Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // ------------------------------------------- 26 // ------------------------------------------------------------------- 27 // 27 // 28 // GEANT4 Class file 28 // GEANT4 Class file 29 // 29 // 30 // 30 // 31 // File name: G4BraggIonModel 31 // File name: G4BraggIonModel 32 // 32 // 33 // Author: Vladimir Ivanchenko 33 // Author: Vladimir Ivanchenko 34 // 34 // 35 // Creation date: 13.10.2004 35 // Creation date: 13.10.2004 36 // 36 // 37 // Modifications: 37 // Modifications: 38 // 11-05-05 Major optimisation of internal int 38 // 11-05-05 Major optimisation of internal interfaces (V.Ivantchenko) 39 // 29-11-05 Do not use G4Alpha class (V.Ivantc 39 // 29-11-05 Do not use G4Alpha class (V.Ivantchenko) 40 // 15-02-06 ComputeCrossSectionPerElectron, Co 40 // 15-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 41 // 25-04-06 Add stopping data from ASTAR (V.Iv 41 // 25-04-06 Add stopping data from ASTAR (V.Ivanchenko) 42 // 23-10-06 Reduce lowestKinEnergy to 0.25 keV 42 // 23-10-06 Reduce lowestKinEnergy to 0.25 keV (V.Ivanchenko) 43 // 12-08-08 Added methods GetParticleCharge, G 43 // 12-08-08 Added methods GetParticleCharge, GetChargeSquareRatio, 44 // CorrectionsAlongStep needed for io 44 // CorrectionsAlongStep needed for ions(V.Ivanchenko) 45 // 45 // 46 46 47 // Class Description: 47 // Class Description: 48 // 48 // 49 // Implementation of energy loss and delta-ele 49 // Implementation of energy loss and delta-electron production by 50 // slow charged heavy particles 50 // slow charged heavy particles 51 51 52 // ------------------------------------------- 52 // ------------------------------------------------------------------- 53 // 53 // 54 54 55 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 57 58 #include "G4BraggIonModel.hh" 58 #include "G4BraggIonModel.hh" 59 #include "G4PhysicalConstants.hh" 59 #include "G4PhysicalConstants.hh" 60 #include "G4SystemOfUnits.hh" 60 #include "G4SystemOfUnits.hh" 61 #include "Randomize.hh" 61 #include "Randomize.hh" 62 #include "G4Electron.hh" 62 #include "G4Electron.hh" 63 #include "G4ParticleChangeForLoss.hh" 63 #include "G4ParticleChangeForLoss.hh" >> 64 #include "G4LossTableManager.hh" 64 #include "G4EmCorrections.hh" 65 #include "G4EmCorrections.hh" >> 66 #include "G4EmParameters.hh" 65 #include "G4DeltaAngle.hh" 67 #include "G4DeltaAngle.hh" 66 #include "G4ICRU90StoppingData.hh" 68 #include "G4ICRU90StoppingData.hh" 67 #include "G4ASTARStopping.hh" << 68 #include "G4PSTARStopping.hh" << 69 #include "G4NistManager.hh" 69 #include "G4NistManager.hh" 70 #include "G4Log.hh" 70 #include "G4Log.hh" 71 #include "G4Exp.hh" 71 #include "G4Exp.hh" 72 #include "G4AutoLock.hh" << 73 72 74 //....oooOO0OOooo........oooOO0OOooo........oo 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 75 74 76 G4ASTARStopping* G4BraggIonModel::fASTAR = nul << 75 using namespace std; 77 76 78 namespace << 77 G4ASTARStopping* G4BraggIonModel::fASTAR = nullptr; 79 { << 80 G4Mutex alphaMutex = G4MUTEX_INITIALIZER; << 81 } << 82 78 83 G4BraggIonModel::G4BraggIonModel(const G4Parti 79 G4BraggIonModel::G4BraggIonModel(const G4ParticleDefinition* p, 84 const G4Strin 80 const G4String& nam) 85 : G4BraggModel(p, nam) << 81 : G4VEmModel(nam), >> 82 theElectron(G4Electron::Electron()), >> 83 HeMass(3.727417*CLHEP::GeV), >> 84 theZieglerFactor(CLHEP::eV*CLHEP::cm2*1.0e-15), >> 85 lowestKinEnergy(0.25*CLHEP::keV) 86 { 86 { 87 HeMass = 3.727417*CLHEP::GeV; << 87 SetHighEnergyLimit(2.0*CLHEP::MeV); >> 88 >> 89 rateMassHe2p = HeMass/CLHEP::proton_mass_c2; 88 massFactor = 1000.*CLHEP::amu_c2/HeMass; 90 massFactor = 1000.*CLHEP::amu_c2/HeMass; >> 91 >> 92 if(nullptr != p) { SetParticle(p); } >> 93 else { SetParticle(theElectron); } 89 } 94 } 90 95 91 //....oooOO0OOooo........oooOO0OOooo........oo 96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 92 97 93 G4BraggIonModel::~G4BraggIonModel() 98 G4BraggIonModel::~G4BraggIonModel() 94 { 99 { 95 if(isFirstAlpha) { << 100 if(IsMaster()) { delete fASTAR; fASTAR = nullptr; } 96 delete fASTAR; << 97 fASTAR = nullptr; << 98 } << 99 } 101 } 100 102 101 //....oooOO0OOooo........oooOO0OOooo........oo 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 102 104 103 void G4BraggIonModel::Initialise(const G4Parti 105 void G4BraggIonModel::Initialise(const G4ParticleDefinition* p, 104 const G4DataV << 106 const G4DataVector&) 105 { 107 { 106 G4BraggModel::Initialise(p, ref); << 108 if(p != particle) { SetParticle(p); } 107 const G4String& pname = particle->GetParticl << 109 108 if(pname == "alpha") { isAlpha = true; } << 110 // always false before the run 109 if(isAlpha && fASTAR == nullptr) { << 111 SetDeexcitationFlag(false); 110 G4AutoLock l(&alphaMutex); << 112 111 if(fASTAR == nullptr) { << 113 // initialise once 112 isFirstAlpha = true; << 114 if(nullptr == fParticleChange) { 113 fASTAR = new G4ASTARStopping(); << 115 const G4String& pname = particle->GetParticleName(); >> 116 if(IsMaster()) { >> 117 if(pname == "proton" || pname == "GenericIon" || pname == "alpha") { >> 118 if(nullptr == fASTAR) { fASTAR = new G4ASTARStopping(); } >> 119 fASTAR->Initialise(); >> 120 >> 121 if(G4EmParameters::Instance()->UseICRU90Data()) { >> 122 fICRU90 = G4NistManager::Instance()->GetICRU90StoppingData(); >> 123 fICRU90->Initialise(); >> 124 } >> 125 } 114 } 126 } 115 l.unlock(); << 127 if(particle->GetPDGCharge() > CLHEP::eplus || pname == "GenericIon") { 116 } << 128 isIon = true; 117 if(isFirstAlpha) { << 129 } 118 fASTAR->Initialise(); << 130 if(pname == "alpha") { isAlpha = true; } >> 131 >> 132 if(UseAngularGeneratorFlag() && nullptr == GetAngularDistribution()) { >> 133 SetAngularDistribution(new G4DeltaAngle()); >> 134 } >> 135 corr = G4LossTableManager::Instance()->EmCorrections(); >> 136 >> 137 fParticleChange = GetParticleChangeForLoss(); 119 } 138 } 120 } 139 } 121 140 >> 141 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 142 >> 143 G4double G4BraggIonModel::MinEnergyCut(const G4ParticleDefinition*, >> 144 const G4MaterialCutsCouple* couple) >> 145 { >> 146 return couple->GetMaterial()->GetIonisation()->GetMeanExcitationEnergy(); >> 147 } 122 148 123 //....oooOO0OOooo........oooOO0OOooo........oo 149 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 124 150 125 G4double G4BraggIonModel::GetChargeSquareRatio 151 G4double G4BraggIonModel::GetChargeSquareRatio(const G4ParticleDefinition* p, 126 152 const G4Material* mat, 127 << 153 G4double kineticEnergy) 128 { 154 { 129 // this method is called only for ions, so n << 155 return 130 if(isAlpha) { return 1.0; } << 156 (!isAlpha) ? corr->EffectiveChargeSquareRatio(p,mat,kineticEnergy) : 1.0; 131 return G4BraggModel::GetChargeSquareRatio(p, << 157 } >> 158 >> 159 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 160 >> 161 G4double G4BraggIonModel::GetParticleCharge(const G4ParticleDefinition* p, >> 162 const G4Material* mat, >> 163 G4double kineticEnergy) >> 164 { >> 165 return corr->GetParticleCharge(p,mat,kineticEnergy); >> 166 } >> 167 >> 168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 169 >> 170 G4double G4BraggIonModel::ComputeCrossSectionPerElectron( >> 171 const G4ParticleDefinition* p, >> 172 G4double kineticEnergy, >> 173 G4double minKinEnergy, >> 174 G4double maxKinEnergy) >> 175 { >> 176 G4double cross = 0.0; >> 177 const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); >> 178 const G4double maxEnergy = std::min(tmax, maxKinEnergy); >> 179 const G4double cutEnergy = std::max(lowestKinEnergy*massRate, minKinEnergy); >> 180 >> 181 if(cutEnergy < tmax) { >> 182 >> 183 const G4double energy = kineticEnergy + mass; >> 184 const G4double energy2 = energy*energy; >> 185 const G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; >> 186 >> 187 cross = (maxEnergy - cutEnergy)/(cutEnergy*maxEnergy) >> 188 - beta2*G4Log(maxEnergy/cutEnergy)/tmax; >> 189 if( 0.0 < spin ) { cross += 0.5*(maxEnergy - cutEnergy)/energy2; } >> 190 >> 191 cross *= CLHEP::twopi_mc2_rcl2*chargeSquare/beta2; >> 192 cross = std::max(cross, 0.0); >> 193 } >> 194 // G4cout << "BR: e= " << kineticEnergy << " tmin= " << cutEnergy >> 195 // << " tmax= " << tmax << " cross= " << cross << G4endl; >> 196 return cross; 132 } 197 } 133 198 134 //....oooOO0OOooo........oooOO0OOooo........oo 199 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 135 200 136 G4double G4BraggIonModel::ComputeCrossSectionP 201 G4double G4BraggIonModel::ComputeCrossSectionPerAtom( 137 con 202 const G4ParticleDefinition* p, 138 203 G4double kinEnergy, 139 204 G4double Z, G4double, 140 205 G4double cutEnergy, 141 206 G4double maxEnergy) 142 { 207 { 143 G4double sigma = 208 G4double sigma = 144 Z*ComputeCrossSectionPerElectron(p,kinEner 209 Z*ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy); 145 if(isAlpha) { 210 if(isAlpha) { 146 sigma *= (HeEffChargeSquare(Z, kinEnergy/C 211 sigma *= (HeEffChargeSquare(Z, kinEnergy/CLHEP::MeV)/chargeSquare); 147 } 212 } 148 return sigma; 213 return sigma; 149 } 214 } 150 215 151 //....oooOO0OOooo........oooOO0OOooo........oo 216 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 152 217 153 G4double G4BraggIonModel::CrossSectionPerVolum 218 G4double G4BraggIonModel::CrossSectionPerVolume( 154 con 219 const G4Material* material, 155 con 220 const G4ParticleDefinition* p, 156 221 G4double kinEnergy, 157 222 G4double cutEnergy, 158 223 G4double maxEnergy) 159 { 224 { 160 G4double sigma = material->GetElectronDensit 225 G4double sigma = material->GetElectronDensity()* 161 ComputeCrossSectionPerElectron(p,kinEnergy 226 ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy); 162 if(isAlpha) { 227 if(isAlpha) { 163 const G4double zeff = material->GetTotNbOf 228 const G4double zeff = material->GetTotNbOfElectPerVolume()/ 164 material->GetTotNbOfAtomsPerVolume(); 229 material->GetTotNbOfAtomsPerVolume(); 165 sigma *= (HeEffChargeSquare(zeff, kinEnerg 230 sigma *= (HeEffChargeSquare(zeff, kinEnergy/CLHEP::MeV)/chargeSquare); 166 } 231 } 167 return sigma; 232 return sigma; 168 } 233 } 169 234 170 //....oooOO0OOooo........oooOO0OOooo........oo 235 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 171 236 172 G4double G4BraggIonModel::ComputeDEDXPerVolume 237 G4double G4BraggIonModel::ComputeDEDXPerVolume(const G4Material* material, 173 238 const G4ParticleDefinition* p, 174 239 G4double kineticEnergy, 175 << 240 G4double minKinEnergy) 176 { 241 { 177 const G4double tmax = MaxSecondaryEnergy(p, 242 const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 178 const G4double tlim = lowestKinEnergy*massRa << 243 const G4double tmin = std::max(lowestKinEnergy*massRate, minKinEnergy); 179 const G4double tmin = std::max(std::min(cut, << 180 G4double dedx = 0.0; 244 G4double dedx = 0.0; 181 245 182 if(kineticEnergy < tlim) { << 246 // T is alpha energy 183 dedx = HeDEDX(material, tlim)*std::sqrt(ki << 247 G4double T = kineticEnergy; 184 } else { << 248 const G4double zeff = material->GetTotNbOfElectPerVolume()/ 185 dedx = HeDEDX(material, kineticEnergy); << 249 material->GetTotNbOfAtomsPerVolume(); >> 250 effChargeSquare = HeEffChargeSquare(zeff, T/CLHEP::MeV); >> 251 if(!isAlpha) { T *= rateMassHe2p; } 186 252 187 if (tmin < tmax) { << 253 if(T < lowestKinEnergy) { 188 const G4double tau = kineticEnergy/mass; << 254 dedx = DEDX(material, lowestKinEnergy)*std::sqrt(T/lowestKinEnergy); 189 const G4double x = tmin/tmax; << 255 } else { 190 << 256 dedx = DEDX(material, T); 191 G4double del = << 257 } 192 (G4Log(x)*(tau + 1.)*(tau + 1.)/(tau * << 258 if(!isAlpha) { dedx /= effChargeSquare; } 193 CLHEP::twopi_mc2_rcl2*material->GetElectronD << 259 if (tmin < tmax) { 194 if(isAlpha) { << 260 const G4double tau = kineticEnergy/mass; 195 const G4double zeff = material->GetTotNbOfEl << 261 const G4double x = tmin/tmax; 196 material->GetTotNbOfAtomsPerVolume(); << 262 197 heChargeSquare = HeEffChargeSquare(zeff, kin << 263 G4double del = 198 del *= heChargeSquare; << 264 (G4Log(x)*(tau + 1.)*(tau + 1.)/(tau * (tau + 2.0)) + 1.0 - x) * 199 } << 265 CLHEP::twopi_mc2_rcl2*material->GetElectronDensity(); 200 dedx += del; << 266 if(isAlpha) { del *= effChargeSquare; } 201 } << 267 dedx += del; 202 } 268 } 203 dedx = std::max(dedx, 0.0); 269 dedx = std::max(dedx, 0.0); 204 /* << 270 /* 205 G4cout << "BraggIon: " << material->GetNam << 271 G4cout << "BraggIon: tkin(MeV) = " << tkin/MeV << " dedx(MeV*cm^2/g) = " 206 << " E(MeV)=" << kineticEnergy/MeV << 272 << dedx*gram/(MeV*cm2*material->GetDensity()) 207 << " Tmin(MeV)=" << tmin << " dedx( << 273 << " q2 = " << chargeSquare << G4endl; 208 << dedx*gram/(MeV*cm2*material->Get << 209 << " q2=" << chargeSquare << G4endl << 210 */ 274 */ 211 return dedx; 275 return dedx; 212 } 276 } 213 277 214 //....oooOO0OOooo........oooOO0OOooo........oo 278 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 215 279 216 void G4BraggIonModel::CorrectionsAlongStep(con 280 void G4BraggIonModel::CorrectionsAlongStep(const G4MaterialCutsCouple* couple, 217 con 281 const G4DynamicParticle* dp, 218 con 282 const G4double&, 219 G4d 283 G4double& eloss) 220 { 284 { 221 // no correction for alpha << 285 // no correction at the last step 222 if(isAlpha) { return; } << 223 << 224 // no correction at a small step at the last << 225 const G4double preKinEnergy = dp->GetKinetic 286 const G4double preKinEnergy = dp->GetKineticEnergy(); 226 if(eloss >= preKinEnergy || eloss < preKinEn << 287 if(eloss >= preKinEnergy) { return; } 227 288 228 // corrections only for ions << 229 const G4ParticleDefinition* p = dp->GetDefin 289 const G4ParticleDefinition* p = dp->GetDefinition(); 230 if(p != particle) { SetParticle(p); } 290 if(p != particle) { SetParticle(p); } >> 291 if(!isIon) { return; } 231 292 232 // effective energy and charge at a step << 293 // this method is called only for ions 233 const G4Material* mat = couple->GetMaterial( 294 const G4Material* mat = couple->GetMaterial(); 234 const G4double e = std::max(preKinEnergy - e << 295 G4double e = std::max(preKinEnergy - eloss*0.5, preKinEnergy*0.5); 235 const G4double q20 = corr->EffectiveChargeSq << 296 236 const G4double q2 = corr->EffectiveChargeSqu << 297 G4double q2 = corr->EffectiveChargeSquareRatio(p,mat,e); 237 const G4double qfactor = q2/q20; << 298 GetModelOfFluctuations()->SetParticleAndCharge(p, q2); 238 /* << 299 if(!isAlpha) { 239 G4cout << "G4BraggIonModel::CorrectionsAlo << 300 eloss *= q2*corr->EffectiveChargeCorrection(p,mat,e)/chargeSquare; 240 << preKinEnergy << " Eeff(MeV)=" << e << 301 } 241 << " eloss=" << eloss << " elossnew=" << e << 302 242 << " qfactor=" << qfactor << " Qpre=" << q << 303 //G4cout << "G4BraggIonModel::CorrectionsAlongStep e= " << e 243 << p->GetParticleName() <<G4endl; << 304 // << " qfactor= " << qfactor << " " << p->GetParticleName() <<G4endl; 244 */ << 245 eloss *= qfactor; << 246 } 305 } 247 306 248 //....oooOO0OOooo........oooOO0OOooo........oo 307 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 249 308 250 G4int G4BraggIonModel::HasMaterialForHe(const << 309 void G4BraggIonModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, >> 310 const G4MaterialCutsCouple* couple, >> 311 const G4DynamicParticle* dp, >> 312 G4double minEnergy, >> 313 G4double maxEnergy) >> 314 { >> 315 const G4double tmax = MaxSecondaryKinEnergy(dp); >> 316 const G4double xmax = std::min(tmax, maxEnergy); >> 317 const G4double xmin = std::max(lowestKinEnergy*massRate, minEnergy); >> 318 if(xmin >= xmax) { return; } >> 319 >> 320 G4double kineticEnergy = dp->GetKineticEnergy(); >> 321 const G4double energy = kineticEnergy + mass; >> 322 const G4double energy2 = energy*energy; >> 323 const G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; >> 324 const G4double grej = 1.0; >> 325 G4double deltaKinEnergy, f; >> 326 >> 327 CLHEP::HepRandomEngine* rndmEngineMod = G4Random::getTheEngine(); >> 328 G4double rndm[2]; >> 329 >> 330 // sampling follows ... >> 331 do { >> 332 rndmEngineMod->flatArray(2, rndm); >> 333 deltaKinEnergy = xmin*xmax/(xmin*(1.0 - rndm[0]) + xmax*rndm[0]); >> 334 >> 335 f = 1.0 - beta2*deltaKinEnergy/tmax; >> 336 >> 337 if(f > grej) { >> 338 G4cout << "G4BraggIonModel::SampleSecondary Warning! " >> 339 << "Majorant " << grej << " < " >> 340 << f << " for e= " << deltaKinEnergy >> 341 << G4endl; >> 342 } >> 343 >> 344 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko >> 345 } while( grej*rndm[1] >= f ); >> 346 >> 347 G4ThreeVector deltaDirection; >> 348 >> 349 if(UseAngularGeneratorFlag()) { >> 350 const G4Material* mat = couple->GetMaterial(); >> 351 G4int Z = SelectRandomAtomNumber(mat); >> 352 >> 353 deltaDirection = >> 354 GetAngularDistribution()->SampleDirection(dp, deltaKinEnergy, Z, mat); >> 355 >> 356 } else { >> 357 >> 358 G4double deltaMomentum = >> 359 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); >> 360 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) / >> 361 (deltaMomentum * dp->GetTotalMomentum()); >> 362 if(cost > 1.0) { cost = 1.0; } >> 363 G4double sint = sqrt((1.0 - cost)*(1.0 + cost)); >> 364 >> 365 G4double phi = twopi*rndmEngineMod->flat(); >> 366 >> 367 deltaDirection.set(sint*cos(phi),sint*sin(phi), cost) ; >> 368 deltaDirection.rotateUz(dp->GetMomentumDirection()); >> 369 } >> 370 >> 371 // create G4DynamicParticle object for delta ray >> 372 G4DynamicParticle* delta = >> 373 new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy); >> 374 >> 375 vdp->push_back(delta); >> 376 >> 377 // Change kinematics of primary particle >> 378 kineticEnergy -= deltaKinEnergy; >> 379 G4ThreeVector finalP = dp->GetMomentum() - delta->GetMomentum(); >> 380 finalP = finalP.unit(); >> 381 >> 382 fParticleChange->SetProposedKineticEnergy(kineticEnergy); >> 383 fParticleChange->SetProposedMomentumDirection(finalP); >> 384 } >> 385 >> 386 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 387 >> 388 G4double G4BraggIonModel::MaxSecondaryEnergy(const G4ParticleDefinition* pd, >> 389 G4double kinEnergy) >> 390 { >> 391 if(pd != particle) { SetParticle(pd); } >> 392 G4double tau = kinEnergy/mass; >> 393 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) / >> 394 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio); >> 395 return tmax; >> 396 } >> 397 >> 398 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 399 >> 400 void G4BraggIonModel::SetParticle(const G4ParticleDefinition* p) >> 401 { >> 402 particle = p; >> 403 mass = particle->GetPDGMass(); >> 404 spin = particle->GetPDGSpin(); >> 405 G4double q = particle->GetPDGCharge()/CLHEP::eplus; >> 406 if(!isIon && q > 1.1) { isIon = true; } >> 407 effChargeSquare = chargeSquare = q*q; >> 408 massRate = mass/CLHEP::proton_mass_c2; >> 409 ratio = CLHEP::electron_mass_c2/mass; >> 410 } >> 411 >> 412 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 413 >> 414 G4int G4BraggIonModel::HasMaterial(const G4Material* mat) const 251 { 415 { 252 const G4String& chFormula = mat->GetChemical 416 const G4String& chFormula = mat->GetChemicalFormula(); 253 if(chFormula.empty()) { return -1; } 417 if(chFormula.empty()) { return -1; } 254 418 255 // ICRU Report N49, 1993. Ziegler model for 419 // ICRU Report N49, 1993. Ziegler model for He. 256 420 257 static const G4int numberOfMolecula = 11; << 421 static const size_t numberOfMolecula = 11; 258 static const G4String molName[numberOfMolecu 422 static const G4String molName[numberOfMolecula] = { 259 "CaF_2", "Cellulose_Nitrate", "LiF", "Po 423 "CaF_2", "Cellulose_Nitrate", "LiF", "Policarbonate", 260 "(C_2H_4)_N-Polyethylene", "(C_2H_4)_N-Po 424 "(C_2H_4)_N-Polyethylene", "(C_2H_4)_N-Polymethly_Methacralate", 261 "Polysterene", "SiO_2", "NaI", "H_2O", 425 "Polysterene", "SiO_2", "NaI", "H_2O", 262 "Graphite" }; 426 "Graphite" }; 263 427 264 // Search for the material in the table 428 // Search for the material in the table 265 for (G4int i=0; i<numberOfMolecula; ++i) { << 429 for (size_t i=0; i<numberOfMolecula; ++i) { 266 if (chFormula == molName[i]) { 430 if (chFormula == molName[i]) { 267 return i; 431 return i; 268 } 432 } 269 } 433 } 270 return -1; 434 return -1; 271 } 435 } 272 436 273 //....oooOO0OOooo........oooOO0OOooo........oo 437 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 274 438 275 G4double G4BraggIonModel::HeStoppingPower(cons << 439 G4double G4BraggIonModel::StoppingPower(const G4Material* material, >> 440 const G4double kineticEnergy) const 276 { 441 { 277 G4double ionloss = 0.0; << 442 G4double ionloss = 0.0 ; >> 443 278 if (iMolecula >= 0) { 444 if (iMolecula >= 0) { 279 445 280 // The data and the fit from: 446 // The data and the fit from: 281 // ICRU Report N49, 1993. Ziegler's model 447 // ICRU Report N49, 1993. Ziegler's model for alpha 282 // He energy in internal units of parametr 448 // He energy in internal units of parametrisation formula (MeV) 283 // Input scaled energy of a proton or Gene 449 // Input scaled energy of a proton or GenericIon 284 G4double T = kineticEnergy/(massRate*CLHEP << 450 >> 451 // G4double T = kineticEnergy*rateMassHe2p/CLHEP::MeV; >> 452 G4double T = kineticEnergy/CLHEP::MeV; 285 453 286 static const G4float a[11][5] = { 454 static const G4float a[11][5] = { 287 {9.43672f, 0.54398f, 84.341f, 1.3705f, 455 {9.43672f, 0.54398f, 84.341f, 1.3705f, 57.422f}, 288 {67.1503f, 0.41409f, 404.512f, 148.97f, 456 {67.1503f, 0.41409f, 404.512f, 148.97f, 20.99f}, 289 {5.11203f, 0.453f, 36.718f, 50.6f, 457 {5.11203f, 0.453f, 36.718f, 50.6f, 28.058f}, 290 {61.793f, 0.48445f, 361.537f, 57.889f, 458 {61.793f, 0.48445f, 361.537f, 57.889f, 50.674f}, 291 {7.83464f, 0.49804f, 160.452f, 3.192f, 459 {7.83464f, 0.49804f, 160.452f, 3.192f, 0.71922f}, 292 {19.729f, 0.52153f, 162.341f, 58.35f, 460 {19.729f, 0.52153f, 162.341f, 58.35f, 25.668f}, 293 {26.4648f, 0.50112f, 188.913f, 30.079f, 461 {26.4648f, 0.50112f, 188.913f, 30.079f, 16.509f}, 294 {7.8655f, 0.5205f, 63.96f, 51.32f, 462 {7.8655f, 0.5205f, 63.96f, 51.32f, 67.775f}, 295 {8.8965f, 0.5148f, 339.36f, 1.7205f, 463 {8.8965f, 0.5148f, 339.36f, 1.7205f, 0.70423f}, 296 {2.959f, 0.53255f, 34.247f, 60.655f, 464 {2.959f, 0.53255f, 34.247f, 60.655f, 15.153f}, 297 {3.80133f, 0.41590f, 12.9966f, 117.83f, 465 {3.80133f, 0.41590f, 12.9966f, 117.83f, 242.28f} }; 298 466 299 static const G4double atomicWeight[11] = { 467 static const G4double atomicWeight[11] = { 300 101.96128f, 44.0098f, 16.0426f, 28.0536 468 101.96128f, 44.0098f, 16.0426f, 28.0536f, 42.0804f, 301 104.1512f, 44.665f, 60.0843f, 18.0152 469 104.1512f, 44.665f, 60.0843f, 18.0152f, 18.0152f, 12.0f}; 302 470 303 const G4int i = iMolecula; << 471 G4int i = iMolecula; 304 472 305 G4double slow = (G4double)(a[i][0]); 473 G4double slow = (G4double)(a[i][0]); 306 474 307 G4double x1 = (G4double)(a[i][1]); 475 G4double x1 = (G4double)(a[i][1]); 308 G4double x2 = (G4double)(a[i][2]); 476 G4double x2 = (G4double)(a[i][2]); 309 G4double x3 = (G4double)(a[i][3]); 477 G4double x3 = (G4double)(a[i][3]); 310 G4double x4 = (G4double)(a[i][4]); 478 G4double x4 = (G4double)(a[i][4]); 311 479 312 // Free electron gas model 480 // Free electron gas model 313 if ( T < 0.001 ) { 481 if ( T < 0.001 ) { 314 G4double shigh = G4Log( 1.0 + x3*1000.0 482 G4double shigh = G4Log( 1.0 + x3*1000.0 + x4*0.001 ) *x2*1000.0; 315 ionloss = slow*shigh / (slow + shigh) ; 483 ionloss = slow*shigh / (slow + shigh) ; 316 ionloss *= std::sqrt(T*1000.0) ; << 484 ionloss *= sqrt(T*1000.0) ; 317 485 318 // Main parametrisation 486 // Main parametrisation 319 } else { 487 } else { 320 slow *= G4Exp(G4Log(T*1000.0)*x1) ; 488 slow *= G4Exp(G4Log(T*1000.0)*x1) ; 321 G4double shigh = G4Log( 1.0 + x3/T + x4* 489 G4double shigh = G4Log( 1.0 + x3/T + x4*T ) * x2/T ; 322 ionloss = slow*shigh / (slow + shigh) ; 490 ionloss = slow*shigh / (slow + shigh) ; 323 /* 491 /* 324 G4cout << "## " << i << ". T= " << T 492 G4cout << "## " << i << ". T= " << T << " slow= " << slow 325 << " a0= " << a[i][0] << " a1= " << a 493 << " a0= " << a[i][0] << " a1= " << a[i][1] 326 << " shigh= " << shigh 494 << " shigh= " << shigh 327 << " dedx= " << ionloss << " q^2= " < 495 << " dedx= " << ionloss << " q^2= " << HeEffChargeSquare(z, T*MeV) 328 << G4endl; 496 << G4endl; 329 */ 497 */ 330 } 498 } 331 ionloss = std::max(ionloss, 0.0) * atomicW << 499 ionloss = std::max(ionloss, 0.0); >> 500 >> 501 // He effective charge >> 502 ionloss /= (effChargeSquare*atomicWeight[iMolecula]); >> 503 >> 504 // pure material (normally not the case for this function) >> 505 } else if(1 == (material->GetNumberOfElements())) { >> 506 const G4double z = material->GetZ() ; >> 507 ionloss = ElectronicStoppingPower( z, kineticEnergy ) ; 332 } 508 } >> 509 333 return ionloss; 510 return ionloss; 334 } 511 } 335 512 336 //....oooOO0OOooo........oooOO0OOooo........oo 513 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 337 514 338 G4double G4BraggIonModel::HeElectronicStopping << 515 G4double 339 const G4double kinet << 516 G4BraggIonModel::ElectronicStoppingPower(const G4double z, >> 517 const G4double kineticEnergy) const 340 { 518 { 341 G4double ionloss ; 519 G4double ionloss ; 342 G4int i = std::min(z-1, 91); // index of at << 520 G4int i = std::min(std::max(G4lrint(z)-1,0),91); // index of atom 343 //G4cout << "ElectronicStoppingPower z=" << 521 //G4cout << "ElectronicStoppingPower z=" << z << " i=" << i 344 // << " E=" << kineticEnergy << G4endl; 522 // << " E=" << kineticEnergy << G4endl; 345 // The data and the fit from: 523 // The data and the fit from: 346 // ICRU Report 49, 1993. Ziegler's type of p 524 // ICRU Report 49, 1993. Ziegler's type of parametrisations. 347 // Proton kinetic energy for parametrisation 525 // Proton kinetic energy for parametrisation (keV/amu) 348 // He energy in internal units of parametris 526 // He energy in internal units of parametrisation formula (MeV) 349 //G4double T = kineticEnergy*rateMassHe2p/CL 527 //G4double T = kineticEnergy*rateMassHe2p/CLHEP::MeV; 350 G4double T = kineticEnergy/CLHEP::MeV; 528 G4double T = kineticEnergy/CLHEP::MeV; 351 529 352 static const G4float a[92][5] = { 530 static const G4float a[92][5] = { 353 { 0.35485f, 0.6456f, 6.01525f, 20.8933f, 531 { 0.35485f, 0.6456f, 6.01525f, 20.8933f, 4.3515f 354 },{ 0.58f, 0.59f, 6.3f, 130.0f, 532 },{ 0.58f, 0.59f, 6.3f, 130.0f, 44.07f 355 },{ 1.42f, 0.49f, 12.25f, 32.0f, 533 },{ 1.42f, 0.49f, 12.25f, 32.0f, 9.161f 356 },{ 2.206f, 0.51f, 15.32f, 0.25f, 534 },{ 2.206f, 0.51f, 15.32f, 0.25f, 8.995f //Be Ziegler77 357 // },{ 2.1895f, 0.47183,7.2362f, 134 535 // },{ 2.1895f, 0.47183,7.2362f, 134.30f, 197.96f //Be from ICRU 358 },{ 3.691f, 0.4128f, 18.48f, 50.72f, 536 },{ 3.691f, 0.4128f, 18.48f, 50.72f, 9.0f 359 },{ 3.83523f, 0.42993f,12.6125f, 227.41f, 537 },{ 3.83523f, 0.42993f,12.6125f, 227.41f, 188.97f 360 // },{ 1.9259f, 0.5550f, 27.15125f, 26 538 // },{ 1.9259f, 0.5550f, 27.15125f, 26.0665f, 6.2768f //too many digits 361 },{ 1.9259f, 0.5550f, 27.1513f, 26.0665f, 539 },{ 1.9259f, 0.5550f, 27.1513f, 26.0665f, 6.2768f 362 },{ 2.81015f, 0.4759f, 50.0253f, 10.556f, 540 },{ 2.81015f, 0.4759f, 50.0253f, 10.556f, 1.0382f 363 },{ 1.533f, 0.531f, 40.44f, 18.41f, 541 },{ 1.533f, 0.531f, 40.44f, 18.41f, 2.718f 364 },{ 2.303f, 0.4861f, 37.01f, 37.96f, 542 },{ 2.303f, 0.4861f, 37.01f, 37.96f, 5.092f 365 // Z= 11-20 543 // Z= 11-20 366 },{ 9.894f, 0.3081f, 23.65f, 0.384f, 544 },{ 9.894f, 0.3081f, 23.65f, 0.384f, 92.93f 367 },{ 4.3f, 0.47f, 34.3f, 3.3f, 545 },{ 4.3f, 0.47f, 34.3f, 3.3f, 12.74f 368 },{ 2.5f, 0.625f, 45.7f, 0.1f, 546 },{ 2.5f, 0.625f, 45.7f, 0.1f, 4.359f 369 },{ 2.1f, 0.65f, 49.34f, 1.788f, 547 },{ 2.1f, 0.65f, 49.34f, 1.788f, 4.133f 370 },{ 1.729f, 0.6562f, 53.41f, 2.405f, 548 },{ 1.729f, 0.6562f, 53.41f, 2.405f, 3.845f 371 },{ 1.402f, 0.6791f, 58.98f, 3.528f, 549 },{ 1.402f, 0.6791f, 58.98f, 3.528f, 3.211f 372 },{ 1.117f, 0.7044f, 69.69f, 3.705f, 550 },{ 1.117f, 0.7044f, 69.69f, 3.705f, 2.156f 373 },{ 2.291f, 0.6284f, 73.88f, 4.478f, 551 },{ 2.291f, 0.6284f, 73.88f, 4.478f, 2.066f 374 },{ 8.554f, 0.3817f, 83.61f, 11.84f, 552 },{ 8.554f, 0.3817f, 83.61f, 11.84f, 1.875f 375 },{ 6.297f, 0.4622f, 65.39f, 10.14f, 553 },{ 6.297f, 0.4622f, 65.39f, 10.14f, 5.036f 376 // Z= 21-30 554 // Z= 21-30 377 },{ 5.307f, 0.4918f, 61.74f, 12.4f, 555 },{ 5.307f, 0.4918f, 61.74f, 12.4f, 6.665f 378 },{ 4.71f, 0.5087f, 65.28f, 8.806f, 556 },{ 4.71f, 0.5087f, 65.28f, 8.806f, 5.948f 379 },{ 6.151f, 0.4524f, 83.0f, 18.31f, 557 },{ 6.151f, 0.4524f, 83.0f, 18.31f, 2.71f 380 },{ 6.57f, 0.4322f, 84.76f, 15.53f, 558 },{ 6.57f, 0.4322f, 84.76f, 15.53f, 2.779f 381 },{ 5.738f, 0.4492f, 84.6f, 14.18f, 559 },{ 5.738f, 0.4492f, 84.6f, 14.18f, 3.101f 382 },{ 5.013f, 0.4707f, 85.8f, 16.55f, 560 },{ 5.013f, 0.4707f, 85.8f, 16.55f, 3.211f 383 },{ 4.32f, 0.4947f, 76.14f, 10.85f, 561 },{ 4.32f, 0.4947f, 76.14f, 10.85f, 5.441f 384 },{ 4.652f, 0.4571f, 80.73f, 22.0f, 562 },{ 4.652f, 0.4571f, 80.73f, 22.0f, 4.952f 385 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 563 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 6.385f 386 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 564 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 7.502f 387 // Z= 31-40 565 // Z= 31-40 388 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 566 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 8.514f 389 },{ 5.746f, 0.4662f, 79.24f, 1.185f, 567 },{ 5.746f, 0.4662f, 79.24f, 1.185f, 7.993f 390 },{ 2.792f, 0.6346f, 106.1f, 0.2986f, 568 },{ 2.792f, 0.6346f, 106.1f, 0.2986f, 2.331f 391 },{ 4.667f, 0.5095f, 124.3f, 2.102f, 569 },{ 4.667f, 0.5095f, 124.3f, 2.102f, 1.667f 392 },{ 2.44f, 0.6346f, 105.0f, 0.83f, 570 },{ 2.44f, 0.6346f, 105.0f, 0.83f, 2.851f 393 },{ 1.413f, 0.7377f, 147.9f, 1.466f, 571 },{ 1.413f, 0.7377f, 147.9f, 1.466f, 1.016f 394 },{ 11.72f, 0.3826f, 102.8f, 9.231f, 572 },{ 11.72f, 0.3826f, 102.8f, 9.231f, 4.371f 395 },{ 7.126f, 0.4804f, 119.3f, 5.784f, 573 },{ 7.126f, 0.4804f, 119.3f, 5.784f, 2.454f 396 },{ 11.61f, 0.3955f, 146.7f, 7.031f, 574 },{ 11.61f, 0.3955f, 146.7f, 7.031f, 1.423f 397 },{ 10.99f, 0.41f, 163.9f, 7.1f, 575 },{ 10.99f, 0.41f, 163.9f, 7.1f, 1.052f 398 // Z= 41-50 576 // Z= 41-50 399 },{ 9.241f, 0.4275f, 163.1f, 7.954f, 577 },{ 9.241f, 0.4275f, 163.1f, 7.954f, 1.102f 400 },{ 9.276f, 0.418f, 157.1f, 8.038f, 578 },{ 9.276f, 0.418f, 157.1f, 8.038f, 1.29f 401 },{ 3.999f, 0.6152f, 97.6f, 1.297f, 579 },{ 3.999f, 0.6152f, 97.6f, 1.297f, 5.792f 402 },{ 4.306f, 0.5658f, 97.99f, 5.514f, 580 },{ 4.306f, 0.5658f, 97.99f, 5.514f, 5.754f 403 },{ 3.615f, 0.6197f, 86.26f, 0.333f, 581 },{ 3.615f, 0.6197f, 86.26f, 0.333f, 8.689f 404 },{ 5.8f, 0.49f, 147.2f, 6.903f, 582 },{ 5.8f, 0.49f, 147.2f, 6.903f, 1.289f 405 },{ 5.6f, 0.49f, 130.0f, 10.0f, 583 },{ 5.6f, 0.49f, 130.0f, 10.0f, 2.844f 406 },{ 3.55f, 0.6068f, 124.7f, 1.112f, 584 },{ 3.55f, 0.6068f, 124.7f, 1.112f, 3.119f 407 },{ 3.6f, 0.62f, 105.8f, 0.1692f, 585 },{ 3.6f, 0.62f, 105.8f, 0.1692f, 6.026f 408 },{ 5.4f, 0.53f, 103.1f, 3.931f, 586 },{ 5.4f, 0.53f, 103.1f, 3.931f, 7.767f 409 // Z= 51-60 587 // Z= 51-60 410 },{ 3.97f, 0.6459f, 131.8f, 0.2233f, 588 },{ 3.97f, 0.6459f, 131.8f, 0.2233f, 2.723f 411 },{ 3.65f, 0.64f, 126.8f, 0.6834f, 589 },{ 3.65f, 0.64f, 126.8f, 0.6834f, 3.411f 412 },{ 3.118f, 0.6519f, 164.9f, 1.208f, 590 },{ 3.118f, 0.6519f, 164.9f, 1.208f, 1.51f 413 },{ 3.949f, 0.6209f, 200.5f, 1.878f, 591 },{ 3.949f, 0.6209f, 200.5f, 1.878f, 0.9126f 414 },{ 14.4f, 0.3923f, 152.5f, 8.354f, 592 },{ 14.4f, 0.3923f, 152.5f, 8.354f, 2.597f 415 },{ 10.99f, 0.4599f, 138.4f, 4.811f, 593 },{ 10.99f, 0.4599f, 138.4f, 4.811f, 3.726f 416 },{ 16.6f, 0.3773f, 224.1f, 6.28f, 594 },{ 16.6f, 0.3773f, 224.1f, 6.28f, 0.9121f 417 },{ 10.54f, 0.4533f, 159.3f, 4.832f, 595 },{ 10.54f, 0.4533f, 159.3f, 4.832f, 2.529f 418 },{ 10.33f, 0.4502f, 162.0f, 5.132f, 596 },{ 10.33f, 0.4502f, 162.0f, 5.132f, 2.444f 419 },{ 10.15f, 0.4471f, 165.6f, 5.378f, 597 },{ 10.15f, 0.4471f, 165.6f, 5.378f, 2.328f 420 // Z= 61-70 598 // Z= 61-70 421 },{ 9.976f, 0.4439f, 168.0f, 5.721f, 599 },{ 9.976f, 0.4439f, 168.0f, 5.721f, 2.258f 422 },{ 9.804f, 0.4408f, 176.2f, 5.675f, 600 },{ 9.804f, 0.4408f, 176.2f, 5.675f, 1.997f 423 },{ 14.22f, 0.363f, 228.4f, 7.024f, 601 },{ 14.22f, 0.363f, 228.4f, 7.024f, 1.016f 424 },{ 9.952f, 0.4318f, 233.5f, 5.065f, 602 },{ 9.952f, 0.4318f, 233.5f, 5.065f, 0.9244f 425 },{ 9.272f, 0.4345f, 210.0f, 4.911f, 603 },{ 9.272f, 0.4345f, 210.0f, 4.911f, 1.258f 426 },{ 10.13f, 0.4146f, 225.7f, 5.525f, 604 },{ 10.13f, 0.4146f, 225.7f, 5.525f, 1.055f 427 },{ 8.949f, 0.4304f, 213.3f, 5.071f, 605 },{ 8.949f, 0.4304f, 213.3f, 5.071f, 1.221f 428 },{ 11.94f, 0.3783f, 247.2f, 6.655f, 606 },{ 11.94f, 0.3783f, 247.2f, 6.655f, 0.849f 429 },{ 8.472f, 0.4405f, 195.5f, 4.051f, 607 },{ 8.472f, 0.4405f, 195.5f, 4.051f, 1.604f 430 },{ 8.301f, 0.4399f, 203.7f, 3.667f, 608 },{ 8.301f, 0.4399f, 203.7f, 3.667f, 1.459f 431 // Z= 71-80 609 // Z= 71-80 432 },{ 6.567f, 0.4858f, 193.0f, 2.65f, 610 },{ 6.567f, 0.4858f, 193.0f, 2.65f, 1.66f 433 },{ 5.951f, 0.5016f, 196.1f, 2.662f, 611 },{ 5.951f, 0.5016f, 196.1f, 2.662f, 1.589f 434 },{ 7.495f, 0.4523f, 251.4f, 3.433f, 612 },{ 7.495f, 0.4523f, 251.4f, 3.433f, 0.8619f 435 },{ 6.335f, 0.4825f, 255.1f, 2.834f, 613 },{ 6.335f, 0.4825f, 255.1f, 2.834f, 0.8228f 436 },{ 4.314f, 0.5558f, 214.8f, 2.354f, 614 },{ 4.314f, 0.5558f, 214.8f, 2.354f, 1.263f 437 },{ 4.02f, 0.5681f, 219.9f, 2.402f, 615 },{ 4.02f, 0.5681f, 219.9f, 2.402f, 1.191f 438 },{ 3.836f, 0.5765f, 210.2f, 2.742f, 616 },{ 3.836f, 0.5765f, 210.2f, 2.742f, 1.305f 439 },{ 4.68f, 0.5247f, 244.7f, 2.749f, 617 },{ 4.68f, 0.5247f, 244.7f, 2.749f, 0.8962f 440 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 618 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 1.416f //Au Z77 441 // },{ 3.223f, 0.5883f, 232.7f, 2.9 619 // },{ 3.223f, 0.5883f, 232.7f, 2.954f, 1.05 //Au ICRU 442 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 620 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 1.416f 443 // Z= 81-90 621 // Z= 81-90 444 },{ 4.728f, 0.5522f, 217.0f, 3.091f, 622 },{ 4.728f, 0.5522f, 217.0f, 3.091f, 1.386f 445 },{ 6.18f, 0.52f, 170.0f, 4.0f, 623 },{ 6.18f, 0.52f, 170.0f, 4.0f, 3.224f 446 },{ 9.0f, 0.47f, 198.0f, 3.8f, 624 },{ 9.0f, 0.47f, 198.0f, 3.8f, 2.032f 447 },{ 2.324f, 0.6997f, 216.0f, 1.599f, 625 },{ 2.324f, 0.6997f, 216.0f, 1.599f, 1.399f 448 },{ 1.961f, 0.7286f, 223.0f, 1.621f, 626 },{ 1.961f, 0.7286f, 223.0f, 1.621f, 1.296f 449 },{ 1.75f, 0.7427f, 350.1f, 0.9789f, 627 },{ 1.75f, 0.7427f, 350.1f, 0.9789f, 0.5507f 450 },{ 10.31f, 0.4613f, 261.2f, 4.738f, 628 },{ 10.31f, 0.4613f, 261.2f, 4.738f, 0.9899f 451 },{ 7.962f, 0.519f, 235.7f, 4.347f, 629 },{ 7.962f, 0.519f, 235.7f, 4.347f, 1.313f 452 },{ 6.227f, 0.5645f, 231.9f, 3.961f, 630 },{ 6.227f, 0.5645f, 231.9f, 3.961f, 1.379f 453 },{ 5.246f, 0.5947f, 228.6f, 4.027f, 631 },{ 5.246f, 0.5947f, 228.6f, 4.027f, 1.432f 454 // Z= 91-92 632 // Z= 91-92 455 },{ 5.408f, 0.5811f, 235.7f, 3.961f, 633 },{ 5.408f, 0.5811f, 235.7f, 3.961f, 1.358f 456 },{ 5.218f, 0.5828f, 245.0f, 3.838f, 634 },{ 5.218f, 0.5828f, 245.0f, 3.838f, 1.25f} 457 }; 635 }; 458 636 459 G4double slow = (G4double)(a[i][0]); 637 G4double slow = (G4double)(a[i][0]); 460 638 461 G4double x1 = (G4double)(a[i][1]); 639 G4double x1 = (G4double)(a[i][1]); 462 G4double x2 = (G4double)(a[i][2]); 640 G4double x2 = (G4double)(a[i][2]); 463 G4double x3 = (G4double)(a[i][3]); 641 G4double x3 = (G4double)(a[i][3]); 464 G4double x4 = (G4double)(a[i][4]); 642 G4double x4 = (G4double)(a[i][4]); 465 643 466 // Free electron gas model 644 // Free electron gas model 467 if ( T < 0.001 ) { 645 if ( T < 0.001 ) { 468 G4double shigh = G4Log( 1.0 + x3*1000.0 + 646 G4double shigh = G4Log( 1.0 + x3*1000.0 + x4*0.001 )* x2*1000.0; 469 ionloss = slow*shigh*std::sqrt(T*1000.0) 647 ionloss = slow*shigh*std::sqrt(T*1000.0) / (slow + shigh) ; 470 648 471 // Main parametrisation 649 // Main parametrisation 472 } else { 650 } else { 473 slow *= G4Exp(G4Log(T*1000.0)*x1); 651 slow *= G4Exp(G4Log(T*1000.0)*x1); 474 G4double shigh = G4Log( 1.0 + x3/T + x4*T 652 G4double shigh = G4Log( 1.0 + x3/T + x4*T ) * x2/T; 475 ionloss = slow*shigh / (slow + shigh) ; 653 ionloss = slow*shigh / (slow + shigh) ; 476 /* 654 /* 477 G4cout << "## " << i << ". T= " << T << " 655 G4cout << "## " << i << ". T= " << T << " slow= " << slow 478 << " a0= " << a[i][0] << " a1= " << 656 << " a0= " << a[i][0] << " a1= " << a[i][1] 479 << " shigh= " << shigh 657 << " shigh= " << shigh 480 << " dedx= " << ionloss << " q^2= " 658 << " dedx= " << ionloss << " q^2= " << HeEffChargeSquare(z, T) 481 << G4endl; 659 << G4endl; 482 */ 660 */ 483 } 661 } 484 ionloss = std::max(ionloss, 0.0); 662 ionloss = std::max(ionloss, 0.0); >> 663 >> 664 // He effective charge >> 665 // ionloss /= effChargeSquare; >> 666 // G4cout << ionloss << G4endl; 485 return ionloss; 667 return ionloss; 486 } 668 } 487 669 488 //....oooOO0OOooo........oooOO0OOooo........oo 670 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 489 671 490 G4double G4BraggIonModel::HeDEDX(const G4Mater << 672 G4double G4BraggIonModel::DEDX(const G4Material* material, 491 const G4double 673 const G4double aEnergy) 492 { 674 { 493 // aEnergy is energy of alpha 675 // aEnergy is energy of alpha 494 G4double eloss = 0.0; 676 G4double eloss = 0.0; 495 // check DB 677 // check DB 496 if(material != currentMaterial) { 678 if(material != currentMaterial) { 497 currentMaterial = material; 679 currentMaterial = material; 498 baseMaterial = material->GetBaseMaterial() 680 baseMaterial = material->GetBaseMaterial() 499 ? material->GetBaseMaterial() : material 681 ? material->GetBaseMaterial() : material; 500 iPSTAR = -1; << 501 iASTAR = -1; 682 iASTAR = -1; 502 iMolecula = -1; 683 iMolecula = -1; 503 iICRU90 = (nullptr != fICRU90) ? fICRU90-> 684 iICRU90 = (nullptr != fICRU90) ? fICRU90->GetIndex(baseMaterial) : -1; 504 685 505 if(iICRU90 < 0) { << 686 if(iICRU90 < 0) { 506 if(isAlpha) { << 687 iASTAR = fASTAR->GetIndex(baseMaterial); 507 iASTAR = fASTAR->GetIndex(baseMaterial); << 688 if(iASTAR < 0) { iMolecula = HasMaterial(baseMaterial); } 508 if(iASTAR < 0) { iMolecula = HasMaterialForH << 509 } else { << 510 iPSTAR = fPSTAR->GetIndex(baseMaterial); << 511 } << 512 } 689 } 513 /* 690 /* 514 G4cout << "%%% " <<material->GetName() << 691 G4cout << "%%% " <<material->GetName() << " iMolecula= " 515 << iMolecula << " iASTAR= " << iAS 692 << iMolecula << " iASTAR= " << iASTAR 516 << " iICRU90= " << iICRU90<< G4end 693 << " iICRU90= " << iICRU90<< G4endl; 517 */ 694 */ 518 } 695 } 519 // ICRU90 696 // ICRU90 520 if(iICRU90 >= 0) { 697 if(iICRU90 >= 0) { 521 eloss = (isAlpha) << 698 eloss = fICRU90->GetElectronicDEDXforAlpha(iICRU90, aEnergy); 522 ? fICRU90->GetElectronicDEDXforAlpha(iIC << 523 : fICRU90->GetElectronicDEDXforProton(iI << 524 if(eloss > 0.0) { return eloss*material->G 699 if(eloss > 0.0) { return eloss*material->GetDensity(); } 525 } 700 } 526 // PSTAR parameterisation << 527 if( iPSTAR >= 0 ) { << 528 return fPSTAR->GetElectronicDEDX(iPSTAR, a << 529 *material->GetDensity(); << 530 } << 531 // ASTAR 701 // ASTAR 532 if( iASTAR >= 0 ) { 702 if( iASTAR >= 0 ) { 533 eloss = fASTAR->GetElectronicDEDX(iASTAR, 703 eloss = fASTAR->GetElectronicDEDX(iASTAR, aEnergy); 534 /* 704 /* 535 G4cout << "ASTAR: E=" << aEnergy 705 G4cout << "ASTAR: E=" << aEnergy 536 << " dedx=" << eloss*material->GetDensity 706 << " dedx=" << eloss*material->GetDensity() 537 << " " << particle->GetParticleName() << 707 << " " << particle->GetParticleName() << G4endl; 538 */ 708 */ 539 if(eloss > 0.0) { return eloss*material->G 709 if(eloss > 0.0) { return eloss*material->GetDensity(); } 540 } 710 } 541 711 542 const std::size_t numberOfElements = materia << 712 const G4int numberOfElements = material->GetNumberOfElements(); 543 const G4ElementVector* theElmVector = materi << 544 const G4double* theAtomicNumDensityVector = 713 const G4double* theAtomicNumDensityVector = 545 material->GetAtomicNumDensityVector(); 714 material->GetAtomicNumDensityVector(); 546 715 547 // molecular data use proton stopping power << 548 // element data from ICRU49 include data for << 549 if(iMolecula >= 0) { 716 if(iMolecula >= 0) { 550 const G4double zeff = material->GetTotNbOf << 717 551 material->GetTotNbOfAtomsPerVolume(); << 718 eloss = StoppingPower(baseMaterial, aEnergy)*material->GetDensity()/amu; 552 heChargeSquare = HeEffChargeSquare(zeff, a << 553 eloss = HeStoppingPower(aEnergy)*heChargeS << 554 719 555 // pure material 720 // pure material 556 } else if(1 == numberOfElements) { 721 } else if(1 == numberOfElements) { 557 722 558 const G4Element* element = (*theElmVector) << 723 const G4double z = material->GetZ(); 559 eloss = HeElectronicStoppingPower(element- << 724 eloss = ElectronicStoppingPower(z, aEnergy) 560 * (material->GetTotNbOfAtomsPerVolume()) << 725 * (material->GetTotNbOfAtomsPerVolume()); 561 726 562 // Brugg's rule calculation 727 // Brugg's rule calculation 563 } else { 728 } else { >> 729 const G4ElementVector* theElmVector = material->GetElementVector(); >> 730 564 // loop for the elements in the material 731 // loop for the elements in the material 565 for (std::size_t i=0; i<numberOfElements; << 732 for (G4int i=0; i<numberOfElements; ++i) { 566 const G4Element* element = (*theElmVecto 733 const G4Element* element = (*theElmVector)[i]; 567 eloss += HeElectronicStoppingPower(eleme << 734 eloss += ElectronicStoppingPower(element->GetZ(), aEnergy) 568 * theAtomicNumDensityVector[i]; 735 * theAtomicNumDensityVector[i]; 569 } 736 } 570 } 737 } 571 return eloss*theZieglerFactor; 738 return eloss*theZieglerFactor; 572 } 739 } 573 740 574 //....oooOO0OOooo........oooOO0OOooo........oo 741 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 575 742 576 G4double 743 G4double 577 G4BraggIonModel::HeEffChargeSquare(const G4dou 744 G4BraggIonModel::HeEffChargeSquare(const G4double z, 578 const G4dou 745 const G4double kinEnergyHeInMeV) const 579 { 746 { 580 // The aproximation of He effective charge f 747 // The aproximation of He effective charge from: 581 // J.F.Ziegler, J.P. Biersack, U. Littmark 748 // J.F.Ziegler, J.P. Biersack, U. Littmark 582 // The Stopping and Range of Ions in Matter, 749 // The Stopping and Range of Ions in Matter, 583 // Vol.1, Pergamon Press, 1985 750 // Vol.1, Pergamon Press, 1985 584 751 585 static const G4double c[6] = {0.2865, 0.126 752 static const G4double c[6] = {0.2865, 0.1266, -0.001429, 586 0.02402,-0.011 753 0.02402,-0.01135, 0.001475}; 587 754 588 G4double e = std::max(0.0, G4Log(kinEnergyHe 755 G4double e = std::max(0.0, G4Log(kinEnergyHeInMeV*massFactor)); 589 G4double x = c[0] ; 756 G4double x = c[0] ; 590 G4double y = 1.0 ; 757 G4double y = 1.0 ; 591 for (G4int i=1; i<6; ++i) { 758 for (G4int i=1; i<6; ++i) { 592 y *= e; 759 y *= e; 593 x += y * c[i]; 760 x += y * c[i]; 594 } 761 } 595 762 596 G4double w = 7.6 - e ; 763 G4double w = 7.6 - e ; 597 w = 1.0 + (0.007 + 0.00005*z) * G4Exp( -w*w 764 w = 1.0 + (0.007 + 0.00005*z) * G4Exp( -w*w ) ; 598 w = 4.0 * (1.0 - G4Exp(-x)) * w * w ; 765 w = 4.0 * (1.0 - G4Exp(-x)) * w * w ; 599 766 600 return w; 767 return w; 601 } 768 } 602 769 603 //....oooOO0OOooo........oooOO0OOooo........oo 770 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 604 771 605 772