Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ >> 27 // 26 // ------------------------------------------- 28 // ------------------------------------------------------------------- 27 // 29 // 28 // GEANT4 Class file 30 // GEANT4 Class file 29 // 31 // 30 // 32 // 31 // File name: G4BraggIonModel 33 // File name: G4BraggIonModel 32 // 34 // 33 // Author: Vladimir Ivanchenko 35 // Author: Vladimir Ivanchenko 34 // 36 // 35 // Creation date: 13.10.2004 37 // Creation date: 13.10.2004 36 // 38 // 37 // Modifications: 39 // Modifications: 38 // 11-05-05 Major optimisation of internal int 40 // 11-05-05 Major optimisation of internal interfaces (V.Ivantchenko) 39 // 29-11-05 Do not use G4Alpha class (V.Ivantc 41 // 29-11-05 Do not use G4Alpha class (V.Ivantchenko) 40 // 15-02-06 ComputeCrossSectionPerElectron, Co 42 // 15-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 41 // 25-04-06 Add stopping data from ASTAR (V.Iv 43 // 25-04-06 Add stopping data from ASTAR (V.Ivanchenko) 42 // 23-10-06 Reduce lowestKinEnergy to 0.25 keV 44 // 23-10-06 Reduce lowestKinEnergy to 0.25 keV (V.Ivanchenko) 43 // 12-08-08 Added methods GetParticleCharge, G 45 // 12-08-08 Added methods GetParticleCharge, GetChargeSquareRatio, 44 // CorrectionsAlongStep needed for io 46 // CorrectionsAlongStep needed for ions(V.Ivanchenko) 45 // 47 // 46 48 47 // Class Description: 49 // Class Description: 48 // 50 // 49 // Implementation of energy loss and delta-ele 51 // Implementation of energy loss and delta-electron production by 50 // slow charged heavy particles 52 // slow charged heavy particles 51 53 52 // ------------------------------------------- 54 // ------------------------------------------------------------------- 53 // 55 // 54 56 55 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 //....oooOO0OOooo........oooOO0OOooo........oo 58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 59 58 #include "G4BraggIonModel.hh" 60 #include "G4BraggIonModel.hh" 59 #include "G4PhysicalConstants.hh" 61 #include "G4PhysicalConstants.hh" 60 #include "G4SystemOfUnits.hh" 62 #include "G4SystemOfUnits.hh" 61 #include "Randomize.hh" 63 #include "Randomize.hh" 62 #include "G4Electron.hh" 64 #include "G4Electron.hh" 63 #include "G4ParticleChangeForLoss.hh" 65 #include "G4ParticleChangeForLoss.hh" >> 66 #include "G4LossTableManager.hh" 64 #include "G4EmCorrections.hh" 67 #include "G4EmCorrections.hh" 65 #include "G4DeltaAngle.hh" 68 #include "G4DeltaAngle.hh" 66 #include "G4ICRU90StoppingData.hh" << 67 #include "G4ASTARStopping.hh" << 68 #include "G4PSTARStopping.hh" << 69 #include "G4NistManager.hh" << 70 #include "G4Log.hh" 69 #include "G4Log.hh" 71 #include "G4Exp.hh" 70 #include "G4Exp.hh" 72 #include "G4AutoLock.hh" << 73 71 74 //....oooOO0OOooo........oooOO0OOooo........oo 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 75 73 76 G4ASTARStopping* G4BraggIonModel::fASTAR = nul << 74 using namespace std; 77 75 78 namespace << 76 G4ASTARStopping* G4BraggIonModel::fASTAR = nullptr; 79 { << 80 G4Mutex alphaMutex = G4MUTEX_INITIALIZER; << 81 } << 82 77 83 G4BraggIonModel::G4BraggIonModel(const G4Parti 78 G4BraggIonModel::G4BraggIonModel(const G4ParticleDefinition* p, 84 const G4Strin 79 const G4String& nam) 85 : G4BraggModel(p, nam) << 80 : G4VEmModel(nam), 86 { << 81 corr(nullptr), 87 HeMass = 3.727417*CLHEP::GeV; << 82 particle(nullptr), 88 massFactor = 1000.*CLHEP::amu_c2/HeMass; << 83 fParticleChange(nullptr), >> 84 currentMaterial(nullptr), >> 85 iMolecula(-1), >> 86 iASTAR(-1), >> 87 isIon(false) >> 88 { >> 89 SetHighEnergyLimit(2.0*MeV); >> 90 >> 91 HeMass = 3.727417*GeV; >> 92 rateMassHe2p = HeMass/proton_mass_c2; >> 93 lowestKinEnergy = 1.0*keV/rateMassHe2p; >> 94 massFactor = 1000.*amu_c2/HeMass; >> 95 theZieglerFactor = eV*cm2*1.0e-15; >> 96 theElectron = G4Electron::Electron(); >> 97 corrFactor = 1.0; >> 98 if(p) { SetParticle(p); } >> 99 else { SetParticle(theElectron); } 89 } 100 } 90 101 91 //....oooOO0OOooo........oooOO0OOooo........oo 102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 92 103 93 G4BraggIonModel::~G4BraggIonModel() 104 G4BraggIonModel::~G4BraggIonModel() 94 { 105 { 95 if(isFirstAlpha) { << 106 if(IsMaster()) { delete fASTAR; fASTAR = nullptr; } 96 delete fASTAR; << 97 fASTAR = nullptr; << 98 } << 99 } 107 } 100 108 101 //....oooOO0OOooo........oooOO0OOooo........oo 109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 102 110 103 void G4BraggIonModel::Initialise(const G4Parti 111 void G4BraggIonModel::Initialise(const G4ParticleDefinition* p, 104 const G4DataV << 112 const G4DataVector&) 105 { 113 { 106 G4BraggModel::Initialise(p, ref); << 114 if(p != particle) { SetParticle(p); } 107 const G4String& pname = particle->GetParticl << 115 108 if(pname == "alpha") { isAlpha = true; } << 116 corrFactor = chargeSquare; 109 if(isAlpha && fASTAR == nullptr) { << 117 110 G4AutoLock l(&alphaMutex); << 118 // always false before the run 111 if(fASTAR == nullptr) { << 119 SetDeexcitationFlag(false); 112 isFirstAlpha = true; << 120 113 fASTAR = new G4ASTARStopping(); << 121 if(IsMaster()) { 114 } << 122 if(nullptr == fASTAR) { fASTAR = new G4ASTARStopping(); } 115 l.unlock(); << 123 if(particle->GetPDGMass() < GeV) { fASTAR->Initialise(); } 116 } 124 } 117 if(isFirstAlpha) { << 125 118 fASTAR->Initialise(); << 126 if(nullptr == fParticleChange) { >> 127 >> 128 if(UseAngularGeneratorFlag() && !GetAngularDistribution()) { >> 129 SetAngularDistribution(new G4DeltaAngle()); >> 130 } >> 131 G4String pname = particle->GetParticleName(); >> 132 if(particle->GetParticleType() == "nucleus" && >> 133 pname != "deuteron" && pname != "triton" && >> 134 pname != "alpha+" && pname != "helium" && >> 135 pname != "hydrogen") { isIon = true; } >> 136 >> 137 corr = G4LossTableManager::Instance()->EmCorrections(); >> 138 >> 139 fParticleChange = GetParticleChangeForLoss(); 119 } 140 } 120 } 141 } 121 142 >> 143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 144 >> 145 G4double G4BraggIonModel::MinEnergyCut(const G4ParticleDefinition*, >> 146 const G4MaterialCutsCouple* couple) >> 147 { >> 148 return couple->GetMaterial()->GetIonisation()->GetMeanExcitationEnergy(); >> 149 } 122 150 123 //....oooOO0OOooo........oooOO0OOooo........oo 151 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 124 152 125 G4double G4BraggIonModel::GetChargeSquareRatio 153 G4double G4BraggIonModel::GetChargeSquareRatio(const G4ParticleDefinition* p, 126 154 const G4Material* mat, 127 << 155 G4double kineticEnergy) 128 { 156 { 129 // this method is called only for ions, so n << 157 //G4cout<<"G4BraggIonModel::GetChargeSquareRatio e= "<<kineticEnergy<<G4endl; 130 if(isAlpha) { return 1.0; } << 158 // this method is called only for ions 131 return G4BraggModel::GetChargeSquareRatio(p, << 159 G4double q2 = corr->EffectiveChargeSquareRatio(p,mat,kineticEnergy); >> 160 corrFactor = q2*corr->EffectiveChargeCorrection(p,mat,kineticEnergy); >> 161 return corrFactor; >> 162 } >> 163 >> 164 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 165 >> 166 G4double G4BraggIonModel::GetParticleCharge(const G4ParticleDefinition* p, >> 167 const G4Material* mat, >> 168 G4double kineticEnergy) >> 169 { >> 170 //G4cout<<"G4BraggIonModel::GetParticleCharge e= "<<kineticEnergy << >> 171 // " q= " << corr->GetParticleCharge(p,mat,kineticEnergy) <<G4endl; >> 172 // this method is called only for ions >> 173 return corr->GetParticleCharge(p,mat,kineticEnergy); >> 174 } >> 175 >> 176 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 177 >> 178 G4double G4BraggIonModel::ComputeCrossSectionPerElectron( >> 179 const G4ParticleDefinition* p, >> 180 G4double kineticEnergy, >> 181 G4double cutEnergy, >> 182 G4double maxKinEnergy) >> 183 { >> 184 G4double cross = 0.0; >> 185 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); >> 186 G4double maxEnergy = std::min(tmax,maxKinEnergy); >> 187 if(cutEnergy < tmax) { >> 188 >> 189 G4double energy = kineticEnergy + mass; >> 190 G4double energy2 = energy*energy; >> 191 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; >> 192 cross = (maxEnergy - cutEnergy)/(cutEnergy*maxEnergy) >> 193 - beta2*G4Log(maxEnergy/cutEnergy)/tmax; >> 194 >> 195 if( 0.0 < spin ) { cross += 0.5*(maxEnergy - cutEnergy)/energy2; } >> 196 >> 197 cross *= twopi_mc2_rcl2*chargeSquare/beta2; >> 198 } >> 199 // G4cout << "BR: e= " << kineticEnergy << " tmin= " << cutEnergy >> 200 // << " tmax= " << tmax << " cross= " << cross << G4endl; >> 201 >> 202 return cross; 132 } 203 } 133 204 134 //....oooOO0OOooo........oooOO0OOooo........oo 205 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 135 206 136 G4double G4BraggIonModel::ComputeCrossSectionP 207 G4double G4BraggIonModel::ComputeCrossSectionPerAtom( 137 con 208 const G4ParticleDefinition* p, 138 << 209 G4double kineticEnergy, 139 210 G4double Z, G4double, 140 211 G4double cutEnergy, 141 212 G4double maxEnergy) 142 { 213 { 143 G4double sigma = << 214 G4double cross = Z*ComputeCrossSectionPerElectron 144 Z*ComputeCrossSectionPerElectron(p,kinEner << 215 (p,kineticEnergy,cutEnergy,maxEnergy); 145 if(isAlpha) { << 216 return cross; 146 sigma *= (HeEffChargeSquare(Z, kinEnergy/C << 147 } << 148 return sigma; << 149 } 217 } 150 218 151 //....oooOO0OOooo........oooOO0OOooo........oo 219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 152 220 153 G4double G4BraggIonModel::CrossSectionPerVolum 221 G4double G4BraggIonModel::CrossSectionPerVolume( 154 con 222 const G4Material* material, 155 con 223 const G4ParticleDefinition* p, 156 << 224 G4double kineticEnergy, 157 225 G4double cutEnergy, 158 226 G4double maxEnergy) 159 { 227 { 160 G4double sigma = material->GetElectronDensit << 228 G4double eDensity = material->GetElectronDensity(); 161 ComputeCrossSectionPerElectron(p,kinEnergy << 229 G4double cross = eDensity*ComputeCrossSectionPerElectron 162 if(isAlpha) { << 230 (p,kineticEnergy,cutEnergy,maxEnergy); 163 const G4double zeff = material->GetTotNbOf << 231 return cross; 164 material->GetTotNbOfAtomsPerVolume(); << 165 sigma *= (HeEffChargeSquare(zeff, kinEnerg << 166 } << 167 return sigma; << 168 } 232 } 169 233 170 //....oooOO0OOooo........oooOO0OOooo........oo 234 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 171 235 172 G4double G4BraggIonModel::ComputeDEDXPerVolume 236 G4double G4BraggIonModel::ComputeDEDXPerVolume(const G4Material* material, 173 237 const G4ParticleDefinition* p, 174 238 G4double kineticEnergy, 175 << 239 G4double cutEnergy) 176 { 240 { 177 const G4double tmax = MaxSecondaryEnergy(p, << 241 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 178 const G4double tlim = lowestKinEnergy*massRa << 242 G4double tmin = min(cutEnergy, tmax); 179 const G4double tmin = std::max(std::min(cut, << 243 G4double tkin = kineticEnergy/massRate; 180 G4double dedx = 0.0; << 244 G4double dedx = 0.0; 181 245 182 if(kineticEnergy < tlim) { << 246 if(tkin < lowestKinEnergy) { 183 dedx = HeDEDX(material, tlim)*std::sqrt(ki << 247 dedx = DEDX(material, lowestKinEnergy)*sqrt(tkin/lowestKinEnergy); 184 } else { 248 } else { 185 dedx = HeDEDX(material, kineticEnergy); << 249 dedx = DEDX(material, tkin); >> 250 } 186 251 187 if (tmin < tmax) { << 252 if (cutEnergy < tmax) { 188 const G4double tau = kineticEnergy/mass; << 253 189 const G4double x = tmin/tmax; << 254 G4double tau = kineticEnergy/mass; 190 << 255 G4double gam = tau + 1.0; 191 G4double del = << 256 G4double bg2 = tau * (tau+2.0); 192 (G4Log(x)*(tau + 1.)*(tau + 1.)/(tau * << 257 G4double beta2 = bg2/(gam*gam); 193 CLHEP::twopi_mc2_rcl2*material->GetElectronD << 258 G4double x = tmin/tmax; 194 if(isAlpha) { << 259 195 const G4double zeff = material->GetTotNbOfEl << 260 dedx += (G4Log(x) + (1.0 - x)*beta2) * twopi_mc2_rcl2 196 material->GetTotNbOfAtomsPerVolume(); << 261 * (material->GetElectronDensity())/beta2; 197 heChargeSquare = HeEffChargeSquare(zeff, kin << 198 del *= heChargeSquare; << 199 } << 200 dedx += del; << 201 } << 202 } 262 } >> 263 >> 264 // now compute the total ionization loss >> 265 203 dedx = std::max(dedx, 0.0); 266 dedx = std::max(dedx, 0.0); 204 /* << 267 dedx *= chargeSquare; 205 G4cout << "BraggIon: " << material->GetNam << 268 /* 206 << " E(MeV)=" << kineticEnergy/MeV << 269 G4cout << "Bragg: tkin(MeV) = " << tkin/MeV << " dedx(MeVxcm^2/g) = " 207 << " Tmin(MeV)=" << tmin << " dedx( << 270 << dedx*gram/(MeV*cm2*material->GetDensity()) 208 << dedx*gram/(MeV*cm2*material->Get << 271 << " q2 = " << chargeSquare << G4endl; 209 << " q2=" << chargeSquare << G4endl << 210 */ 272 */ 211 return dedx; 273 return dedx; 212 } 274 } 213 275 214 //....oooOO0OOooo........oooOO0OOooo........oo 276 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 215 277 216 void G4BraggIonModel::CorrectionsAlongStep(con 278 void G4BraggIonModel::CorrectionsAlongStep(const G4MaterialCutsCouple* couple, 217 con 279 const G4DynamicParticle* dp, 218 con << 280 G4double& eloss, 219 G4d << 281 G4double&, >> 282 G4double /*length*/) 220 { 283 { 221 // no correction for alpha << 284 // this method is called only for ions 222 if(isAlpha) { return; } << 285 const G4ParticleDefinition* p = dp->GetDefinition(); >> 286 const G4Material* mat = couple->GetMaterial(); >> 287 G4double preKinEnergy = dp->GetKineticEnergy(); >> 288 G4double e = preKinEnergy - eloss*0.5; >> 289 if(e < 0.0) { e = preKinEnergy*0.5; } 223 290 224 // no correction at a small step at the last << 291 G4double q2 = corr->EffectiveChargeSquareRatio(p,mat,e); 225 const G4double preKinEnergy = dp->GetKinetic << 292 GetModelOfFluctuations()->SetParticleAndCharge(p, q2); 226 if(eloss >= preKinEnergy || eloss < preKinEn << 293 G4double qfactor = q2*corr->EffectiveChargeCorrection(p,mat,e)/corrFactor; >> 294 eloss *= qfactor; 227 295 228 // corrections only for ions << 296 //G4cout << "G4BraggIonModel::CorrectionsAlongStep e= " << e 229 const G4ParticleDefinition* p = dp->GetDefin << 297 // << " qfactor= " << qfactor << " " << p->GetParticleName() <<G4endl; 230 if(p != particle) { SetParticle(p); } << 298 } 231 299 232 // effective energy and charge at a step << 300 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 233 const G4Material* mat = couple->GetMaterial( << 301 234 const G4double e = std::max(preKinEnergy - e << 302 void G4BraggIonModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 235 const G4double q20 = corr->EffectiveChargeSq << 303 const G4MaterialCutsCouple* couple, 236 const G4double q2 = corr->EffectiveChargeSqu << 304 const G4DynamicParticle* dp, 237 const G4double qfactor = q2/q20; << 305 G4double xmin, 238 /* << 306 G4double maxEnergy) 239 G4cout << "G4BraggIonModel::CorrectionsAlo << 307 { 240 << preKinEnergy << " Eeff(MeV)=" << e << 308 G4double tmax = MaxSecondaryKinEnergy(dp); 241 << " eloss=" << eloss << " elossnew=" << e << 309 G4double xmax = std::min(tmax, maxEnergy); 242 << " qfactor=" << qfactor << " Qpre=" << q << 310 if(xmin >= xmax) { return; } 243 << p->GetParticleName() <<G4endl; << 311 244 */ << 312 G4double kineticEnergy = dp->GetKineticEnergy(); 245 eloss *= qfactor; << 313 G4double energy = kineticEnergy + mass; >> 314 G4double energy2 = energy*energy; >> 315 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; >> 316 G4double grej = 1.0; >> 317 G4double deltaKinEnergy, f; >> 318 >> 319 CLHEP::HepRandomEngine* rndmEngineMod = G4Random::getTheEngine(); >> 320 G4double rndm[2]; >> 321 >> 322 // sampling follows ... >> 323 do { >> 324 rndmEngineMod->flatArray(2, rndm); >> 325 deltaKinEnergy = xmin*xmax/(xmin*(1.0 - rndm[0]) + xmax*rndm[0]); >> 326 >> 327 f = 1.0 - beta2*deltaKinEnergy/tmax; >> 328 >> 329 if(f > grej) { >> 330 G4cout << "G4BraggIonModel::SampleSecondary Warning! " >> 331 << "Majorant " << grej << " < " >> 332 << f << " for e= " << deltaKinEnergy >> 333 << G4endl; >> 334 } >> 335 >> 336 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko >> 337 } while( grej*rndm[1] >= f ); >> 338 >> 339 G4ThreeVector deltaDirection; >> 340 >> 341 if(UseAngularGeneratorFlag()) { >> 342 const G4Material* mat = couple->GetMaterial(); >> 343 G4int Z = SelectRandomAtomNumber(mat); >> 344 >> 345 deltaDirection = >> 346 GetAngularDistribution()->SampleDirection(dp, deltaKinEnergy, Z, mat); >> 347 >> 348 } else { >> 349 >> 350 G4double deltaMomentum = >> 351 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); >> 352 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) / >> 353 (deltaMomentum * dp->GetTotalMomentum()); >> 354 if(cost > 1.0) { cost = 1.0; } >> 355 G4double sint = sqrt((1.0 - cost)*(1.0 + cost)); >> 356 >> 357 G4double phi = twopi*rndmEngineMod->flat(); >> 358 >> 359 deltaDirection.set(sint*cos(phi),sint*sin(phi), cost) ; >> 360 deltaDirection.rotateUz(dp->GetMomentumDirection()); >> 361 } >> 362 >> 363 // create G4DynamicParticle object for delta ray >> 364 G4DynamicParticle* delta = >> 365 new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy); >> 366 >> 367 vdp->push_back(delta); >> 368 >> 369 // Change kinematics of primary particle >> 370 kineticEnergy -= deltaKinEnergy; >> 371 G4ThreeVector finalP = dp->GetMomentum() - delta->GetMomentum(); >> 372 finalP = finalP.unit(); >> 373 >> 374 fParticleChange->SetProposedKineticEnergy(kineticEnergy); >> 375 fParticleChange->SetProposedMomentumDirection(finalP); 246 } 376 } 247 377 248 //....oooOO0OOooo........oooOO0OOooo........oo 378 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 249 379 250 G4int G4BraggIonModel::HasMaterialForHe(const << 380 G4double G4BraggIonModel::MaxSecondaryEnergy(const G4ParticleDefinition* pd, >> 381 G4double kinEnergy) 251 { 382 { 252 const G4String& chFormula = mat->GetChemical << 383 if(pd != particle) { SetParticle(pd); } 253 if(chFormula.empty()) { return -1; } << 384 G4double tau = kinEnergy/mass; >> 385 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) / >> 386 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio); >> 387 return tmax; >> 388 } >> 389 >> 390 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 391 >> 392 G4bool G4BraggIonModel::HasMaterial(const G4Material*) >> 393 { >> 394 return false; >> 395 /* >> 396 G4String chFormula = material->GetChemicalFormula(); >> 397 if("" == chFormula) { return false; } 254 398 255 // ICRU Report N49, 1993. Ziegler model for 399 // ICRU Report N49, 1993. Ziegler model for He. 256 400 257 static const G4int numberOfMolecula = 11; << 401 static const size_t numberOfMolecula = 11; 258 static const G4String molName[numberOfMolecu 402 static const G4String molName[numberOfMolecula] = { 259 "CaF_2", "Cellulose_Nitrate", "LiF", "Po 403 "CaF_2", "Cellulose_Nitrate", "LiF", "Policarbonate", 260 "(C_2H_4)_N-Polyethylene", "(C_2H_4)_N-Po 404 "(C_2H_4)_N-Polyethylene", "(C_2H_4)_N-Polymethly_Methacralate", 261 "Polysterene", "SiO_2", "NaI", "H_2O", 405 "Polysterene", "SiO_2", "NaI", "H_2O", 262 "Graphite" }; 406 "Graphite" }; 263 407 264 // Search for the material in the table 408 // Search for the material in the table 265 for (G4int i=0; i<numberOfMolecula; ++i) { << 409 for (size_t i=0; i<numberOfMolecula; ++i) { 266 if (chFormula == molName[i]) { << 410 if (chFormula == molName[i]) { 267 return i; << 411 iASTAR = fASTAR->GetIndex(matName[i]); >> 412 break; 268 } 413 } 269 } 414 } 270 return -1; << 415 return (iASTAR >= 0); >> 416 */ 271 } 417 } 272 418 273 //....oooOO0OOooo........oooOO0OOooo........oo 419 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 274 420 275 G4double G4BraggIonModel::HeStoppingPower(cons << 421 G4double G4BraggIonModel::StoppingPower(const G4Material* material, >> 422 G4double kineticEnergy) 276 { 423 { 277 G4double ionloss = 0.0; << 424 G4double ionloss = 0.0 ; >> 425 278 if (iMolecula >= 0) { 426 if (iMolecula >= 0) { 279 427 280 // The data and the fit from: 428 // The data and the fit from: 281 // ICRU Report N49, 1993. Ziegler's model 429 // ICRU Report N49, 1993. Ziegler's model for alpha 282 // He energy in internal units of parametr 430 // He energy in internal units of parametrisation formula (MeV) 283 // Input scaled energy of a proton or Gene << 431 284 G4double T = kineticEnergy/(massRate*CLHEP << 432 G4double T = kineticEnergy*rateMassHe2p/MeV ; 285 433 286 static const G4float a[11][5] = { 434 static const G4float a[11][5] = { 287 {9.43672f, 0.54398f, 84.341f, 1.3705f, 435 {9.43672f, 0.54398f, 84.341f, 1.3705f, 57.422f}, 288 {67.1503f, 0.41409f, 404.512f, 148.97f, 436 {67.1503f, 0.41409f, 404.512f, 148.97f, 20.99f}, 289 {5.11203f, 0.453f, 36.718f, 50.6f, 437 {5.11203f, 0.453f, 36.718f, 50.6f, 28.058f}, 290 {61.793f, 0.48445f, 361.537f, 57.889f, 438 {61.793f, 0.48445f, 361.537f, 57.889f, 50.674f}, 291 {7.83464f, 0.49804f, 160.452f, 3.192f, 439 {7.83464f, 0.49804f, 160.452f, 3.192f, 0.71922f}, 292 {19.729f, 0.52153f, 162.341f, 58.35f, 440 {19.729f, 0.52153f, 162.341f, 58.35f, 25.668f}, 293 {26.4648f, 0.50112f, 188.913f, 30.079f, 441 {26.4648f, 0.50112f, 188.913f, 30.079f, 16.509f}, 294 {7.8655f, 0.5205f, 63.96f, 51.32f, 442 {7.8655f, 0.5205f, 63.96f, 51.32f, 67.775f}, 295 {8.8965f, 0.5148f, 339.36f, 1.7205f, 443 {8.8965f, 0.5148f, 339.36f, 1.7205f, 0.70423f}, 296 {2.959f, 0.53255f, 34.247f, 60.655f, 444 {2.959f, 0.53255f, 34.247f, 60.655f, 15.153f}, 297 {3.80133f, 0.41590f, 12.9966f, 117.83f, 445 {3.80133f, 0.41590f, 12.9966f, 117.83f, 242.28f} }; 298 446 299 static const G4double atomicWeight[11] = { 447 static const G4double atomicWeight[11] = { 300 101.96128f, 44.0098f, 16.0426f, 28.0536 448 101.96128f, 44.0098f, 16.0426f, 28.0536f, 42.0804f, 301 104.1512f, 44.665f, 60.0843f, 18.0152 449 104.1512f, 44.665f, 60.0843f, 18.0152f, 18.0152f, 12.0f}; 302 450 303 const G4int i = iMolecula; << 451 G4int i = iMolecula; 304 452 305 G4double slow = (G4double)(a[i][0]); 453 G4double slow = (G4double)(a[i][0]); 306 454 307 G4double x1 = (G4double)(a[i][1]); 455 G4double x1 = (G4double)(a[i][1]); 308 G4double x2 = (G4double)(a[i][2]); 456 G4double x2 = (G4double)(a[i][2]); 309 G4double x3 = (G4double)(a[i][3]); 457 G4double x3 = (G4double)(a[i][3]); 310 G4double x4 = (G4double)(a[i][4]); 458 G4double x4 = (G4double)(a[i][4]); 311 459 312 // Free electron gas model 460 // Free electron gas model 313 if ( T < 0.001 ) { 461 if ( T < 0.001 ) { 314 G4double shigh = G4Log( 1.0 + x3*1000.0 462 G4double shigh = G4Log( 1.0 + x3*1000.0 + x4*0.001 ) *x2*1000.0; 315 ionloss = slow*shigh / (slow + shigh) ; 463 ionloss = slow*shigh / (slow + shigh) ; 316 ionloss *= std::sqrt(T*1000.0) ; << 464 ionloss *= sqrt(T*1000.0) ; 317 465 318 // Main parametrisation 466 // Main parametrisation 319 } else { 467 } else { 320 slow *= G4Exp(G4Log(T*1000.0)*x1) ; 468 slow *= G4Exp(G4Log(T*1000.0)*x1) ; 321 G4double shigh = G4Log( 1.0 + x3/T + x4* 469 G4double shigh = G4Log( 1.0 + x3/T + x4*T ) * x2/T ; 322 ionloss = slow*shigh / (slow + shigh) ; 470 ionloss = slow*shigh / (slow + shigh) ; 323 /* 471 /* 324 G4cout << "## " << i << ". T= " << T 472 G4cout << "## " << i << ". T= " << T << " slow= " << slow 325 << " a0= " << a[i][0] << " a1= " << a 473 << " a0= " << a[i][0] << " a1= " << a[i][1] 326 << " shigh= " << shigh 474 << " shigh= " << shigh 327 << " dedx= " << ionloss << " q^2= " < 475 << " dedx= " << ionloss << " q^2= " << HeEffChargeSquare(z, T*MeV) 328 << G4endl; 476 << G4endl; 329 */ 477 */ 330 } 478 } 331 ionloss = std::max(ionloss, 0.0) * atomicW << 479 ionloss = std::max(ionloss, 0.0); >> 480 >> 481 // He effective charge >> 482 G4double aa = (G4double)atomicWeight[iMolecula]; >> 483 ionloss /= (HeEffChargeSquare(0.5*aa, T)*aa); >> 484 >> 485 // pure material (normally not the case for this function) >> 486 } else if(1 == (material->GetNumberOfElements())) { >> 487 G4double z = material->GetZ() ; >> 488 ionloss = ElectronicStoppingPower( z, kineticEnergy ) ; 332 } 489 } >> 490 333 return ionloss; 491 return ionloss; 334 } 492 } 335 493 336 //....oooOO0OOooo........oooOO0OOooo........oo 494 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 337 495 338 G4double G4BraggIonModel::HeElectronicStopping << 496 G4double G4BraggIonModel::ElectronicStoppingPower(G4double z, 339 const G4double kinet << 497 G4double kineticEnergy) const 340 { 498 { 341 G4double ionloss ; 499 G4double ionloss ; 342 G4int i = std::min(z-1, 91); // index of at << 500 G4int i = G4lrint(z)-1 ; // index of atom 343 //G4cout << "ElectronicStoppingPower z=" << << 501 if(i < 0) i = 0 ; 344 // << " E=" << kineticEnergy << G4endl; << 502 if(i > 91) i = 91 ; >> 503 345 // The data and the fit from: 504 // The data and the fit from: 346 // ICRU Report 49, 1993. Ziegler's type of p 505 // ICRU Report 49, 1993. Ziegler's type of parametrisations. 347 // Proton kinetic energy for parametrisation 506 // Proton kinetic energy for parametrisation (keV/amu) >> 507 348 // He energy in internal units of parametris 508 // He energy in internal units of parametrisation formula (MeV) 349 //G4double T = kineticEnergy*rateMassHe2p/CL << 509 G4double T = kineticEnergy*rateMassHe2p/MeV ; 350 G4double T = kineticEnergy/CLHEP::MeV; << 351 510 352 static const G4float a[92][5] = { 511 static const G4float a[92][5] = { 353 { 0.35485f, 0.6456f, 6.01525f, 20.8933f, 512 { 0.35485f, 0.6456f, 6.01525f, 20.8933f, 4.3515f 354 },{ 0.58f, 0.59f, 6.3f, 130.0f, 513 },{ 0.58f, 0.59f, 6.3f, 130.0f, 44.07f 355 },{ 1.42f, 0.49f, 12.25f, 32.0f, 514 },{ 1.42f, 0.49f, 12.25f, 32.0f, 9.161f 356 },{ 2.206f, 0.51f, 15.32f, 0.25f, 515 },{ 2.206f, 0.51f, 15.32f, 0.25f, 8.995f //Be Ziegler77 357 // },{ 2.1895f, 0.47183,7.2362f, 134 516 // },{ 2.1895f, 0.47183,7.2362f, 134.30f, 197.96f //Be from ICRU 358 },{ 3.691f, 0.4128f, 18.48f, 50.72f, 517 },{ 3.691f, 0.4128f, 18.48f, 50.72f, 9.0f 359 },{ 3.83523f, 0.42993f,12.6125f, 227.41f, 518 },{ 3.83523f, 0.42993f,12.6125f, 227.41f, 188.97f 360 // },{ 1.9259f, 0.5550f, 27.15125f, 26 519 // },{ 1.9259f, 0.5550f, 27.15125f, 26.0665f, 6.2768f //too many digits 361 },{ 1.9259f, 0.5550f, 27.1513f, 26.0665f, 520 },{ 1.9259f, 0.5550f, 27.1513f, 26.0665f, 6.2768f 362 },{ 2.81015f, 0.4759f, 50.0253f, 10.556f, 521 },{ 2.81015f, 0.4759f, 50.0253f, 10.556f, 1.0382f 363 },{ 1.533f, 0.531f, 40.44f, 18.41f, 522 },{ 1.533f, 0.531f, 40.44f, 18.41f, 2.718f 364 },{ 2.303f, 0.4861f, 37.01f, 37.96f, 523 },{ 2.303f, 0.4861f, 37.01f, 37.96f, 5.092f 365 // Z= 11-20 524 // Z= 11-20 366 },{ 9.894f, 0.3081f, 23.65f, 0.384f, 525 },{ 9.894f, 0.3081f, 23.65f, 0.384f, 92.93f 367 },{ 4.3f, 0.47f, 34.3f, 3.3f, 526 },{ 4.3f, 0.47f, 34.3f, 3.3f, 12.74f 368 },{ 2.5f, 0.625f, 45.7f, 0.1f, 527 },{ 2.5f, 0.625f, 45.7f, 0.1f, 4.359f 369 },{ 2.1f, 0.65f, 49.34f, 1.788f, 528 },{ 2.1f, 0.65f, 49.34f, 1.788f, 4.133f 370 },{ 1.729f, 0.6562f, 53.41f, 2.405f, 529 },{ 1.729f, 0.6562f, 53.41f, 2.405f, 3.845f 371 },{ 1.402f, 0.6791f, 58.98f, 3.528f, 530 },{ 1.402f, 0.6791f, 58.98f, 3.528f, 3.211f 372 },{ 1.117f, 0.7044f, 69.69f, 3.705f, 531 },{ 1.117f, 0.7044f, 69.69f, 3.705f, 2.156f 373 },{ 2.291f, 0.6284f, 73.88f, 4.478f, 532 },{ 2.291f, 0.6284f, 73.88f, 4.478f, 2.066f 374 },{ 8.554f, 0.3817f, 83.61f, 11.84f, 533 },{ 8.554f, 0.3817f, 83.61f, 11.84f, 1.875f 375 },{ 6.297f, 0.4622f, 65.39f, 10.14f, 534 },{ 6.297f, 0.4622f, 65.39f, 10.14f, 5.036f 376 // Z= 21-30 535 // Z= 21-30 377 },{ 5.307f, 0.4918f, 61.74f, 12.4f, 536 },{ 5.307f, 0.4918f, 61.74f, 12.4f, 6.665f 378 },{ 4.71f, 0.5087f, 65.28f, 8.806f, 537 },{ 4.71f, 0.5087f, 65.28f, 8.806f, 5.948f 379 },{ 6.151f, 0.4524f, 83.0f, 18.31f, 538 },{ 6.151f, 0.4524f, 83.0f, 18.31f, 2.71f 380 },{ 6.57f, 0.4322f, 84.76f, 15.53f, 539 },{ 6.57f, 0.4322f, 84.76f, 15.53f, 2.779f 381 },{ 5.738f, 0.4492f, 84.6f, 14.18f, 540 },{ 5.738f, 0.4492f, 84.6f, 14.18f, 3.101f 382 },{ 5.013f, 0.4707f, 85.8f, 16.55f, 541 },{ 5.013f, 0.4707f, 85.8f, 16.55f, 3.211f 383 },{ 4.32f, 0.4947f, 76.14f, 10.85f, 542 },{ 4.32f, 0.4947f, 76.14f, 10.85f, 5.441f 384 },{ 4.652f, 0.4571f, 80.73f, 22.0f, 543 },{ 4.652f, 0.4571f, 80.73f, 22.0f, 4.952f 385 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 544 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 6.385f 386 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 545 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 7.502f 387 // Z= 31-40 546 // Z= 31-40 388 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 547 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 8.514f 389 },{ 5.746f, 0.4662f, 79.24f, 1.185f, 548 },{ 5.746f, 0.4662f, 79.24f, 1.185f, 7.993f 390 },{ 2.792f, 0.6346f, 106.1f, 0.2986f, 549 },{ 2.792f, 0.6346f, 106.1f, 0.2986f, 2.331f 391 },{ 4.667f, 0.5095f, 124.3f, 2.102f, 550 },{ 4.667f, 0.5095f, 124.3f, 2.102f, 1.667f 392 },{ 2.44f, 0.6346f, 105.0f, 0.83f, 551 },{ 2.44f, 0.6346f, 105.0f, 0.83f, 2.851f 393 },{ 1.413f, 0.7377f, 147.9f, 1.466f, 552 },{ 1.413f, 0.7377f, 147.9f, 1.466f, 1.016f 394 },{ 11.72f, 0.3826f, 102.8f, 9.231f, 553 },{ 11.72f, 0.3826f, 102.8f, 9.231f, 4.371f 395 },{ 7.126f, 0.4804f, 119.3f, 5.784f, 554 },{ 7.126f, 0.4804f, 119.3f, 5.784f, 2.454f 396 },{ 11.61f, 0.3955f, 146.7f, 7.031f, 555 },{ 11.61f, 0.3955f, 146.7f, 7.031f, 1.423f 397 },{ 10.99f, 0.41f, 163.9f, 7.1f, 556 },{ 10.99f, 0.41f, 163.9f, 7.1f, 1.052f 398 // Z= 41-50 557 // Z= 41-50 399 },{ 9.241f, 0.4275f, 163.1f, 7.954f, 558 },{ 9.241f, 0.4275f, 163.1f, 7.954f, 1.102f 400 },{ 9.276f, 0.418f, 157.1f, 8.038f, 559 },{ 9.276f, 0.418f, 157.1f, 8.038f, 1.29f 401 },{ 3.999f, 0.6152f, 97.6f, 1.297f, 560 },{ 3.999f, 0.6152f, 97.6f, 1.297f, 5.792f 402 },{ 4.306f, 0.5658f, 97.99f, 5.514f, 561 },{ 4.306f, 0.5658f, 97.99f, 5.514f, 5.754f 403 },{ 3.615f, 0.6197f, 86.26f, 0.333f, 562 },{ 3.615f, 0.6197f, 86.26f, 0.333f, 8.689f 404 },{ 5.8f, 0.49f, 147.2f, 6.903f, 563 },{ 5.8f, 0.49f, 147.2f, 6.903f, 1.289f 405 },{ 5.6f, 0.49f, 130.0f, 10.0f, 564 },{ 5.6f, 0.49f, 130.0f, 10.0f, 2.844f 406 },{ 3.55f, 0.6068f, 124.7f, 1.112f, 565 },{ 3.55f, 0.6068f, 124.7f, 1.112f, 3.119f 407 },{ 3.6f, 0.62f, 105.8f, 0.1692f, 566 },{ 3.6f, 0.62f, 105.8f, 0.1692f, 6.026f 408 },{ 5.4f, 0.53f, 103.1f, 3.931f, 567 },{ 5.4f, 0.53f, 103.1f, 3.931f, 7.767f 409 // Z= 51-60 568 // Z= 51-60 410 },{ 3.97f, 0.6459f, 131.8f, 0.2233f, 569 },{ 3.97f, 0.6459f, 131.8f, 0.2233f, 2.723f 411 },{ 3.65f, 0.64f, 126.8f, 0.6834f, 570 },{ 3.65f, 0.64f, 126.8f, 0.6834f, 3.411f 412 },{ 3.118f, 0.6519f, 164.9f, 1.208f, 571 },{ 3.118f, 0.6519f, 164.9f, 1.208f, 1.51f 413 },{ 3.949f, 0.6209f, 200.5f, 1.878f, 572 },{ 3.949f, 0.6209f, 200.5f, 1.878f, 0.9126f 414 },{ 14.4f, 0.3923f, 152.5f, 8.354f, 573 },{ 14.4f, 0.3923f, 152.5f, 8.354f, 2.597f 415 },{ 10.99f, 0.4599f, 138.4f, 4.811f, 574 },{ 10.99f, 0.4599f, 138.4f, 4.811f, 3.726f 416 },{ 16.6f, 0.3773f, 224.1f, 6.28f, 575 },{ 16.6f, 0.3773f, 224.1f, 6.28f, 0.9121f 417 },{ 10.54f, 0.4533f, 159.3f, 4.832f, 576 },{ 10.54f, 0.4533f, 159.3f, 4.832f, 2.529f 418 },{ 10.33f, 0.4502f, 162.0f, 5.132f, 577 },{ 10.33f, 0.4502f, 162.0f, 5.132f, 2.444f 419 },{ 10.15f, 0.4471f, 165.6f, 5.378f, 578 },{ 10.15f, 0.4471f, 165.6f, 5.378f, 2.328f 420 // Z= 61-70 579 // Z= 61-70 421 },{ 9.976f, 0.4439f, 168.0f, 5.721f, 580 },{ 9.976f, 0.4439f, 168.0f, 5.721f, 2.258f 422 },{ 9.804f, 0.4408f, 176.2f, 5.675f, 581 },{ 9.804f, 0.4408f, 176.2f, 5.675f, 1.997f 423 },{ 14.22f, 0.363f, 228.4f, 7.024f, 582 },{ 14.22f, 0.363f, 228.4f, 7.024f, 1.016f 424 },{ 9.952f, 0.4318f, 233.5f, 5.065f, 583 },{ 9.952f, 0.4318f, 233.5f, 5.065f, 0.9244f 425 },{ 9.272f, 0.4345f, 210.0f, 4.911f, 584 },{ 9.272f, 0.4345f, 210.0f, 4.911f, 1.258f 426 },{ 10.13f, 0.4146f, 225.7f, 5.525f, 585 },{ 10.13f, 0.4146f, 225.7f, 5.525f, 1.055f 427 },{ 8.949f, 0.4304f, 213.3f, 5.071f, 586 },{ 8.949f, 0.4304f, 213.3f, 5.071f, 1.221f 428 },{ 11.94f, 0.3783f, 247.2f, 6.655f, 587 },{ 11.94f, 0.3783f, 247.2f, 6.655f, 0.849f 429 },{ 8.472f, 0.4405f, 195.5f, 4.051f, 588 },{ 8.472f, 0.4405f, 195.5f, 4.051f, 1.604f 430 },{ 8.301f, 0.4399f, 203.7f, 3.667f, 589 },{ 8.301f, 0.4399f, 203.7f, 3.667f, 1.459f 431 // Z= 71-80 590 // Z= 71-80 432 },{ 6.567f, 0.4858f, 193.0f, 2.65f, 591 },{ 6.567f, 0.4858f, 193.0f, 2.65f, 1.66f 433 },{ 5.951f, 0.5016f, 196.1f, 2.662f, 592 },{ 5.951f, 0.5016f, 196.1f, 2.662f, 1.589f 434 },{ 7.495f, 0.4523f, 251.4f, 3.433f, 593 },{ 7.495f, 0.4523f, 251.4f, 3.433f, 0.8619f 435 },{ 6.335f, 0.4825f, 255.1f, 2.834f, 594 },{ 6.335f, 0.4825f, 255.1f, 2.834f, 0.8228f 436 },{ 4.314f, 0.5558f, 214.8f, 2.354f, 595 },{ 4.314f, 0.5558f, 214.8f, 2.354f, 1.263f 437 },{ 4.02f, 0.5681f, 219.9f, 2.402f, 596 },{ 4.02f, 0.5681f, 219.9f, 2.402f, 1.191f 438 },{ 3.836f, 0.5765f, 210.2f, 2.742f, 597 },{ 3.836f, 0.5765f, 210.2f, 2.742f, 1.305f 439 },{ 4.68f, 0.5247f, 244.7f, 2.749f, 598 },{ 4.68f, 0.5247f, 244.7f, 2.749f, 0.8962f 440 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 599 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 1.416f //Au Z77 441 // },{ 3.223f, 0.5883f, 232.7f, 2.9 600 // },{ 3.223f, 0.5883f, 232.7f, 2.954f, 1.05 //Au ICRU 442 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 601 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 1.416f 443 // Z= 81-90 602 // Z= 81-90 444 },{ 4.728f, 0.5522f, 217.0f, 3.091f, 603 },{ 4.728f, 0.5522f, 217.0f, 3.091f, 1.386f 445 },{ 6.18f, 0.52f, 170.0f, 4.0f, 604 },{ 6.18f, 0.52f, 170.0f, 4.0f, 3.224f 446 },{ 9.0f, 0.47f, 198.0f, 3.8f, 605 },{ 9.0f, 0.47f, 198.0f, 3.8f, 2.032f 447 },{ 2.324f, 0.6997f, 216.0f, 1.599f, 606 },{ 2.324f, 0.6997f, 216.0f, 1.599f, 1.399f 448 },{ 1.961f, 0.7286f, 223.0f, 1.621f, 607 },{ 1.961f, 0.7286f, 223.0f, 1.621f, 1.296f 449 },{ 1.75f, 0.7427f, 350.1f, 0.9789f, 608 },{ 1.75f, 0.7427f, 350.1f, 0.9789f, 0.5507f 450 },{ 10.31f, 0.4613f, 261.2f, 4.738f, 609 },{ 10.31f, 0.4613f, 261.2f, 4.738f, 0.9899f 451 },{ 7.962f, 0.519f, 235.7f, 4.347f, 610 },{ 7.962f, 0.519f, 235.7f, 4.347f, 1.313f 452 },{ 6.227f, 0.5645f, 231.9f, 3.961f, 611 },{ 6.227f, 0.5645f, 231.9f, 3.961f, 1.379f 453 },{ 5.246f, 0.5947f, 228.6f, 4.027f, 612 },{ 5.246f, 0.5947f, 228.6f, 4.027f, 1.432f 454 // Z= 91-92 613 // Z= 91-92 455 },{ 5.408f, 0.5811f, 235.7f, 3.961f, 614 },{ 5.408f, 0.5811f, 235.7f, 3.961f, 1.358f 456 },{ 5.218f, 0.5828f, 245.0f, 3.838f, 615 },{ 5.218f, 0.5828f, 245.0f, 3.838f, 1.25f} 457 }; 616 }; 458 617 459 G4double slow = (G4double)(a[i][0]); 618 G4double slow = (G4double)(a[i][0]); 460 619 461 G4double x1 = (G4double)(a[i][1]); 620 G4double x1 = (G4double)(a[i][1]); 462 G4double x2 = (G4double)(a[i][2]); 621 G4double x2 = (G4double)(a[i][2]); 463 G4double x3 = (G4double)(a[i][3]); 622 G4double x3 = (G4double)(a[i][3]); 464 G4double x4 = (G4double)(a[i][4]); 623 G4double x4 = (G4double)(a[i][4]); 465 624 466 // Free electron gas model 625 // Free electron gas model 467 if ( T < 0.001 ) { 626 if ( T < 0.001 ) { 468 G4double shigh = G4Log( 1.0 + x3*1000.0 + 627 G4double shigh = G4Log( 1.0 + x3*1000.0 + x4*0.001 )* x2*1000.0; 469 ionloss = slow*shigh*std::sqrt(T*1000.0) << 628 ionloss = slow*shigh*sqrt(T*1000.0) / (slow + shigh) ; 470 629 471 // Main parametrisation 630 // Main parametrisation 472 } else { 631 } else { 473 slow *= G4Exp(G4Log(T*1000.0)*x1); 632 slow *= G4Exp(G4Log(T*1000.0)*x1); 474 G4double shigh = G4Log( 1.0 + x3/T + x4*T 633 G4double shigh = G4Log( 1.0 + x3/T + x4*T ) * x2/T; 475 ionloss = slow*shigh / (slow + shigh) ; 634 ionloss = slow*shigh / (slow + shigh) ; 476 /* 635 /* 477 G4cout << "## " << i << ". T= " << T << " 636 G4cout << "## " << i << ". T= " << T << " slow= " << slow 478 << " a0= " << a[i][0] << " a1= " << 637 << " a0= " << a[i][0] << " a1= " << a[i][1] 479 << " shigh= " << shigh 638 << " shigh= " << shigh 480 << " dedx= " << ionloss << " q^2= " << 639 << " dedx= " << ionloss << " q^2= " << HeEffChargeSquare(z, T*MeV) 481 << G4endl; 640 << G4endl; 482 */ 641 */ 483 } 642 } 484 ionloss = std::max(ionloss, 0.0); 643 ionloss = std::max(ionloss, 0.0); >> 644 >> 645 // He effective charge >> 646 ionloss /= HeEffChargeSquare(z, T); >> 647 485 return ionloss; 648 return ionloss; 486 } 649 } 487 650 488 //....oooOO0OOooo........oooOO0OOooo........oo 651 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 489 652 490 G4double G4BraggIonModel::HeDEDX(const G4Mater << 653 G4double G4BraggIonModel::DEDX(const G4Material* material, 491 const G4double << 654 G4double kineticEnergy) 492 { 655 { 493 // aEnergy is energy of alpha << 494 G4double eloss = 0.0; 656 G4double eloss = 0.0; 495 // check DB 657 // check DB 496 if(material != currentMaterial) { 658 if(material != currentMaterial) { 497 currentMaterial = material; 659 currentMaterial = material; 498 baseMaterial = material->GetBaseMaterial() << 499 ? material->GetBaseMaterial() : material << 500 iPSTAR = -1; << 501 iASTAR = -1; 660 iASTAR = -1; 502 iMolecula = -1; 661 iMolecula = -1; 503 iICRU90 = (nullptr != fICRU90) ? fICRU90-> << 662 if( !HasMaterial(material) ) { iASTAR = fASTAR->GetIndex(material); } 504 << 505 if(iICRU90 < 0) { << 506 if(isAlpha) { << 507 iASTAR = fASTAR->GetIndex(baseMaterial); << 508 if(iASTAR < 0) { iMolecula = HasMaterialForH << 509 } else { << 510 iPSTAR = fPSTAR->GetIndex(baseMaterial); << 511 } << 512 } << 513 /* << 514 G4cout << "%%% " <<material->GetName() << << 515 << iMolecula << " iASTAR= " << iAS << 516 << " iICRU90= " << iICRU90<< G4end << 517 */ << 518 } << 519 // ICRU90 << 520 if(iICRU90 >= 0) { << 521 eloss = (isAlpha) << 522 ? fICRU90->GetElectronicDEDXforAlpha(iIC << 523 : fICRU90->GetElectronicDEDXforProton(iI << 524 if(eloss > 0.0) { return eloss*material->G << 525 } << 526 // PSTAR parameterisation << 527 if( iPSTAR >= 0 ) { << 528 return fPSTAR->GetElectronicDEDX(iPSTAR, a << 529 *material->GetDensity(); << 530 } << 531 // ASTAR << 532 if( iASTAR >= 0 ) { << 533 eloss = fASTAR->GetElectronicDEDX(iASTAR, << 534 /* << 535 G4cout << "ASTAR: E=" << aEnergy << 536 << " dedx=" << eloss*material->GetDensity << 537 << " " << particle->GetParticleName() << << 538 */ << 539 if(eloss > 0.0) { return eloss*material->G << 540 } 663 } 541 664 542 const std::size_t numberOfElements = materia << 665 const G4int numberOfElements = material->GetNumberOfElements(); 543 const G4ElementVector* theElmVector = materi << 544 const G4double* theAtomicNumDensityVector = 666 const G4double* theAtomicNumDensityVector = 545 material->GetAtomicNumDensityVector(); << 667 material->GetAtomicNumDensityVector(); >> 668 >> 669 if( iASTAR >= 0 ) { >> 670 G4double T = kineticEnergy*rateMassHe2p; >> 671 G4int zeff = G4lrint(material->GetTotNbOfElectPerVolume()/ >> 672 material->GetTotNbOfAtomsPerVolume()); >> 673 return fASTAR->GetElectronicDEDX(iASTAR, T)*material->GetDensity()/ >> 674 HeEffChargeSquare(zeff, T/MeV); >> 675 >> 676 } else if(iMolecula >= 0) { 546 677 547 // molecular data use proton stopping power << 678 eloss = StoppingPower(material, kineticEnergy)* 548 // element data from ICRU49 include data for << 679 material->GetDensity()/amu; 549 if(iMolecula >= 0) { << 550 const G4double zeff = material->GetTotNbOf << 551 material->GetTotNbOfAtomsPerVolume(); << 552 heChargeSquare = HeEffChargeSquare(zeff, a << 553 eloss = HeStoppingPower(aEnergy)*heChargeS << 554 680 555 // pure material << 681 // pure material 556 } else if(1 == numberOfElements) { 682 } else if(1 == numberOfElements) { 557 683 558 const G4Element* element = (*theElmVector) << 684 G4double z = material->GetZ(); 559 eloss = HeElectronicStoppingPower(element- << 685 eloss = ElectronicStoppingPower(z, kineticEnergy) 560 * (material->GetTotNbOfAtomsPerVolume()) << 686 * (material->GetTotNbOfAtomsPerVolume()); 561 687 562 // Brugg's rule calculation 688 // Brugg's rule calculation 563 } else { 689 } else { >> 690 const G4ElementVector* theElementVector = >> 691 material->GetElementVector() ; >> 692 564 // loop for the elements in the material 693 // loop for the elements in the material 565 for (std::size_t i=0; i<numberOfElements; << 694 for (G4int i=0; i<numberOfElements; i++) 566 const G4Element* element = (*theElmVecto << 695 { 567 eloss += HeElectronicStoppingPower(eleme << 696 const G4Element* element = (*theElementVector)[i] ; 568 * theAtomicNumDensityVector[i]; << 697 eloss += ElectronicStoppingPower(element->GetZ(), kineticEnergy) >> 698 * theAtomicNumDensityVector[i]; 569 } 699 } 570 } 700 } 571 return eloss*theZieglerFactor; 701 return eloss*theZieglerFactor; 572 } 702 } 573 703 574 //....oooOO0OOooo........oooOO0OOooo........oo 704 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 575 705 576 G4double << 706 G4double G4BraggIonModel::HeEffChargeSquare(G4double z, 577 G4BraggIonModel::HeEffChargeSquare(const G4dou << 707 G4double kinEnergyHeInMeV) const 578 const G4dou << 579 { 708 { 580 // The aproximation of He effective charge f 709 // The aproximation of He effective charge from: 581 // J.F.Ziegler, J.P. Biersack, U. Littmark 710 // J.F.Ziegler, J.P. Biersack, U. Littmark 582 // The Stopping and Range of Ions in Matter, 711 // The Stopping and Range of Ions in Matter, 583 // Vol.1, Pergamon Press, 1985 712 // Vol.1, Pergamon Press, 1985 584 713 585 static const G4double c[6] = {0.2865, 0.126 714 static const G4double c[6] = {0.2865, 0.1266, -0.001429, 586 0.02402,-0.011 715 0.02402,-0.01135, 0.001475}; 587 716 588 G4double e = std::max(0.0, G4Log(kinEnergyHe 717 G4double e = std::max(0.0, G4Log(kinEnergyHeInMeV*massFactor)); 589 G4double x = c[0] ; 718 G4double x = c[0] ; 590 G4double y = 1.0 ; 719 G4double y = 1.0 ; 591 for (G4int i=1; i<6; ++i) { 720 for (G4int i=1; i<6; ++i) { 592 y *= e; 721 y *= e; 593 x += y * c[i]; 722 x += y * c[i]; 594 } 723 } 595 724 596 G4double w = 7.6 - e ; 725 G4double w = 7.6 - e ; 597 w = 1.0 + (0.007 + 0.00005*z) * G4Exp( -w*w 726 w = 1.0 + (0.007 + 0.00005*z) * G4Exp( -w*w ) ; 598 w = 4.0 * (1.0 - G4Exp(-x)) * w * w ; 727 w = 4.0 * (1.0 - G4Exp(-x)) * w * w ; 599 728 600 return w; 729 return w; 601 } 730 } 602 731 603 //....oooOO0OOooo........oooOO0OOooo........oo 732 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 604 733 605 734