422e+01, 107 // << 93 2.154434690032e+01, 2.511886431510e+01, 2.928644564625e+01, 3.414548873834e+01, 108 std::vector<double> G4GoudsmitSaundersonTable: << 94 3.981071705535e+01, 4.641588833613e+01, 5.411695265465e+01, 6.309573444802e+01, 109 std::vector<double> G4GoudsmitSaundersonTable: << 95 7.356422544596e+01, 8.576958985909e+01, 1.000000000000e+02, 1.165914401180e+02, >> 96 1.359356390879e+02, 1.584893192461e+02, 1.847849797422e+02, 2.154434690032e+02, >> 97 2.511886431510e+02, 2.928644564625e+02, 3.414548873834e+02, 3.981071705535e+02, >> 98 4.641588833613e+02, 5.411695265465e+02, 6.309573444802e+02, 7.356422544596e+02, >> 99 8.576958985909e+02, 1.000000000000e+03, 1.165914401180e+03, 1.359356390879e+03, >> 100 1.584893192461e+03, 1.847849797422e+03, 2.154434690032e+03, 2.511886431510e+03, >> 101 2.928644564625e+03, 3.414548873834e+03, 3.981071705535e+03, 4.641588833613e+03, >> 102 5.411695265465e+03, 6.309573444802e+03, 7.356422544596e+03, 8.576958985909e+03, >> 103 1.000000000000e+04, 1.165914401180e+04, 1.359356390879e+04, 1.584893192461e+04, >> 104 1.847849797422e+04, 2.154434690032e+04, 2.511886431510e+04, 2.928644564625e+04, >> 105 3.414548873834e+04, 3.981071705535e+04, 4.641588833613e+04, 5.411695265465e+04, >> 106 6.309573444802e+04, 7.356422544596e+04, 8.576958985909e+04, 1.000000000000e+05 >> 107 }; >> 108 >> 109 const G4double G4GoudsmitSaundersonTable::fgLamG1Values[]={ >> 110 0.0010, 0.0509, 0.1008, 0.1507, 0.2006, 0.2505, 0.3004, 0.3503, 0.4002, >> 111 0.4501, 0.5000, 0.5499, 0.5998, 0.6497, 0.6996, 0.7495, 0.7994, 0.8493, >> 112 0.8992, 0.9491, 0.9990 >> 113 }; >> 114 const G4double G4GoudsmitSaundersonTable::fgLamG1ValuesII[]={ >> 115 0.999, 1.332, 1.665, 1.998, 2.331, 2.664, 2.997, 3.33, 3.663, >> 116 3.996, 4.329, 4.662, 4.995, 5.328, 5.661, 5.994, 6.327, >> 117 6.66, 6.993, 7.326, 7.659, 7.992 >> 118 }; 110 119 >> 120 const G4double G4GoudsmitSaundersonTable::fgUValues[]={ >> 121 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, >> 122 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, >> 123 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, >> 124 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, >> 125 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, >> 126 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, >> 127 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, >> 128 0.70, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, >> 129 0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, >> 130 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, >> 131 1.00 >> 132 }; >> 133 >> 134 const G4double G4GoudsmitSaundersonTable::fgG1Values[]={ >> 135 1.00000000000000e-10, 1.15478198468946e-10, 1.33352143216332e-10, 1.53992652605949e-10, 1.77827941003892e-10, >> 136 2.05352502645715e-10, 2.37137370566166e-10, 2.73841963426436e-10, 3.16227766016838e-10, 3.65174127254838e-10, >> 137 4.21696503428582e-10, 4.86967525165863e-10, 5.62341325190349e-10, 6.49381631576211e-10, 7.49894209332456e-10, >> 138 8.65964323360065e-10, 1.00000000000000e-09, 1.15478198468946e-09, 1.33352143216332e-09, 1.53992652605949e-09, >> 139 1.77827941003892e-09, 2.05352502645715e-09, 2.37137370566166e-09, 2.73841963426436e-09, 3.16227766016838e-09, >> 140 3.65174127254838e-09, 4.21696503428582e-09, 4.86967525165863e-09, 5.62341325190349e-09, 6.49381631576211e-09, >> 141 7.49894209332456e-09, 8.65964323360065e-09, 1.00000000000000e-08, 1.15478198468946e-08, 1.33352143216332e-08, >> 142 1.53992652605949e-08, 1.77827941003892e-08, 2.05352502645715e-08, 2.37137370566166e-08, 2.73841963426436e-08, >> 143 3.16227766016838e-08, 3.65174127254838e-08, 4.21696503428582e-08, 4.86967525165863e-08, 5.62341325190349e-08, >> 144 6.49381631576211e-08, 7.49894209332456e-08, 8.65964323360065e-08, 1.00000000000000e-07, 1.15478198468946e-07, >> 145 1.33352143216332e-07, 1.53992652605949e-07, 1.77827941003892e-07, 2.05352502645715e-07, 2.37137370566166e-07, >> 146 2.73841963426436e-07, 3.16227766016838e-07, 3.65174127254838e-07, 4.21696503428582e-07, 4.86967525165863e-07, >> 147 5.62341325190349e-07, 6.49381631576211e-07, 7.49894209332456e-07, 8.65964323360065e-07, 1.00000000000000e-06, >> 148 1.15478198468946e-06, 1.33352143216332e-06, 1.53992652605949e-06, 1.77827941003892e-06, 2.05352502645715e-06, >> 149 2.37137370566166e-06, 2.73841963426436e-06, 3.16227766016838e-06, 3.65174127254838e-06, 4.21696503428582e-06, >> 150 4.86967525165863e-06, 5.62341325190349e-06, 6.49381631576211e-06, 7.49894209332456e-06, 8.65964323360065e-06, >> 151 1.00000000000000e-05, 1.15478198468946e-05, 1.33352143216332e-05, 1.53992652605949e-05, 1.77827941003892e-05, >> 152 2.05352502645715e-05, 2.37137370566166e-05, 2.73841963426436e-05, 3.16227766016838e-05, 3.65174127254838e-05, >> 153 4.21696503428582e-05, 4.86967525165863e-05, 5.62341325190349e-05, 6.49381631576211e-05, 7.49894209332456e-05, >> 154 8.65964323360065e-05, 1.00000000000000e-04, 1.15478198468946e-04, 1.33352143216332e-04, 1.53992652605949e-04, >> 155 1.77827941003892e-04, 2.05352502645715e-04, 2.37137370566166e-04, 2.73841963426436e-04, 3.16227766016838e-04, >> 156 3.65174127254838e-04, 4.21696503428582e-04, 4.86967525165863e-04, 5.62341325190349e-04, 6.49381631576211e-04, >> 157 7.49894209332456e-04, 8.65964323360065e-04, 1.00000000000000e-03, 1.15478198468946e-03, 1.33352143216332e-03, >> 158 1.53992652605949e-03, 1.77827941003892e-03, 2.05352502645715e-03, 2.37137370566166e-03, 2.73841963426436e-03, >> 159 3.16227766016838e-03, 3.65174127254838e-03, 4.21696503428582e-03, 4.86967525165863e-03, 5.62341325190349e-03, >> 160 6.49381631576211e-03, 7.49894209332456e-03, 8.65964323360065e-03, 1.00000000000000e-02, 1.15478198468946e-02, >> 161 1.33352143216332e-02, 1.53992652605949e-02, 1.77827941003892e-02, 2.05352502645715e-02, 2.37137370566166e-02, >> 162 2.73841963426436e-02, 3.16227766016838e-02, 3.65174127254838e-02, 4.21696503428582e-02, 4.86967525165863e-02, >> 163 5.62341325190349e-02, 6.49381631576211e-02, 7.49894209332456e-02, 8.65964323360065e-02, 1.00000000000000e-01, >> 164 1.15478198468946e-01, 1.33352143216332e-01, 1.53992652605949e-01, 1.77827941003892e-01, 2.05352502645715e-01, >> 165 2.37137370566166e-01, 2.73841963426436e-01, 3.16227766016838e-01, 3.65174127254838e-01, 4.21696503428582e-01, >> 166 4.86967525165863e-01, 5.62341325190349e-01, 6.49381631576211e-01, 7.49894209332456e-01, 8.65964323360065e-01 >> 167 }; >> 168 >> 169 const G4double G4GoudsmitSaundersonTable::fgScreeningParam[]={ >> 170 1.92484052135703e-12, 2.23565438533804e-12, 2.59674772669370e-12, 3.01627006395395e-12, 3.50369464193945e-12, >> 171 4.07003394459337e-12, 4.72809038421179e-12, 5.49274792465712e-12, 6.38131134142232e-12, 7.41390092242269e-12, >> 172 8.61391169587491e-12, 1.00085477656079e-11, 1.16294440746525e-11, 1.35133899458129e-11, 1.57031711107699e-11, >> 173 1.82485496926619e-11, 2.12074048158664e-11, 2.46470602564846e-11, 2.86458299060786e-11, 3.32948169025090e-11, >> 174 3.87000082054842e-11, 4.49847133009623e-11, 5.22924037716594e-11, 6.07900198618435e-11, 7.06718211166503e-11, >> 175 8.21638709501378e-11, 9.55292598967889e-11, 1.11074189683990e-10, 1.29155060543825e-10, 1.50186727847036e-10, >> 176 1.74652121757794e-10, 2.03113455838333e-10, 2.36225288153009e-10, 2.74749742338471e-10, 3.19574247380381e-10, >> 177 3.71732214707185e-10, 4.32427141127727e-10, 5.03060707798248e-10, 5.85265540790081e-10, 6.80943410264647e-10, >> 178 7.92309775465429e-10, 9.21945734889531e-10, 1.07285861883013e-09, 1.24855266934879e-09, 1.45311149575389e-09, >> 179 1.69129427781576e-09, 1.96864802125653e-09, 2.29163855873534e-09, 2.66780344424806e-09, 3.10593042087591e-09, >> 180 3.61626576440636e-09, 4.21075753406168e-09, 4.90333961465076e-09, 5.71026343332307e-09, 6.65048540388811e-09, >> 181 7.74611952188878e-09, 9.02296613895651e-09, 1.05111298261663e-08, 1.22457414410270e-08, 1.42678020976703e-08, >> 182 1.66251697709241e-08, 1.93737128201322e-08, 2.25786588894194e-08, 2.63161725354421e-08, 3.06752006784906e-08, >> 183 3.57596317176864e-08, 4.16908220722131e-08, 4.86105532157964e-08, 5.66844932060409e-08, 6.61062495628185e-08, >> 184 7.71021154618766e-08, 8.99366289841022e-08, 1.04919086073377e-07, 1.22411172469263e-07, 1.42835908860059e-07, >> 185 1.66688137634119e-07, 1.94546819824371e-07, 2.27089458246136e-07, 2.65109018729386e-07, 3.09533787294144e-07, >> 186 3.61450678951755e-07, 4.22132605720001e-07, 4.93070620012029e-07, 5.76011677884208e-07, 6.73003018378312e-07, >> 187 7.86444334741884e-07, 9.19149125868381e-07, 1.07441686808177e-06, 1.25611794581916e-06, 1.46879363370693e-06, >> 188 1.71777384258668e-06, 2.00931584092477e-06, 2.35076775595475e-06, 2.75076136411589e-06, 3.21943951980544e-06, >> 189 3.76872457154335e-06, 4.41263530713955e-06, 5.16766139268237e-06, 6.05320597042372e-06, 7.09210911391032e-06, >> 190 8.31126727283062e-06, 9.74236675732094e-06, 1.14227528119565e-05, 1.33964600351938e-05, 1.57154349593153e-05, >> 191 1.84409877007598e-05, 2.16455169438847e-05, 2.54145614063097e-05, 2.98492416879238e-05, 3.50691694441802e-05, >> 192 4.12159166620983e-05, 4.84571570931433e-05, 5.69916154060348e-05, 6.70549883575744e-05, 7.89270374851336e-05, >> 193 9.29400960653008e-05, 1.09489286334512e-04, 1.29044808732337e-04, 1.52166746391861e-04, 1.79522929336019e-04, >> 194 2.11910529073029e-04, 2.50282212267455e-04, 2.95777880652745e-04, 3.49763274771614e-04, 4.13877036477045e-04, >> 195 4.90088229201730e-04, 5.80766832133355e-04, 6.88770389861787e-04, 8.17550860329037e-04, 9.71286825640136e-04, >> 196 1.15504770108335e-03, 1.37499852012182e-03, 1.63865645831619e-03, 1.95521372859357e-03, 2.33594617839223e-03, >> 197 2.79473334292108e-03, 3.34872458412049e-03, 4.01919834698563e-03, 4.83267910882034e-03, 5.82240174726978e-03, >> 198 7.03024963447929e-03, 8.50934682352796e-03, 1.03275659802088e-02, 1.25723383030196e-02, 1.53573467148336e-02, >> 199 1.88319961908362e-02, 2.31950693494851e-02, 2.87148467953825e-02, 3.57594981860148e-02, 4.48443278665925e-02, >> 200 5.67077407341705e-02, 7.24383639141981e-02, 9.36982315562396e-02, 1.23138322807982e-01, 1.65231234966025e-01, >> 201 2.28105620915395e-01, 3.28136673526381e-01, 5.03725917697149e-01, 8.70438998827130e-01, 2.00702876580162e+00 >> 202 }; >> 203 >> 204 const G4double G4GoudsmitSaundersonTable::fgSrcAValues[] = { >> 205 1.04015860967600e+00, 1.04040150744807e+00, 1.04064741953810e+00, 1.04089640311900e+00, 1.04114851683194e+00, >> 206 1.04140382083415e+00, 1.04166237684853e+00, 1.04192424821535e+00, 1.04218949994586e+00, 1.04245819877822e+00, >> 207 1.04273041323563e+00, 1.04300621368681e+00, 1.04328567240902e+00, 1.04356886365371e+00, 1.04385586371482e+00, >> 208 1.04414675100008e+00, 1.04444160610522e+00, 1.04474051189143e+00, 1.04504355356608e+00, 1.04535081876704e+00, >> 209 1.04566239765056e+00, 1.04597838298311e+00, 1.04629887023725e+00, 1.04662395769178e+00, 1.04695374653644e+00, >> 210 1.04728834098127e+00, 1.04762784837111e+00, 1.04797237930520e+00, 1.04832204776253e+00, 1.04867697123289e+00, >> 211 1.04903727085420e+00, 1.04940307155639e+00, 1.04977450221209e+00, 1.05015169579471e+00, 1.05053478954418e+00, >> 212 1.05092392514088e+00, 1.05131924888815e+00, 1.05172091190400e+00, 1.05212907032243e+00, 1.05254388550507e+00, >> 213 1.05296552426367e+00, 1.05339415909403e+00, 1.05382996842239e+00, 1.05427313686456e+00, 1.05472385549904e+00, >> 214 1.05518232215471e+00, 1.05564874171422e+00, 1.05612332643389e+00, 1.05660629628136e+00, 1.05709787929208e+00, >> 215 1.05759831194585e+00, 1.05810783956480e+00, 1.05862671673423e+00, 1.05915520774789e+00, 1.05969358707925e+00, >> 216 1.06024213988081e+00, 1.06080116251315e+00, 1.06137096310598e+00, 1.06195186215339e+00, 1.06254419314585e+00, >> 217 1.06314830324155e+00, 1.06376455398007e+00, 1.06439332204139e+00, 1.06503500005380e+00, 1.06568999745437e+00, >> 218 1.06635874140595e+00, 1.06704167777519e+00, 1.06773927217628e+00, 1.06845201108575e+00, 1.06918040303385e+00, >> 219 1.06992497987890e+00, 1.07068629817131e+00, 1.07146494061474e+00, 1.07226151763259e+00, 1.07307666904867e+00, >> 220 1.07391106589198e+00, 1.07476541233634e+00, 1.07564044778664e+00, 1.07653694912487e+00, 1.07745573313039e+00, >> 221 1.07839765909007e+00, 1.07936363161610e+00, 1.08035460369071e+00, 1.08137157995935e+00, 1.08241562029607e+00, >> 222 1.08348784366764e+00, 1.08458943232554e+00, 1.08572163635876e+00, 1.08688577864359e+00, 1.08808326023102e+00, >> 223 1.08931556621724e+00, 1.09058427214773e+00, 1.09189105101191e+00, 1.09323768089211e+00, 1.09462605333836e+00, >> 224 1.09605818254966e+00, 1.09753621545270e+00, 1.09906244278036e+00, 1.10063931126624e+00, 1.10226943708649e+00, >> 225 1.10395562069822e+00, 1.10570086324418e+00, 1.10750838471683e+00, 1.10938164410283e+00, 1.11132436176008e+00, >> 226 1.11334054431726e+00, 1.11543451242832e+00, 1.11761093176532e+00, 1.11987484769228e+00, 1.12223172413234e+00, >> 227 1.12468748722310e+00, 1.12724857445230e+00, 1.12992199008194e+00, 1.13271536780716e+00, 1.13563704176072e+00, >> 228 1.13869612717300e+00, 1.14190261223537e+00, 1.14526746300462e+00, 1.14880274353680e+00, 1.15252175386784e+00, >> 229 1.15643918898390e+00, 1.16057132257199e+00, 1.16493622014373e+00, 1.16955398712386e+00, 1.17444705874537e+00, >> 230 1.17964054016868e+00, 1.18516260723776e+00, 1.19104498083299e+00, 1.19732349105124e+00, 1.20403875167602e+00, >> 231 1.21123697091984e+00, 1.21897093167774e+00, 1.22730118415524e+00, 1.23629750662007e+00, 1.24604070744941e+00, >> 232 1.25662486545524e+00, 1.26816013838519e+00, 1.28077631555756e+00, 1.29462735591193e+00, 1.30989724673401e+00, >> 233 1.32680765564328e+00, 1.34562805256148e+00, 1.36668928751138e+00, 1.39040208794754e+00, 1.41728269492652e+00, >> 234 1.44798908275733e+00, 1.48337325073139e+00, 1.52455859525395e+00, 1.57305765486728e+00, 1.63095721573069e+00, >> 235 1.70122060331290e+00, 1.78820418157127e+00, 1.89858943787341e+00, 2.04318263724065e+00, 2.24070141295433e+00, >> 236 2.52670054341548e+00, 2.97823240973856e+00, 3.80070470423559e+00, 5.80504410098720e+00, 0.0 >> 237 }; >> 238 >> 239 const G4double G4GoudsmitSaundersonTable::fgSrcBValues[] = { >> 240 4.85267101555493e-02, 4.87971711674324e-02, 4.90707875373474e-02, 4.93476163203902e-02, 4.96277159833787e-02, >> 241 4.99111464494480e-02, 5.01979691443985e-02, 5.04882470448502e-02, 5.07820447282697e-02, 5.10794284249799e-02, >> 242 5.13804660722384e-02, 5.16852273704654e-02, 5.19937838417706e-02, 5.23062088908123e-02, 5.26225778681911e-02, >> 243 5.29429681364105e-02, 5.32674591386191e-02, 5.35961324701870e-02, 5.39290719533364e-02, 5.42663637149114e-02, >> 244 5.46080962674657e-02, 5.49543605938995e-02, 5.53052502357015e-02, 5.56608613851103e-02, 5.60212929813128e-02, >> 245 5.63866468109177e-02, 5.67570276129776e-02, 5.71325431886598e-02, 5.75133045160478e-02, 5.78994258700939e-02, >> 246 5.82910249481984e-02, 5.86882230016298e-02, 5.90911449731285e-02, 5.94999196410672e-02, 5.99146797704773e-02, >> 247 6.03355622714283e-02, 6.07627083650703e-02, 6.11962637578703e-02, 6.16363788244832e-02, 6.20832087997576e-02, >> 248 6.25369139805019e-02, 6.29976599373900e-02, 6.34656177379503e-02, 6.39409641809610e-02, 6.44238820432201e-02, >> 249 6.49145603393270e-02, 6.54131945953447e-02, 6.59199871371941e-02, 6.64351473947443e-02, 6.69588922226319e-02, >> 250 6.74914462388500e-02, 6.80330421823362e-02, 6.85839212907651e-02, 6.91443337000157e-02, 6.97145388666155e-02, >> 251 7.02948060148960e-02, 7.08854146105257e-02, 7.14866548622191e-02, 7.20988282536816e-02, 7.27222481079186e-02, >> 252 7.33572401862953e-02, 7.40041433248063e-02, 7.46633101103861e-02, 7.53351076002229e-02, 7.60199180872846e-02, >> 253 7.67181399156741e-02, 7.74301883495570e-02, 7.81564964999089e-02, 7.88975163136540e-02, 7.96537196301176e-02, >> 254 8.04255993102895e-02, 8.12136704447979e-02, 8.20184716471344e-02, 8.28405664392583e-02, 8.36805447373290e-02, >> 255 8.45390244462388e-02, 8.54166531722937e-02, 8.63141100644354e-02, 8.72321077953886e-02, 8.81713946953474e-02, >> 256 8.91327570520271e-02, 9.01170215924217e-02, 9.11250581632225e-02, 9.21577826286684e-02, 9.32161600065677e-02, >> 257 9.43012078656787e-02, 9.54140000100007e-02, 9.65556704785876e-02, 9.77274178926762e-02, 9.89305101855936e-02, >> 258 1.00166289755146e-01, 1.01436179082793e-01, 1.02741686869338e-01, 1.04084414742952e-01, 1.05466064602181e-01, >> 259 1.06888446664513e-01, 1.08353488300132e-01, 1.09863243740694e-01, 1.11419904764858e-01, 1.13025812475804e-01, >> 260 1.14683470301675e-01, 1.16395558367910e-01, 1.18164949411119e-01, 1.19994726428692e-01, 1.21888202285954e-01, >> 261 1.23848941535858e-01, 1.25880784744097e-01, 1.27987875657392e-01, 1.30174691605324e-01, 1.32446077587840e-01, >> 262 1.34807284573851e-01, 1.37264012622799e-01, 1.39822459544273e-01, 1.42489375933601e-01, 1.45272127568431e-01, >> 263 1.48178766328292e-01, 1.51218111012368e-01, 1.54399839689173e-01, 1.57734595526106e-01, 1.61234108430976e-01, >> 264 1.64911335308903e-01, 1.68780622319388e-01, 1.72857893239124e-01, 1.77160868934300e-01, 1.81709324071779e-01, >> 265 1.86525388617776e-01, 1.91633903472561e-01, 1.97062841888240e-01, 2.02843811271485e-01, 2.09012653799732e-01, >> 266 2.15610169273952e-01, 2.22682990203222e-01, 2.30284647840434e-01, 2.38476879578463e-01, 2.47331243935506e-01, >> 267 2.56931130997193e-01, 2.67374286122045e-01, 2.78776006654390e-01, 2.91273230921782e-01, 3.05029824532737e-01, >> 268 3.20243494424876e-01, 3.37154947792243e-01, 3.56060196110919e-01, 3.77327342746089e-01, 4.01419886817026e-01, >> 269 4.28929703940887e-01, 4.60624750236354e-01, 4.97519791888632e-01, 5.40984294142651e-01, 5.92912498016053e-01, >> 270 6.56002088728957e-01, 7.34232298458703e-01, 8.33731313414106e-01, 9.64463147693015e-01, 1.14381339640412e+00, >> 271 1.40517335796248e+00, 1.82227062151045e+00, 2.59912058457152e+00, 4.62773895951686e+00, 0.0 >> 272 }; >> 273 >> 274 >> 275 G4double G4GoudsmitSaundersonTable::fgInverseQ2CDFs[fgNumLambdas*fgNumLamG1*fgNumUvalues] = {0.0}; >> 276 G4double G4GoudsmitSaundersonTable::fgInterParamsA2[fgNumLambdas*fgNumLamG1*fgNumUvalues] = {0.0}; >> 277 G4double G4GoudsmitSaundersonTable::fgInterParamsB2[fgNumLambdas*fgNumLamG1*fgNumUvalues] = {0.0}; >> 278 G4double G4GoudsmitSaundersonTable::fgInverseQ2CDFsII[fgNumLambdas*fgNumLamG1II*fgNumUvalues] = {0.0}; >> 279 G4double G4GoudsmitSaundersonTable::fgInterParamsA2II[fgNumLambdas*fgNumLamG1II*fgNumUvalues] = {0.0}; >> 280 G4double G4GoudsmitSaundersonTable::fgInterParamsB2II[fgNumLambdas*fgNumLamG1II*fgNumUvalues] = {0.0}; >> 281 >> 282 std::vector<G4double>* G4GoudsmitSaundersonTable::fgMoliereBc = 0; >> 283 std::vector<G4double>* G4GoudsmitSaundersonTable::fgMoliereXc2 = 0; >> 284 >> 285 G4bool G4GoudsmitSaundersonTable::fgIsInitialised = FALSE; >> 286 >> 287 //////////////////////////////////////////////////////////////////////////////// >> 288 void G4GoudsmitSaundersonTable::Initialise(){ >> 289 if(!fgIsInitialised){ >> 290 LoadMSCData(); >> 291 LoadMSCDataII(); >> 292 fgIsInitialised = TRUE; >> 293 } 111 294 112 G4GoudsmitSaundersonTable::G4GoudsmitSaunderso << 295 InitMoliereMSCParams(); 113 fIsElectron = iselectron; << 114 // set initial values: final values will be << 115 fLogLambda0 = 0.; // wi << 116 fLogDeltaLambda = 0.; // wi << 117 fInvLogDeltaLambda = 0.; // wi << 118 fInvDeltaQ1 = 0.; // wi << 119 fDeltaQ2 = 0.; // wi << 120 fInvDeltaQ2 = 0.; // wi << 121 // << 122 fLowEnergyLimit = 0.1*CLHEP::keV; // w << 123 fHighEnergyLimit = 100.0*CLHEP::MeV; // w << 124 // << 125 fIsMottCorrection = false; // w << 126 fIsPWACorrection = false; // w << 127 fMottCorrection = nullptr; << 128 // << 129 fNumSPCEbinPerDec = 3; << 130 } 296 } 131 297 132 G4GoudsmitSaundersonTable::~G4GoudsmitSaunders << 298 //////////////////////////////////////////////////////////////////////////////// 133 for (std::size_t i=0; i<gGSMSCAngularDistrib << 299 G4GoudsmitSaundersonTable::~G4GoudsmitSaundersonTable(){ 134 if (gGSMSCAngularDistributions1[i]) { << 300 if(fgMoliereBc){ 135 delete [] gGSMSCAngularDistributions1[i] << 301 delete fgMoliereBc; 136 delete [] gGSMSCAngularDistributions1[i] << 302 fgMoliereBc = 0; 137 delete [] gGSMSCAngularDistributions1[i] << 303 } 138 delete gGSMSCAngularDistributions1[i]; << 304 if(fgMoliereXc2){ 139 } << 305 delete fgMoliereXc2; 140 } << 306 fgMoliereXc2 = 0; 141 gGSMSCAngularDistributions1.clear(); << 307 } 142 for (std::size_t i=0; i<gGSMSCAngularDistrib << 308 fgIsInitialised = FALSE; 143 if (gGSMSCAngularDistributions2[i]) { << 309 } 144 delete [] gGSMSCAngularDistributions2[i] << 310 145 delete [] gGSMSCAngularDistributions2[i] << 311 //////////////////////////////////////////////////////////////////////////////// 146 delete [] gGSMSCAngularDistributions2[i] << 312 // sample cos(theta) i.e. angular deflection from the precomputed angular 147 delete gGSMSCAngularDistributions2[i]; << 313 // distributions in the real multiple scattering case 148 } << 314 G4double G4GoudsmitSaundersonTable::SampleCosTheta(G4double lambdavalue, G4double lamG1value, 149 } << 315 G4double screeningparam, G4double rndm1, G4double rndm2, 150 gGSMSCAngularDistributions2.clear(); << 316 G4double rndm3){ 151 if (fMottCorrection) { << 317 const G4double lnl0 = 0.0; //log(fgLambdaValues[0]); 152 delete fMottCorrection; << 318 const G4double invlnl = 6.5144172285e+00; //1./log(fgLambdaValues[i+1]/fgLambdaValues[i]) 153 fMottCorrection = nullptr; << 319 G4double logLambdaVal = G4Log(lambdavalue); 154 } << 320 G4int lambdaindx = (G4int)((logLambdaVal-lnl0)*invlnl); 155 // clear scp correction data << 321 156 for (std::size_t imc=0; imc<fSCPCPerMatCuts. << 322 const G4double dd = 1.0/0.0499; // delta 157 if (fSCPCPerMatCuts[imc]) { << 323 G4int lamg1indx = (G4int)((lamG1value-fgLamG1Values[0])*dd); 158 fSCPCPerMatCuts[imc]->fVSCPC.clear(); << 324 159 delete fSCPCPerMatCuts[imc]; << 325 G4double probOfLamJ = G4Log(fgLambdaValues[lambdaindx+1]/lambdavalue)*invlnl; 160 } << 326 if(rndm1 > probOfLamJ) 161 } << 327 ++lambdaindx; 162 fSCPCPerMatCuts.clear(); << 328 163 // << 329 // store 1.0/(fgLamG1Values[lamg1indx+1]-fgLamG1Values[lamg1indx]) const value 164 gIsInitialised = false; << 330 const G4double onePerLamG1Diff = dd; 165 } << 331 G4double probOfLamG1J = (fgLamG1Values[lamg1indx+1]-lamG1value)*onePerLamG1Diff; >> 332 if(rndm2 > probOfLamG1J) >> 333 ++lamg1indx; >> 334 >> 335 G4int begin = lambdaindx*(fgNumLamG1*fgNumUvalues)+lamg1indx*fgNumUvalues; >> 336 >> 337 // sample bin >> 338 G4int indx = (G4int)(rndm3*100); // value/delatU ahol deltaU = 0.01; find u-indx >> 339 G4double cp1 = fgUValues[indx]; >> 340 // G4double cp2 = fgUValues[indx+1]; >> 341 indx +=begin; >> 342 >> 343 G4double u1 = fgInverseQ2CDFs[indx]; >> 344 G4double u2 = fgInverseQ2CDFs[indx+1]; >> 345 >> 346 G4double dum1 = rndm3 - cp1; >> 347 const G4double dum2 = 0.01;//cp2-cp1; // this is constans 0.01 >> 348 const G4double dum22 = 0.0001; >> 349 // rational interpolation of the inverse CDF >> 350 G4double sample= u1+(1.0+fgInterParamsA2[indx]+fgInterParamsB2[indx])*dum1*dum2/(dum22+ >> 351 dum1*dum2*fgInterParamsA2[indx]+fgInterParamsB2[indx]*dum1*dum1)*(u2-u1); 166 352 167 void G4GoudsmitSaundersonTable::Initialise(G4d << 353 // transform back u to cos(theta) : 168 fLowEnergyLimit = lownergylimit; << 354 // -compute parameter value a = w2*screening_parameter 169 fHighEnergyLimit = highenergylimit; << 355 G4double t = logLambdaVal; 170 G4double lLambdaMin = G4Log(gLAMBMIN); << 356 G4double dum; 171 G4double lLambdaMax = G4Log(gLAMBMAX); << 357 if(lambdavalue >= 10.0) 172 fLogLambda0 = lLambdaMin; << 358 dum = 0.5*(-2.77164+t*( 2.94874-t*(0.1535754-t*0.00552888) )); 173 fLogDeltaLambda = (lLambdaMax-lLambdaMin << 359 else 174 fInvLogDeltaLambda = 1./fLogDeltaLambda; << 360 dum = 0.5*(1.347+t*(0.209364-t*(0.45525-t*(0.50142-t*0.081234)))); 175 fInvDeltaQ1 = 1./((gQMAX1-gQMIN1)/(g << 361 176 fDeltaQ2 = (gQMAX2-gQMIN2)/(gQNUM << 362 G4double a = dum*(lambdavalue+4.0)*screeningparam; 177 fInvDeltaQ2 = 1./fDeltaQ2; << 363 178 // load precomputed angular distributions an << 364 // this is the sampled cos(theta) 179 // these are particle independet => they go << 365 return (2.0*a*sample)/(1.0-sample+a); 180 if (!gIsInitialised) { << 366 } 181 // load pre-computed GS angular distributi << 367 182 LoadMSCData(); << 368 //////////////////////////////////////////////////////////////////////////////// 183 gIsInitialised = true; << 369 // sample cos(theta) i.e. angular deflection from the precomputed angular 184 } << 370 // distributions in the real multiple scattering case (For the second grid) 185 InitMoliereMSCParams(); << 371 G4double G4GoudsmitSaundersonTable::SampleCosThetaII(G4double lambdavalue, G4double lamG1value, 186 // Mott-correction: particle(e- or e+) depen << 372 G4double screeningparam, G4double rndm1, G4double rndm2, 187 if (fIsMottCorrection) { << 373 G4double rndm3){ 188 if (!fMottCorrection) { << 374 const G4double lnl0 = 0.0; //log(fgLambdaValues[0]); 189 fMottCorrection = new G4GSMottCorrection << 375 const G4double invlnl = 6.5144172285e+00; //1./log(fgLambdaValues[i+1]/fgLambdaValues[i]) 190 } << 376 G4double logLambdaVal = G4Log(lambdavalue); 191 fMottCorrection->Initialise(); << 377 G4int lambdaindx = (G4int)((logLambdaVal-lnl0)*invlnl); 192 } << 378 193 // init scattering power correction data; us << 379 const G4double dd = 1.0/0.333; // delta 194 // (Moliere's parameters must be initialised << 380 G4int lamg1indx = (G4int)((lamG1value-fgLamG1ValuesII[0])*dd); 195 if (fMottCorrection) { << 381 196 InitSCPCorrection(); << 382 G4double probOfLamJ = G4Log(fgLambdaValues[lambdaindx+1]/lambdavalue)*invlnl; 197 } << 383 if(rndm1 > probOfLamJ) 198 } << 384 ++lambdaindx; >> 385 >> 386 // store 1.0/(fgLamG1Values[lamg1indx+1]-fgLamG1Values[lamg1indx]) const value >> 387 const G4double onePerLamG1Diff = dd; >> 388 G4double probOfLamG1J = (fgLamG1ValuesII[lamg1indx+1]-lamG1value)*onePerLamG1Diff; >> 389 if(rndm2 > probOfLamG1J) >> 390 ++lamg1indx; >> 391 >> 392 // protection against cases when the sampled lamG1 values are not possible due >> 393 // to the fact that G1<=1 (G1 = lam_el/lam_tr1) >> 394 // -- in theory it should never happen when lamg1indx=0 but check it just to be sure >> 395 if(fgLamG1ValuesII[lamg1indx]>lambdavalue && lamg1indx>0) >> 396 --lamg1indx; >> 397 >> 398 >> 399 G4int begin = lambdaindx*(fgNumLamG1II*fgNumUvalues)+lamg1indx*fgNumUvalues; >> 400 >> 401 // sample bin >> 402 G4int indx = (G4int)(rndm3*100); // value/delatU ahol deltaU = 0.01; find u-indx >> 403 G4double cp1 = fgUValues[indx]; >> 404 // G4double cp2 = fgUValues[indx+1]; >> 405 indx +=begin; >> 406 >> 407 G4double u1 = fgInverseQ2CDFsII[indx]; >> 408 G4double u2 = fgInverseQ2CDFsII[indx+1]; >> 409 >> 410 G4double dum1 = rndm3 - cp1; >> 411 const G4double dum2 = 0.01;//cp2-cp1; // this is constans 0.01 >> 412 const G4double dum22 = 0.0001; >> 413 // rational interpolation of the inverse CDF >> 414 G4double sample= u1+(1.0+fgInterParamsA2II[indx]+fgInterParamsB2II[indx])*dum1*dum2/(dum22+ >> 415 dum1*dum2*fgInterParamsA2II[indx]+fgInterParamsB2II[indx]*dum1*dum1)*(u2-u1); >> 416 >> 417 // transform back u to cos(theta) : >> 418 // -compute parameter value a = w2*screening_parameter >> 419 G4double t = logLambdaVal; >> 420 G4double dum = 0.; >> 421 if(lambdavalue >= 10.0) >> 422 dum = 0.5*(-2.77164+t*( 2.94874-t*(0.1535754-t*0.00552888) )); >> 423 else >> 424 dum = 0.5*(1.347+t*(0.209364-t*(0.45525-t*(0.50142-t*0.081234)))); 199 425 >> 426 G4double a = dum*(lambdavalue+4.0)*screeningparam; 200 427 >> 428 // this is the sampled cos(theta) >> 429 return (2.0*a*sample)/(1.0-sample+a); >> 430 } >> 431 >> 432 //////////////////////////////////////////////////////////////////////////////// 201 // samplig multiple scattering angles cos(thet 433 // samplig multiple scattering angles cos(theta) and sin(thata) 202 // - including no-scattering, single, "few" s << 434 // including no-scattering, single, "few" scattering cases as well 203 // - Mott-correction will be included if it w << 435 void G4GoudsmitSaundersonTable::Sampling(G4double lambdavalue, G4double lamG1value, 204 // lambdaval : s/lambda_el << 436 G4double scrPar, G4double &cost, G4double &sint){ 205 // qval : s/lambda_el G1 << 206 // scra : screening parameter << 207 // cost : will be the smapled cos(theta) << 208 // sint : will be the smapled sin(theta) << 209 // lekin : logarithm of the current kineti << 210 // beta2 : the corresponding beta square << 211 // matindx : index of the current material << 212 // returns true if it was msc << 213 G4bool G4GoudsmitSaundersonTable::Sampling(G4d << 214 G4d << 215 GSM << 216 G4d << 217 G4double rand0 = G4UniformRand(); 437 G4double rand0 = G4UniformRand(); 218 G4double expn = G4Exp(-lambdaval); << 438 G4double expn = G4Exp(-lambdavalue); >> 439 219 // 440 // 220 // no scattering case 441 // no scattering case 221 if (rand0<expn) { << 442 // >> 443 if(rand0 < expn) { 222 cost = 1.0; 444 cost = 1.0; 223 sint = 0.0; 445 sint = 0.0; 224 return false; << 446 return; 225 } 447 } >> 448 >> 449 // >> 450 // single scattering case : sample (analitically) from the single scattering PDF >> 451 // that corresponds to the modified-Wentzel DCS i.e. >> 452 // Wentzel DCS that gives back the PWA first-transport mfp 226 // 453 // 227 // single scattering case : sample from the << 454 if( rand0 < (1.+lambdavalue)*expn) { 228 // - Mott-correction will be included if it << 455 G4double rand1 = G4UniformRand(); 229 if (rand0<(1.+lambdaval)*expn) { << 456 // sampling 1-cos(theta) 230 // cost is sampled in SingleScattering() << 457 G4double dum0 = 2.0*scrPar*rand1/(1.0 - rand1 + scrPar); 231 cost = SingleScattering(lambdaval, scra, l << 232 // add protections 458 // add protections 233 if (cost<-1.0) cost = -1.0; << 459 if(dum0 < 0.0) dum0 = 0.0; 234 if (cost>1.0) cost = 1.0; << 460 else if(dum0 > 2.0 ) dum0 = 2.0; 235 // compute sin(theta) from the sampled cos << 461 // compute cos(theta) and sin(theta) 236 G4double dum0 = 1.-cost; << 462 cost = 1.0 - dum0; 237 sint = std::sqrt(dum0*(2.0-dum0)); << 463 sint = std::sqrt(dum0*(2.0 - dum0)); 238 return false; << 464 return; 239 } 465 } >> 466 240 // 467 // 241 // handle this case: 468 // handle this case: 242 // -lambdaval < 1 i.e. mean #elastic ev << 469 // -lambdavalue < 1 i.e. mean #elastic events along the step is < 1 but 243 // the currently sampled case is not 0 470 // the currently sampled case is not 0 or 1 scattering. [Our minimal 244 // lambdaval (that we have precomputed << 471 // lambdavalue (that we have precomputed, transformed angular distributions 245 // stored in a form of equally probabe 472 // stored in a form of equally probabe intervalls together with rational 246 // interp. parameters) is 1.] 473 // interp. parameters) is 1.] 247 // -probability of having n elastic eve 474 // -probability of having n elastic events follows Poisson stat. with 248 // lambdaval parameter. << 475 // lambdavalue parameter. 249 // -the max. probability (when lambdava << 476 // -the max. probability (when lambdavalue=1) of having more than one 250 // elastic events is 0.2642411 and the 477 // elastic events is 0.2642411 and the prob of having 2,3,..,n elastic 251 // events decays rapidly with n. So se 478 // events decays rapidly with n. So set a max n to 10. 252 // -sampling of this cases is done in a 479 // -sampling of this cases is done in a one-by-one single elastic event way 253 // where the current #elastic event is 480 // where the current #elastic event is sampled from the Poisson distr. 254 if (lambdaval<1.0) { << 481 // -(other possibility would be to use lambdavalue=1 distribution because 255 G4double prob, cumprob; << 482 // they are very close) 256 prob = cumprob = expn; << 483 if(lambdavalue < 1.0) { 257 G4double curcost,cursint; << 484 G4double prob, cumprob; 258 // init cos(theta) and sin(theta) to the z << 485 prob = cumprob = expn; 259 cost = 1.0; << 486 G4double curcost,cursint; 260 sint = 0.0; << 487 // init cos(theta) and sin(theta) to the zero scattering values 261 for (G4int iel=1; iel<10; ++iel) { << 488 cost = 1.0; 262 // prob of having iel scattering from Po << 489 sint = 0.0; 263 prob *= lambdaval/(G4double)iel; << 490 264 cumprob += prob; << 491 for(G4int iel = 1; iel < 10; ++iel){ 265 // << 492 // prob of having iel scattering from Poisson 266 //sample cos(theta) from the singe scatt << 493 prob *= lambdavalue/(G4double)iel; 267 // - Mott-correction will be included if << 494 cumprob += prob; 268 curcost = SingleScattering(lambdav << 495 // 269 G4double dum0 = 1.-curcost; << 496 //sample cos(theta) from the singe scattering pdf 270 cursint = dum0*(2.0-dum0); // sin^ << 497 // 271 // << 498 G4double rand1 = G4UniformRand(); 272 // if we got current deflection that is << 499 // sampling 1-cos(theta) 273 // then update cos(theta) sin(theta) << 500 G4double dum0 = 2.0*scrPar*rand1/(1.0 - rand1 + scrPar); 274 if (cursint>1.0e-20) { << 501 // compute cos(theta) and sin(theta) 275 cursint = std::sqrt(cursint); << 502 curcost = 1.0 - dum0; 276 G4double curphi = CLHEP::twopi*G4Unifo << 503 cursint = dum0*(2.0 - dum0); 277 cost = cost*curcost-sint*cu << 504 // 278 sint = std::sqrt(std::max(0 << 505 // if we got current deflection that is not too small 279 } << 506 // then update cos(theta) sin(theta) 280 // << 507 if(cursint > 1.0e-20){ 281 // check if we have done enough scatteri << 508 cursint = std::sqrt(cursint); 282 if (rand0<cumprob) { << 509 G4double curphi = CLHEP::twopi*G4UniformRand(); 283 return false; << 510 cost = cost*curcost - sint*cursint*std::cos(curphi); 284 } << 511 sint = std::sqrt(std::max(0.0, (1.0-cost)*(1.0+cost))); 285 } << 512 } 286 // if reached the max iter i.e. 10 << 513 // 287 return false; << 514 // check if we have done enough scattering i.e. sampling from the Poisson >> 515 if( rand0 < cumprob) >> 516 return; >> 517 } >> 518 // if reached the max iter i.e. 10 >> 519 return; 288 } 520 } >> 521 >> 522 >> 523 /// **** let it izotropic if we are above the grid i.e. true path length is long >> 524 // IT IS DONE NOW IN THE MODEL >> 525 //if(lamG1value>fgLamG1Values[fgNumLamG1-1]) { >> 526 // cost = 1.-2.*G4UniformRand(); >> 527 // sint = std::sqrt((1.-cost)*(1.+cost)); >> 528 // return; >> 529 //} >> 530 >> 531 289 // 532 // 290 // multiple scattering case with lambdavalue 533 // multiple scattering case with lambdavalue >= 1: 291 // - use the precomputed and transformed G 534 // - use the precomputed and transformed Goudsmit-Saunderson angular 292 // distributions to sample cos(theta) << 535 // distributions that are stored in a form of equally probabe intervalls 293 // - Mott-correction will be included if i << 536 // together with the corresponding rational interp. parameters 294 cost = SampleCosTheta(lambdaval, qval, scra, << 537 // 295 // add protections 538 // add protections 296 if (cost<-1.0) cost = -1.0; << 539 if(lamG1value<fgLamG1Values[0]) lamG1value = fgLamG1Values[0]; 297 if (cost> 1.0) cost = 1.0; << 540 if(lamG1value>fgLamG1ValuesII[fgNumLamG1II-1]) lamG1value = fgLamG1ValuesII[fgNumLamG1II-1]; 298 // compute cos(theta) and sin(theta) from th << 299 G4double dum0 = 1.0-cost; << 300 sint = std::sqrt(dum0*(2.0-dum0)); << 301 // return true if it was msc << 302 return true; << 303 } << 304 541 >> 542 // sample 1-cos(theta) :: depending on the grids >> 543 G4double dum0 = 0.0; >> 544 if(lamG1value<fgLamG1Values[fgNumLamG1-1]) { >> 545 dum0 = SampleCosTheta(lambdavalue, lamG1value, scrPar, G4UniformRand(), >> 546 G4UniformRand(), G4UniformRand()); 305 547 306 G4double G4GoudsmitSaundersonTable::SampleCosT << 548 } else { 307 << 549 dum0 = SampleCosThetaII(lambdavalue, lamG1value, scrPar, G4UniformRand(), 308 << 550 G4UniformRand(), G4UniformRand()); 309 << 310 G4double cost = 1.; << 311 // determine the base GS angular distributio << 312 if (isfirst) { << 313 *gsDtr = GetGSAngularDtr(scra, lambdaval, << 314 } << 315 // sample cost from the GS angular distribut << 316 cost = SampleGSSRCosTheta(*gsDtr, transfPar) << 317 // Mott-correction if it was requested by th << 318 if (fIsMottCorrection && *gsDtr) { // no << 319 static const G4int nlooplim = 1000; << 320 G4int nloop = 0 ; // rejection loop << 321 // G4int ekindx = -1; // evaluate only << 322 // G4int deltindx = -1 ; // evaluate onl << 323 G4double val = fMottCorrection->GetMo << 324 while (G4UniformRand()>val && ++nloop<nloo << 325 // sampling cos(theta) << 326 cost = SampleGSSRCosTheta(*gsDtr, transf << 327 val = fMottCorrection->GetMottRejection << 328 }; << 329 } 551 } 330 return cost; << 331 } << 332 552 >> 553 // add protections >> 554 if(dum0 < 0.0) dum0 = 0.0; >> 555 if(dum0 > 2.0 ) dum0 = 2.0; 333 556 334 // returns with cost sampled from the GS angul << 557 // compute cos(theta) and sin(theta) 335 G4double G4GoudsmitSaundersonTable::SampleGSSR << 558 cost = 1.0-dum0; 336 // check if isotropic theta (i.e. cost is un << 559 sint = std::sqrt(dum0*(2.0 - dum0)); 337 if (!gsDtr) { << 560 } 338 return 1.-2.0*G4UniformRand(); << 561 339 } << 562 //////////////////////////////////////////////////////////////////////////////// 340 // << 563 G4double G4GoudsmitSaundersonTable::GetScreeningParam(G4double G1){ 341 // sampling form the selected distribution << 564 if(G1<fgG1Values[0]) return fgScreeningParam[0]; 342 G4double ndatm1 = gsDtr->fNumData-1.; << 565 if(G1>fgG1Values[fgNumScreeningParams-1]) return fgScreeningParam[fgNumScreeningParams-1]; 343 G4double delta = 1.0/ndatm1; << 566 // normal case 344 // determine lower cumulative bin inidex << 567 const G4double lng10 = -2.30258509299405e+01; //log(fgG1Values[0]); 345 G4double rndm = G4UniformRand(); << 568 const G4double invlng1 = 6.948711710452e+00; //1./log(fgG1Values[i+1]/fgG1Values[i]) 346 G4int indxl = rndm*ndatm1; << 569 G4double logG1 = G4Log(G1); 347 G4double aval = rndm-indxl*delta; << 570 G4int k = (G4int)((logG1-lng10)*invlng1); 348 G4double dum0 = delta*aval; << 571 return G4Exp(logG1*fgSrcAValues[k])*fgSrcBValues[k]; // log-log linear 349 << 572 } 350 G4double dum1 = (1.0+gsDtr->fParamA[indxl] << 573 351 G4double dum2 = delta*delta + gsDtr->fPara << 574 //////////////////////////////////////////////////////////////////////////////// 352 G4double sample = gsDtr->fUValues[indxl] + << 575 void G4GoudsmitSaundersonTable::LoadMSCData(){ 353 // transform back u to cos(theta) : << 576 G4double dum; 354 // this is the sampled cos(theta) = (2.0*par << 577 char basename[512]; 355 return 1.-(2.0*transfpar*sample)/(1.0-sample << 578 char* path = getenv("G4LEDATA"); 356 } << 579 if (!path) { >> 580 G4Exception("G4GoudsmitSaundersonTable::LoadMSCData()","em0006", >> 581 FatalException, >> 582 "Environment variable G4LEDATA not defined"); >> 583 return; >> 584 } >> 585 >> 586 std::string pathString(path); >> 587 sprintf(basename,"inverseq2CDF"); >> 588 for(int k = 0; k < fgNumLambdas; ++k){ >> 589 char fname[512]; >> 590 sprintf(fname,"%s/msc_GS/%s_%d",path,basename,k); >> 591 std::ifstream infile(fname,std::ios::in); >> 592 if(!infile.is_open()){ >> 593 char msgc[512]; >> 594 sprintf(msgc,"Cannot open file: %s .",fname); >> 595 G4Exception("G4GoudsmitSaundersonTable::LoadMSCData()","em0006", >> 596 FatalException, >> 597 msgc); >> 598 return; >> 599 } 357 600 >> 601 int limk = k*fgNumUvalues*fgNumLamG1; >> 602 for(int i = 0; i < fgNumUvalues; ++i) >> 603 for(int j = 0; j < fgNumLamG1+1; ++j) >> 604 if(j==0) infile >> dum; >> 605 else infile >> fgInverseQ2CDFs[limk+(j-1)*fgNumUvalues+i]; >> 606 >> 607 infile.close(); >> 608 } >> 609 >> 610 >> 611 sprintf(basename,"inverseq2CDFRatInterpPA"); >> 612 for(int k = 0; k < fgNumLambdas; ++k){ >> 613 char fname[512]; >> 614 sprintf(fname,"%s/msc_GS/%s_%d",path,basename,k); >> 615 std::ifstream infile(fname,std::ios::in); >> 616 if(!infile.is_open()){ >> 617 char msgc[512]; >> 618 sprintf(msgc,"Cannot open file: %s .",fname); >> 619 G4Exception("G4GoudsmitSaundersonTable::LoadMSCData()","em0006", >> 620 FatalException, >> 621 msgc); >> 622 return; >> 623 } 358 624 359 // determine the GS angular distribution we ne << 625 int limk = k*fgNumUvalues*fgNumLamG1; 360 G4GoudsmitSaundersonTable::GSMSCAngularDtr* G4 << 626 for(int i = 0; i < fgNumUvalues; ++i) 361 << 627 for(int j = 0; j < fgNumLamG1+1; ++j) 362 GSMSCAngularDtr *dtr = nullptr; << 628 if(j==0) infile >> dum; 363 G4bool first = false; << 629 else infile >> fgInterParamsA2[limk+(j-1)*fgNumUvalues+i]; 364 // isotropic cost above gQMAX2 (i.e. dtr sta << 630 365 if (qval<gQMAX2) { << 631 infile.close(); 366 G4int lamIndx = -1; // lambda value in << 632 } 367 G4int qIndx = -1; // lambda value in << 633 368 // init to second grid Q values << 634 sprintf(basename,"inverseq2CDFRatInterpPB"); 369 G4int numQVal = gQNUM2; << 635 for(int k = 0; k < fgNumLambdas; ++k){ 370 G4double minQVal = gQMIN2; << 636 char fname[512]; 371 G4double invDelQ = fInvDeltaQ2; << 637 sprintf(fname,"%s/msc_GS/%s_%d",path,basename,k); 372 G4double pIndxH = 0.; // probability of << 638 std::ifstream infile(fname,std::ios::in); 373 // check if first or second grid needs to << 639 if(!infile.is_open()){ 374 if (qval<gQMIN2) { // first grid << 640 char msgc[512]; 375 first = true; << 641 sprintf(msgc,"Cannot open file: %s .",fname); 376 // protect against qval<gQMIN1 << 642 G4Exception("G4GoudsmitSaundersonTable::LoadMSCData()","em0006", 377 if (qval<gQMIN1) { << 643 FatalException, 378 qval = gQMIN1; << 644 msgc); 379 qIndx = 0; << 645 return; 380 //pIndxH = 0.; << 646 } 381 } << 647 382 // set to first grid Q values << 648 int limk = k*fgNumUvalues*fgNumLamG1; 383 numQVal = gQNUM1; << 649 for(int i = 0; i < fgNumUvalues; ++i) 384 minQVal = gQMIN1; << 650 for(int j = 0; j < fgNumLamG1+1; ++j) 385 invDelQ = fInvDeltaQ1; << 651 if(j==0) infile >> dum; 386 } << 652 else infile >> fgInterParamsB2[limk+(j-1)*fgNumUvalues+i]; 387 // make sure that lambda = s/lambda_el is << 653 388 // lambda<gLAMBMIN=1 is already handeled b << 654 infile.close(); 389 if (lambdaval>=gLAMBMAX) { << 655 } 390 lambdaval = gLAMBMAX-1.e-8; << 656 } 391 lamIndx = gLAMBNUM-1; << 657 392 } << 658 //////////////////////////////////////////////////////////////////////////////// 393 G4double lLambda = G4Log(lambdaval); << 659 // Load the second grid data 394 // << 660 //////////////////////////////////////////////////////////////////////////////// 395 // determine lower lambda (=s/lambda_el) i << 661 void G4GoudsmitSaundersonTable::LoadMSCDataII(){ 396 if (lamIndx<0) { << 662 G4double dum; 397 pIndxH = (lLambda-fLogLambda0)*fInvLogD << 663 char basename[512]; 398 lamIndx = (G4int)(pIndxH); // low << 664 char* path = getenv("G4LEDATA"); 399 pIndxH = pIndxH-lamIndx; // proba << 665 if (!path) { 400 if (G4UniformRand()<pIndxH) { << 666 G4Exception("G4GoudsmitSaundersonTable::LoadMSCDataII()","em0006", 401 ++lamIndx; << 667 FatalException, 402 } << 668 "Environment variable G4LEDATA not defined"); 403 } << 669 return; 404 // << 405 // determine lower Q (=s/lambda_el G1) ind << 406 if (qIndx<0) { << 407 pIndxH = (qval-minQVal)*invDelQ; << 408 qIndx = (G4int)(pIndxH); // low << 409 pIndxH = pIndxH-qIndx; << 410 if (G4UniformRand()<pIndxH) { << 411 ++qIndx; << 412 } << 413 } << 414 // set indx << 415 G4int indx = lamIndx*numQVal+qIndx; << 416 if (first) { << 417 dtr = gGSMSCAngularDistributions1[indx]; << 418 } else { << 419 dtr = gGSMSCAngularDistributions2[indx]; << 420 } << 421 // dtr might be nullptr that indicates iso << 422 // - if the selected lamIndx, qIndx corres << 423 // G1 should always be < 1 and if G1 is << 424 // << 425 // compute the transformation parameter << 426 if (lambdaval>10.0) { << 427 transfpar = 0.5*(-2.77164+lLambda*( 2.94 << 428 } else { << 429 transfpar = 0.5*(1.347+lLambda*(0.209364 << 430 } << 431 transfpar *= (lambdaval+4.0)*scra; << 432 } << 433 // return with the selected GS angular distr << 434 return dtr; << 435 } 670 } 436 671 437 672 438 void G4GoudsmitSaundersonTable::LoadMSCData() << 673 std::string pathString(path); 439 gGSMSCAngularDistributions1.resize(gLAMBNUM* << 674 sprintf(basename,"inverseq2CDFII"); 440 const G4String str1 = G4EmParameters::Instan << 675 for(int k = 0; k < fgNumLambdas; ++k){ 441 for (G4int il=0; il<gLAMBNUM; ++il) { << 676 char fname[512]; 442 G4String fname = str1 + std::to_string(il) << 677 sprintf(fname,"%s/msc_GS/%s_%d",path,basename,k); 443 std::ifstream infile(fname,std::ios::in); << 678 std::ifstream infile(fname,std::ios::in); 444 if (!infile.is_open()) { << 679 if(!infile.is_open()){ 445 G4String msgc = "Cannot open file: " + f << 680 char msgc[512]; 446 G4Exception("G4GoudsmitSaundersonTable:: << 681 sprintf(msgc,"Cannot open file: %s .",fname); 447 FatalException, msgc.c_str()); << 682 G4Exception("G4GoudsmitSaundersonTable::LoadMSCDataII()","em0006", 448 return; << 683 FatalException, 449 } << 684 msgc); 450 for (G4int iq=0; iq<gQNUM1; ++iq) { << 685 return; 451 auto gsd = new GSMSCAngularDtr(); << 686 } 452 infile >> gsd->fNumData; << 453 gsd->fUValues = new G4double[gsd->fNumDa << 454 gsd->fParamA = new G4double[gsd->fNumDa << 455 gsd->fParamB = new G4double[gsd->fNumDa << 456 G4double ddummy; << 457 infile >> ddummy; infile >> ddummy; << 458 for (G4int i=0; i<gsd->fNumData; ++i) { << 459 infile >> gsd->fUValues[i]; << 460 infile >> gsd->fParamA[i]; << 461 infile >> gsd->fParamB[i]; << 462 } << 463 gGSMSCAngularDistributions1[il*gQNUM1+iq << 464 } << 465 infile.close(); << 466 } << 467 // << 468 // second grid << 469 gGSMSCAngularDistributions2.resize(gLAMBNUM* << 470 const G4String str2 = G4EmParameters::Instan << 471 for (G4int il=0; il<gLAMBNUM; ++il) { << 472 G4String fname = str2 + std::to_string(il) << 473 std::ifstream infile(fname,std::ios::in); << 474 if (!infile.is_open()) { << 475 G4String msgc = "Cannot open file: " + f << 476 G4Exception("G4GoudsmitSaundersonTable:: << 477 FatalException, msgc.c_str()); << 478 return; << 479 } << 480 for (G4int iq=0; iq<gQNUM2; ++iq) { << 481 G4int numData; << 482 infile >> numData; << 483 if (numData>1) { << 484 auto gsd = new GSMSCAngularDtr(); << 485 gsd->fNumData = numData; << 486 gsd->fUValues = new G4double[gsd->fNum << 487 gsd->fParamA = new G4double[gsd->fNum << 488 gsd->fParamB = new G4double[gsd->fNum << 489 double ddummy; << 490 infile >> ddummy; infile >> ddummy; << 491 for (G4int i=0; i<gsd->fNumData; ++i) << 492 infile >> gsd->fUValues[i]; << 493 infile >> gsd->fParamA[i]; << 494 infile >> gsd->fParamB[i]; << 495 } << 496 gGSMSCAngularDistributions2[il*gQNUM2+ << 497 } else { << 498 gGSMSCAngularDistributions2[il*gQNUM2+ << 499 } << 500 } << 501 infile.close(); << 502 } << 503 } << 504 687 505 // samples cost in single scattering based on << 688 int limk = k*fgNumUvalues*fgNumLamG1II; 506 // (with Mott-correction if it was requested) << 689 for(int i = 0; i < fgNumUvalues; ++i) 507 G4double G4GoudsmitSaundersonTable::SingleScat << 690 for(int j = 0; j < fgNumLamG1II+1; ++j) 508 << 691 if(j==0) infile >> dum; 509 << 692 else infile >> fgInverseQ2CDFsII[limk+(j-1)*fgNumUvalues+i]; 510 G4double rand1 = G4UniformRand(); << 693 511 // sample cost from the Screened-Rutherford << 694 infile.close(); 512 G4double cost = 1.-2.0*scra*rand1/(1.0-rand << 695 } 513 // Mott-correction if it was requested by th << 696 514 if (fIsMottCorrection) { << 697 515 static const G4int nlooplim = 1000; // re << 698 sprintf(basename,"inverseq2CDFRatInterpPAII"); 516 G4int nloop = 0 ; // loop counter << 699 for(int k = 0; k < fgNumLambdas; ++k){ 517 G4int ekindx = -1 ; // evaluate only << 700 char fname[512]; 518 G4int deltindx = 0 ; // single scatter << 701 sprintf(fname,"%s/msc_GS/%s_%d",path,basename,k); 519 G4double q1 = 0.; // not used when << 702 std::ifstream infile(fname,std::ios::in); 520 // computing Mott rejection function value << 703 if(!infile.is_open()){ 521 G4double val = fMottCorrection->GetMo << 704 char msgc[512]; 522 << 705 sprintf(msgc,"Cannot open file: %s .",fname); 523 while (G4UniformRand()>val && ++nloop<nloo << 706 G4Exception("G4GoudsmitSaundersonTable::LoadMSCDataII()","em0006", 524 // sampling cos(theta) from the Screened << 707 FatalException, 525 rand1 = G4UniformRand(); << 708 msgc); 526 cost = 1.-2.0*scra*rand1/(1.0-rand1+scr << 709 return; 527 // computing Mott rejection function val << 710 } 528 val = fMottCorrection->GetMottRejectio << 529 << 530 }; << 531 } << 532 return cost; << 533 } << 534 711 >> 712 int limk = k*fgNumUvalues*fgNumLamG1II; >> 713 for(int i = 0; i < fgNumUvalues; ++i) >> 714 for(int j = 0; j < fgNumLamG1II+1; ++j) >> 715 if(j==0) infile >> dum; >> 716 else infile >> fgInterParamsA2II[limk+(j-1)*fgNumUvalues+i]; >> 717 >> 718 infile.close(); >> 719 } >> 720 >> 721 sprintf(basename,"inverseq2CDFRatInterpPBII"); >> 722 for(int k = 0; k < fgNumLambdas; ++k){ >> 723 char fname[512]; >> 724 sprintf(fname,"%s/msc_GS/%s_%d",path,basename,k); >> 725 std::ifstream infile(fname,std::ios::in); >> 726 if(!infile.is_open()){ >> 727 char msgc[512]; >> 728 sprintf(msgc,"Cannot open file: %s .",fname); >> 729 G4Exception("G4GoudsmitSaundersonTable::LoadMSCDataII()","em0006", >> 730 FatalException, >> 731 msgc); >> 732 return; >> 733 } 535 734 536 void G4GoudsmitSaundersonTable::GetMottCorrec << 735 int limk = k*fgNumUvalues*fgNumLamG1II; 537 << 736 for(int i = 0; i < fgNumUvalues; ++i) 538 << 737 for(int j = 0; j < fgNumLamG1II+1; ++j) 539 if (fIsMottCorrection) { << 738 if(j==0) infile >> dum; 540 fMottCorrection->GetMottCorrectionFactors( << 739 else infile >> fgInterParamsB2II[limk+(j-1)*fgNumUvalues+i]; 541 } << 542 } << 543 740 >> 741 infile.close(); >> 742 } >> 743 } 544 744 >> 745 //////////////////////////////////////////////////////////////////////////////// 545 // compute material dependent Moliere MSC para 746 // compute material dependent Moliere MSC parameters at initialisation 546 void G4GoudsmitSaundersonTable::InitMoliereMSC << 747 void G4GoudsmitSaundersonTable::InitMoliereMSCParams(){ 547 const G4double const1 = 7821.6; // [ 748 const G4double const1 = 7821.6; // [cm2/g] 548 const G4double const2 = 0.1569; // [ 749 const G4double const2 = 0.1569; // [cm2 MeV2 / g] 549 const G4double finstrc2 = 5.325135453E-5; / 750 const G4double finstrc2 = 5.325135453E-5; // fine-structure const. square 550 751 551 G4MaterialTable* theMaterialTable = G4Mater << 752 G4MaterialTable *theMaterialTable = G4Material::GetMaterialTable(); 552 // get number of materials in the table 753 // get number of materials in the table 553 std::size_t numMaterials = theMaterialTable << 754 unsigned int numMaterials = theMaterialTable->size(); 554 // make sure that we have long enough vecto 755 // make sure that we have long enough vectors 555 if(gMoliereBc.size()<numMaterials) { << 756 if(!fgMoliereBc) { 556 gMoliereBc.resize(numMaterials); << 757 fgMoliereBc = new std::vector<G4double>(numMaterials); 557 gMoliereXc2.resize(numMaterials); << 758 fgMoliereXc2 = new std::vector<G4double>(numMaterials); 558 } << 759 } else { 559 G4double xi = 1.0; << 760 fgMoliereBc->resize(numMaterials); 560 G4int maxZ = 200; << 761 fgMoliereXc2->resize(numMaterials); 561 if (fIsMottCorrection || fIsPWACorrection) << 562 // xi = 1.0; <= always set to 1 from n << 563 maxZ = G4GSMottCorrection::GetMaxZet(); << 564 } 762 } 565 // << 763 566 for (std::size_t imat=0; imat<numMaterials; << 764 const G4double xims = 0.0; // use xi_MS = 0.0 value now. We will see later on. 567 const G4Material* theMaterial = << 765 for(unsigned int imat = 0; imat < numMaterials; ++imat) { 568 const G4ElementVector* theElemVect = << 766 const G4Material *theMaterial = (*theMaterialTable)[imat]; 569 const G4int numelems = << 767 const G4ElementVector *theElemVect = theMaterial->GetElementVector(); 570 // << 768 571 const G4double* theNbAtomsPerVolVe << 769 const G4int numelems = theMaterial->GetNumberOfElements(); 572 G4double theTotNbAtomsPerVo << 770 const G4double* theFractionVect = theMaterial->GetFractionVector(); 573 // << 574 G4double zs = 0.0; 771 G4double zs = 0.0; 575 G4double zx = 0.0; 772 G4double zx = 0.0; 576 G4double ze = 0.0; 773 G4double ze = 0.0; 577 G4double sa = 0.0; << 774 578 // << 579 for(G4int ielem = 0; ielem < numelems; ie 775 for(G4int ielem = 0; ielem < numelems; ielem++) { 580 G4double zet = (*theElemVect)[ielem]->G << 776 G4double izet = (*theElemVect)[ielem]->GetZ(); 581 if (zet>maxZ) { << 582 zet = (G4double)maxZ; << 583 } << 584 G4double iwa = (*theElemVect)[ielem]-> 777 G4double iwa = (*theElemVect)[ielem]->GetN(); 585 G4double ipz = theNbAtomsPerVolVect[ie << 778 // G4int ipz = theAtomsVect[ielem]; 586 G4double dum = ipz*zet*(zet+xi); << 779 G4double ipz = theFractionVect[ielem]; 587 zs += dum; << 780 588 ze += dum*(-2.0/3.0)*G4Log(ze << 781 G4double dum = ipz/iwa*izet*(izet+xims); 589 zx += dum*G4Log(1.0+3.34*fins << 782 zs += dum; 590 sa += ipz*iwa; << 783 ze += dum*(-2.0/3.0)*G4Log(izet); >> 784 zx += dum*G4Log(1.0+3.34*finstrc2*izet*izet); >> 785 // wa += ipz*iwa; 591 } 786 } 592 G4double density = theMaterial->GetDensit 787 G4double density = theMaterial->GetDensity()*CLHEP::cm3/CLHEP::g; // [g/cm3] 593 // << 594 gMoliereBc[theMaterial->GetIndex()] = co << 595 gMoliereXc2[theMaterial->GetIndex()] = co << 596 // change to Geant4 internal units of 1/l << 597 gMoliereBc[theMaterial->GetIndex()] *= 1 << 598 gMoliereXc2[theMaterial->GetIndex()] *= C << 599 } << 600 } << 601 << 602 788 603 // this method is temporary, will be removed/r << 789 (*fgMoliereBc)[theMaterial->GetIndex()] = const1*density*zs*G4Exp(ze/zs)/G4Exp(zx/zs); //[1/cm] 604 G4double G4GoudsmitSaundersonTable::ComputeSca << 790 (*fgMoliereXc2)[theMaterial->GetIndex()] = const2*density*zs; // [MeV2/cm] 605 G4int imc = matcut->GetIndex(); << 606 G4double corFactor = 1.0; << 607 if (!(fSCPCPerMatCuts[imc]->fIsUse) || ekin< << 608 return corFactor; << 609 } << 610 // get the scattering power correction facto << 611 G4double lekin = G4Log(ekin); << 612 G4double remaining = (lekin-fSCPCPerMatCuts << 613 std::size_t lindx = (std::size_t)remaining << 614 remaining -= lindx; << 615 std::size_t imax = fSCPCPerMatCuts[imc]-> << 616 if (lindx>=imax) { << 617 corFactor = fSCPCPerMatCuts[imc]->fVSCPC[i << 618 } else { << 619 corFactor = fSCPCPerMatCuts[imc]->fVSCPC[l << 620 } << 621 return corFactor; << 622 } << 623 791 >> 792 // change to Geant4 internal units of 1/length and energ2/length >> 793 (*fgMoliereBc)[theMaterial->GetIndex()] *= 1.0/CLHEP::cm; >> 794 (*fgMoliereXc2)[theMaterial->GetIndex()] *= CLHEP::MeV*CLHEP::MeV/CLHEP::cm; >> 795 } 624 796 625 void G4GoudsmitSaundersonTable::InitSCPCorrect << 626 // get the material-cuts table << 627 G4ProductionCutsTable *thePCTable = G4Produc << 628 std::size_t numMatCuts = thePCTab << 629 // clear container if any << 630 for (std::size_t imc=0; imc<fSCPCPerMatCuts. << 631 if (fSCPCPerMatCuts[imc]) { << 632 fSCPCPerMatCuts[imc]->fVSCPC.clear(); << 633 delete fSCPCPerMatCuts[imc]; << 634 fSCPCPerMatCuts[imc] = nullptr; << 635 } << 636 } << 637 // << 638 // set size of the container and create the << 639 fSCPCPerMatCuts.resize(numMatCuts,nullptr); << 640 // loop over the material-cuts and create sc << 641 for (G4int imc=0; imc<(G4int)numMatCuts; ++i << 642 const G4MaterialCutsCouple *matCut = theP << 643 // get e- production cut in the current ma << 644 G4double limit; << 645 G4double ecut; << 646 if (fIsElectron) { << 647 ecut = (*(thePCTable->GetEnergyCutsVect << 648 limit = 2.*ecut; << 649 } else { << 650 ecut = (*(thePCTable->GetEnergyCutsVect << 651 limit = ecut; << 652 } << 653 G4double min = std::max(limit,fLowEnergyLi << 654 G4double max = fHighEnergyLimit; << 655 if (min>=max) { << 656 fSCPCPerMatCuts[imc] = new SCPCorrection << 657 fSCPCPerMatCuts[imc]->fIsUse = false; << 658 fSCPCPerMatCuts[imc]->fPrCut = min; << 659 continue; << 660 } << 661 G4int numEbins = fNumSPCEbinPerDec*G << 662 numEbins = std::max(numEbins,3 << 663 G4double lmin = G4Log(min); << 664 G4double ldel = G4Log(max/min)/(num << 665 fSCPCPerMatCuts[imc] = new SCPCorrection() << 666 fSCPCPerMatCuts[imc]->fVSCPC.resize(numEbi << 667 fSCPCPerMatCuts[imc]->fIsUse = true; << 668 fSCPCPerMatCuts[imc]->fPrCut = min; << 669 fSCPCPerMatCuts[imc]->fLEmin = lmin; << 670 fSCPCPerMatCuts[imc]->fILDel = 1./ldel; << 671 for (G4int ie=0; ie<numEbins; ++ie) { << 672 G4double ekin = G4Exp(lmin+ie*ldel); << 673 G4double scpCorr = 1.0; << 674 // compute correction factor: I.Kawrakow << 675 if (ie>0) { << 676 G4double tau = ekin/CLHEP::electr << 677 G4double tauCut = ecut/CLHEP::electr << 678 // Moliere's screening parameter << 679 G4int matindx = (G4int)matCut->Get << 680 G4double A = GetMoliereXc2(mati << 681 G4double gr = (1.+2.*A)*G4Log(1. << 682 G4double dum0 = (tau+2.)/(tau+1.); << 683 G4double dum1 = tau+1.; << 684 G4double gm = G4Log(0.5*tau/tauC << 685 - 0.25*(tau+2.)*( << 686 G4Log((tau+4.)*( << 687 + 0.5*(tau-2*tauCu << 688 if (gm<gr) { << 689 gm = gm/gr; << 690 } else { << 691 gm = 1.; << 692 } << 693 G4double z0 = matCut->GetMaterial()-> << 694 scpCorr = 1.-gm*z0/(z0*(z0+1.)); << 695 } << 696 fSCPCPerMatCuts[imc]->fVSCPC[ie] = scpCo << 697 } << 698 } << 699 } 797 } 700 798