Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4BetheHeitler5DModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/standard/src/G4BetheHeitler5DModel.cc (Version 11.3.0) and /processes/electromagnetic/standard/src/G4BetheHeitler5DModel.cc (Version 10.5.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // -------------------------------------------     27 // -------------------------------------------------------------------
 28 //                                                 28 //
 29 // GEANT4 Class file                               29 // GEANT4 Class file
 30 //                                                 30 //
 31 //                                                 31 //
 32 // File name:     G4BetheHeitler5DModel.cc         32 // File name:     G4BetheHeitler5DModel.cc
 33 //                                                 33 //
 34 // Authors:                                        34 // Authors:
 35 // Igor Semeniouk and Denis Bernard,               35 // Igor Semeniouk and Denis Bernard,
 36 // LLR, Ecole polytechnique & CNRS/IN2P3, 9112     36 // LLR, Ecole polytechnique & CNRS/IN2P3, 91128 Palaiseau, France
 37 //                                                 37 //
 38 // Acknowledgement of the support of the Frenc     38 // Acknowledgement of the support of the French National Research Agency
 39 // (ANR-13-BS05-0002).                             39 // (ANR-13-BS05-0002).
 40 //                                                 40 //
 41 // Reference: Nucl. Instrum. Meth. A 899 (2018     41 // Reference: Nucl. Instrum. Meth. A 899 (2018) 85 (arXiv:1802.08253 [hep-ph])
 42 //            Nucl. Instrum. Meth., A 936 (201 << 
 43 //                                                 42 //
 44 // Class Description:                              43 // Class Description:
 45 //                                                 44 //
 46 // Generates the conversion of a high-energy p <<  45 // Generates the conversion of a high-energy photon to an e+e- pair, either in the field of an 
 47 // atomic electron (triplet) or nucleus (nucle     46 // atomic electron (triplet) or nucleus (nuclear).
 48 // Samples the five-dimensional (5D) different     47 // Samples the five-dimensional (5D) differential cross-section analytical expression:
 49 // . Non polarized conversion:                     48 // . Non polarized conversion:
 50 //   H.A. Bethe, W. Heitler, Proc. R. Soc. Lon     49 //   H.A. Bethe, W. Heitler, Proc. R. Soc. Lond. Ser. A 146 (1934) 83.
 51 // . Polarized conversion:                         50 // . Polarized conversion:
 52 //   T. H. Berlin and L. Madansky, Phys. Rev.      51 //   T. H. Berlin and L. Madansky, Phys. Rev. 78 (1950) 623,
 53 //   M. M. May, Phys. Rev. 84 (1951) 265,          52 //   M. M. May, Phys. Rev. 84 (1951) 265,
 54 //   J. M. Jauch and F. Rohrlich, The theory o     53 //   J. M. Jauch and F. Rohrlich, The theory of photons and electrons, 1976.
 55 //                                                 54 //
 56 // All the above expressions are named "Bethe-     55 // All the above expressions are named "Bethe-Heitler" here.
 57 //                                                 56 //
 58 // Bethe & Heitler, put in Feynman diagram par     57 // Bethe & Heitler, put in Feynman diagram parlance, compute only the two dominant diagrams of
 59 // the first order Born development, which is      58 // the first order Born development, which is an excellent approximation for nuclear conversion
 60 // and for high-energy triplet conversion.         59 // and for high-energy triplet conversion.
 61 //                                                 60 //
 62 // Only the linear polarisation of the incomin     61 // Only the linear polarisation of the incoming photon takes part in these expressions.
 63 // The circular polarisation of the incoming p <<  62 // The circular polarisation of the incoming photon does not (take part) and no polarisation 
 64 // is transfered to the final leptons.             63 // is transfered to the final leptons.
 65 //                                                 64 //
 66 // In case conversion takes place in the field <<  65 // In case conversion takes place in the field of an isolated nucleus or electron, the bare 
 67 // Bethe-Heitler expression is used.               66 // Bethe-Heitler expression is used.
 68 //                                                 67 //
 69 // In case the nucleus or the electron are par <<  68 // In case the nucleus or the electron are part of an atom, the screening of the target field 
 70 // by the other electrons of the atom is descr     69 // by the other electrons of the atom is described by a simple form factor, function of q2:
 71 // . nuclear: N.F. Mott, H.S.W. Massey, The Th     70 // . nuclear: N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions, 1934.
 72 // . triplet: J.A. Wheeler and W.E. Lamb, Phys     71 // . triplet: J.A. Wheeler and W.E. Lamb, Phys. Rev. 55 (1939) 858.
 73 //                                                 72 //
 74 // The nuclear form factor that affects the pr     73 // The nuclear form factor that affects the probability of very large-q2 events, is not considered.
 75 //                                                 74 //
 76 // In principle the code is valid from thresho <<  75 // In principle the code is valid from threshold, that is from 2 * m_e c^2 for nuclear and from 
 77 // 4 * m_e c^2 for triplet, up to infinity, wh <<  76 // 4 * m_e c^2 for triplet, up to infinity, while in pratice the divergence of the differential 
 78 // cross section at small q2 and, at high-ener <<  77 // cross section at small q2 and, at high-energy, at small polar angle, make it break down at 
 79 // some point that depends on machine precisio     78 // some point that depends on machine precision.
 80 //                                                 79 //
 81 // Very-high-energy (above a few tens of TeV)      80 // Very-high-energy (above a few tens of TeV) LPM suppression effects in the normalized differential
 82 // cross-section are not considered.               81 // cross-section are not considered.
 83 //                                                 82 //
 84 // The 5D differential cross section is sample <<  83 // The 5D differential cross section is sampled without any high-energy nor small 
 85 // angle approximation(s).                         84 // angle approximation(s).
 86 // The generation is strictly energy-momentum  <<  85 // The generation is strictly energy-momentum conserving when all particles in the final state 
 87 // are taken into account, that is, including      86 // are taken into account, that is, including the recoiling target.
 88 // (In contrast with the BH expressions taken      87 // (In contrast with the BH expressions taken at face values, for which the electron energy is
 89 // taken to be EMinus = GammaEnergy - EPlus)       88 // taken to be EMinus = GammaEnergy - EPlus)
 90 //                                                 89 //
 91 // Tests include the examination of 1D distrib     90 // Tests include the examination of 1D distributions: see TestEm15
 92 //                                                 91 //
 93 // Total cross sections are not computed (we i     92 // Total cross sections are not computed (we inherit from other classes).
 94 // We just convert a photon on a target when a     93 // We just convert a photon on a target when asked to do so.
 95 //                                                 94 //
 96 // Pure nuclear, pure triplet and 1/Z triplet/ <<  95 // Pure nuclear, pure triplet and 1/Z triplet/nuclear mixture can be generated. 
 97 //                                                 96 //
 98 // -------------------------------------------     97 // -------------------------------------------------------------------
 99                                                    98 
100 #include "G4BetheHeitler5DModel.hh"                99 #include "G4BetheHeitler5DModel.hh"
101 #include "G4EmParameters.hh"                      100 #include "G4EmParameters.hh"
102                                                   101 
103 #include "G4PhysicalConstants.hh"                 102 #include "G4PhysicalConstants.hh"
104 #include "G4SystemOfUnits.hh"                     103 #include "G4SystemOfUnits.hh"
105 #include "G4Electron.hh"                          104 #include "G4Electron.hh"
106 #include "G4Positron.hh"                          105 #include "G4Positron.hh"
107 #include "G4Gamma.hh"                             106 #include "G4Gamma.hh"
108 #include "G4IonTable.hh"                          107 #include "G4IonTable.hh"
109 #include "G4NucleiProperties.hh"                  108 #include "G4NucleiProperties.hh"
110                                                   109 
111 #include "Randomize.hh"                           110 #include "Randomize.hh"
112 #include "G4ParticleChangeForGamma.hh"            111 #include "G4ParticleChangeForGamma.hh"
113 #include "G4Pow.hh"                               112 #include "G4Pow.hh"
114 #include "G4Log.hh"                               113 #include "G4Log.hh"
115 #include "G4Exp.hh"                               114 #include "G4Exp.hh"
116                                                   115 
117 #include "G4LorentzVector.hh"                     116 #include "G4LorentzVector.hh"
118 #include "G4ThreeVector.hh"                       117 #include "G4ThreeVector.hh"
119 #include "G4RotationMatrix.hh"                 << 
120                                                << 
121 #include <cassert>                             << 
122                                                << 
123 const G4int kEPair = 0;                        << 
124 const G4int kMuPair = 1;                       << 
125                                                << 
126                                                   118 
127 //....oooOO0OOooo........oooOO0OOooo........oo    119 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
128                                                   120 
129 G4BetheHeitler5DModel::G4BetheHeitler5DModel(c    121 G4BetheHeitler5DModel::G4BetheHeitler5DModel(const G4ParticleDefinition* pd,
130                                              c    122                                              const G4String& nam)
131   : G4PairProductionRelModel(pd, nam),         << 123   : G4BetheHeitlerModel(pd, nam), fVerbose(1), fConversionType(0), iraw(false)
132     fLepton1(G4Electron::Definition()),fLepton << 
133     fTheMuPlus(nullptr),fTheMuMinus(nullptr),  << 
134     fVerbose(1),                               << 
135     fConversionType(0),                        << 
136     fConvMode(kEPair),                         << 
137     iraw(false)                                << 
138 {                                                 124 {
                                                   >> 125   SetLowEnergyLimit(2*CLHEP::electron_mass_c2);  
139   theIonTable = G4IonTable::GetIonTable();        126   theIonTable = G4IonTable::GetIonTable();
140   //Q: Do we need this on Model                << 127   // Verbosity levels: ( Can redefine as needed, but some consideration )
141   SetLowEnergyLimit(2*fTheElectron->GetPDGMass << 128   // 0 = nothing
                                                   >> 129   // > 2 print results
                                                   >> 130   // > 3 print rejection warning from transformation (fix bug from gammaray .. )
                                                   >> 131   // > 4 print photon direction & polarisation
142 }                                                 132 }
143                                                   133 
144 //....oooOO0OOooo........oooOO0OOooo........oo    134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
145                                                   135 
146 G4BetheHeitler5DModel::~G4BetheHeitler5DModel( << 136 G4BetheHeitler5DModel::~G4BetheHeitler5DModel()
                                                   >> 137 {}
147                                                   138 
148 //....oooOO0OOooo........oooOO0OOooo........oo    139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
149                                                   140 
150 void G4BetheHeitler5DModel::Initialise(const G    141 void G4BetheHeitler5DModel::Initialise(const G4ParticleDefinition* part,
151                const G4DataVector& vec)           142                const G4DataVector& vec)
152 {                                                 143 {
153   G4PairProductionRelModel::Initialise(part, v << 144   G4BetheHeitlerModel::Initialise(part, vec);
154                                                   145 
155   G4EmParameters* theManager = G4EmParameters:    146   G4EmParameters* theManager = G4EmParameters::Instance();
156   // place to initialise model parameters         147   // place to initialise model parameters
157   // Verbosity levels: ( Can redefine as neede << 
158   // 0 = nothing                               << 
159   // > 2 print results                         << 
160   // > 3 print rejection warning from transfor << 
161   // > 4 print photon direction & polarisation << 
162   fVerbose = theManager->Verbose();               148   fVerbose = theManager->Verbose();
163   fConversionType = theManager->GetConversionT << 149   fConversionType  = theManager->GetConversionType();
164   ////////////////////////////////////////////    150   //////////////////////////////////////////////////////////////
165   // iraw :                                       151   // iraw :
166   //      true  : isolated electron or nucleus    152   //      true  : isolated electron or nucleus.
167   //      false : inside atom -> screening for    153   //      false : inside atom -> screening form factor
168   iraw = theManager->OnIsolated();                154   iraw = theManager->OnIsolated();
169   // G4cout << "BH5DModel::Initialise verbose     155   // G4cout << "BH5DModel::Initialise verbose " << fVerbose
170   //   << " isolated " << iraw << " ctype "<<     156   //   << " isolated " << iraw << " ctype "<< fConversionType << G4endl;
171                                                << 
172   //Q: Do we need this on Model                << 
173   // The Leptons defined via SetLeptonPair(..) << 
174   SetLowEnergyLimit(2*CLHEP::electron_mass_c2) << 
175 }                                                 157 }
176                                                   158 
177 //....oooOO0OOooo........oooOO0OOooo........oo    159 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
178                                                   160 
179 void G4BetheHeitler5DModel::SetLeptonPair(cons << 161 
180          const G4ParticleDefinition* p2)       << 162 //
                                                   >> 163 // Converting from pair coordinate
                                                   >> 164 //
                                                   >> 165 void
                                                   >> 166 G4BetheHeitler5DModel::BoostG4LorentzVector(const G4LorentzVector& p,
                                                   >> 167                                             const G4LorentzVector& q,
                                                   >> 168                                             G4LorentzVector& res) const
181 {                                                 169 {
182   G4int pdg1 = p1->GetPDGEncoding();           << 170 // p : 4-vector  which will be boosted
183   G4int pdg2 = p2->GetPDGEncoding();           << 171 // q : 4-vector of new origin in the old coordinates
184   G4int pdg = std::abs(pdg1);                  << 172   const G4double pq = p.x()*q.x() + p.y()*q.y() + p.z()*q.z();
185   if ( pdg1 != -pdg2 || (pdg != 11 && pdg != 1 << 173   const G4double qq = q.x()*q.x() + q.y()*q.y() + q.z()*q.z();
186     G4ExceptionDescription ed;                 << 174   const G4double mass2  = q.t()*q.t()-qq;
187     ed << " Wrong pair of leptons: " << p1->Ge << 175   if ( mass2 > 0.0 ) {
188        << " and " << p1->GetParticleName();    << 176     const G4double mass = std::sqrt(q.t()*q.t()-qq);
189     G4Exception("G4BetheHeitler5DModel::SetLep << 177     const G4double lf = ((q.t()-mass)*pq/qq+p.t())/mass;
190     FatalErrorInArgument, ed, "");             << 178     res.set( (p.x()+q.x()*lf), (p.y()+q.y()*lf), (p.z()+q.z()*lf),
                                                   >> 179        ((p.t()*q.t()+pq)/mass) );
191   } else {                                        180   } else {
192     if ( pdg == 11 ) {                         << 181     res = p;
193       SetConversionMode(kEPair);               << 182     if ( fVerbose > 3 ) {
194       if( pdg1 == 11 ) {                       << 183       G4cout << "G4BetheHeitler5DModel::BoostG4LorentzVector Warning point not converted"
195   fLepton1 = p1;                               << 184        << G4endl << "secondary in " << p
196   fLepton2 = p2;                               << 185        << G4endl << "Pair1 " << q << G4endl;
197       } else {                                 << 
198   fLepton1 = p2;                               << 
199   fLepton2 = p1;                               << 
200       }                                        << 
201       if (fVerbose > 0)                        << 
202   G4cout << "G4BetheHeitler5DModel::SetLeptonP << 
203          << G4endl;                            << 
204     } else {                                   << 
205       SetConversionMode(kMuPair);              << 
206       if( pdg1 == 13 ) {                       << 
207   fLepton1 = p1;                               << 
208   fLepton2 = p2;                               << 
209       } else {                                 << 
210   fLepton1 = p2;                               << 
211   fLepton2 = p1;                               << 
212       }                                        << 
213       fTheMuPlus = fLepton2;                   << 
214       fTheMuMinus= fLepton1;                   << 
215       if (fVerbose > 0)                        << 
216   G4cout << "G4BetheHeitler5DModel::SetLeptonP << 
217          << G4endl;                            << 
218     }                                             186     }
219   }                                               187   }
220 }                                                 188 }
221                                                   189 
                                                   >> 190 // assuming that q.x=q.y=0.0
                                                   >> 191 void 
                                                   >> 192 G4BetheHeitler5DModel::BoostG4LorentzVector(const G4LorentzVector& p,
                                                   >> 193                                             const G4double qz,
                                                   >> 194                                             const G4double qt,
                                                   >> 195                                             const G4double lffac,
                                                   >> 196                                             const G4double imass, 
                                                   >> 197                                             G4LorentzVector& res) const
                                                   >> 198 {
                                                   >> 199 // p : 4-vector  which will be boosted
                                                   >> 200 // q : 4-vector of new origin in the old coordinates
                                                   >> 201   const G4double pq = p.z()*qz;
                                                   >> 202   const G4double lf = (lffac*pq+p.t())*imass;
                                                   >> 203   res.setZ(p.z()+qz*lf);
                                                   >> 204   res.setT((p.t()*qt+pq)*imass);  
                                                   >> 205 }
                                                   >> 206 
222 //....oooOO0OOooo........oooOO0OOooo........oo    207 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
223                                                   208 
224 G4double G4BetheHeitler5DModel::MaxDiffCrossSe << 209 G4double G4BetheHeitler5DModel::MaxDiffCrossSection(const G4double* par, 
225                                                << 210                                                     G4double Z, 
226                                                << 211                                                     G4double e, 
227                                                   212                                                     G4double loge) const
228 {                                                 213 {
229   const G4double Q = e/par[9];                    214   const G4double Q = e/par[9];
230   return par[0] * G4Exp((par[2]+loge*par[4])*l    215   return par[0] * G4Exp((par[2]+loge*par[4])*loge)
231          / (par[1]+ G4Exp(par[3]*loge)+G4Exp(p    216          / (par[1]+ G4Exp(par[3]*loge)+G4Exp(par[5]*loge))
232          * (1+par[7]*G4Exp(par[8]*G4Log(Z))*Q/    217          * (1+par[7]*G4Exp(par[8]*G4Log(Z))*Q/(1+Q));
233 }                                                 218 }
234                                                   219 
235 //....oooOO0OOooo........oooOO0OOooo........oo    220 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
236                                                   221 
237 void                                           << 222 void 
238 G4BetheHeitler5DModel::SampleSecondaries(std::    223 G4BetheHeitler5DModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
239                                          const    224                                          const G4MaterialCutsCouple* couple,
240                                          const    225                                          const G4DynamicParticle* aDynamicGamma,
241                                          G4dou    226                                          G4double, G4double)
242 {                                                 227 {
243   // MeV                                          228   // MeV
244   static const G4double ElectronMass   = CLHEP    229   static const G4double ElectronMass   = CLHEP::electron_mass_c2;
245                                                << 230   static const G4double ElectronMass2  = ElectronMass*ElectronMass;
246   const G4double LeptonMass = fLepton1->GetPDG << 
247   const G4double LeptonMass2  = LeptonMass*Lep << 
248                                                << 
249   static const G4double alpha0         = CLHEP    231   static const G4double alpha0         = CLHEP::fine_structure_const;
250     // mm                                      << 232   // mm 
251   static const G4double r0             = CLHEP    233   static const G4double r0             = CLHEP::classic_electr_radius;
252   // mbarn                                        234   // mbarn
253   static const G4double r02            = r0*r0    235   static const G4double r02            = r0*r0*1.e+25;
254   static const G4double twoPi          = CLHEP    236   static const G4double twoPi          = CLHEP::twopi;
255   static const G4double factor         = alpha    237   static const G4double factor         = alpha0 * r02 / (twoPi*twoPi);
256   //  static const G4double factor1        = p    238   //  static const G4double factor1        = pow((6.0 * pi),(1.0/3.0))/(8.*alpha0*ElectronMass);
257   static const G4double factor1        = 2.661    239   static const G4double factor1        = 2.66134007899/(8.*alpha0*ElectronMass);
258   //                                              240   //
259   G4double PairInvMassMin = 2.*LeptonMass;     << 241   static const G4double PairInvMassMin = 2.*ElectronMass;
260   G4double TrThreshold =  2.0 * ( (LeptonMass2 << 
261                                                << 
262   //                                              242   //
263   static const G4double nu[2][10] = {          << 243   static const G4double nu[10] = { 0.0227436, 0.0582046, 3.0322675,  2.8275065, 
264     //electron                                 << 244                            -0.0034004, 1.1212766, 1.8989468, 68.3492750,  
265     { 0.0227436, 0.0582046, 3.0322675, 2.82750 << 245                             0.0211186, 14.4 };
266       1.1212766, 1.8989468, 68.3492750, 0.0211 << 246   static const G4double tr[10] = { 0.0332350, 4.3942537, 2.8515925,  2.6351695, 
267     //muon                                     << 247                            -0.0031510, 1.5737305, 1.8104647, 20.6434021,
268     {0.67810E-06, 0.86037E+05, 2.0008395, 1.67 << 248                            -0.0272586, 28.9};
269      1.4222, 0.0, 263230.0, 0.0521, 51.1338}   << 249   // 
270   };                                           << 250   static const G4double para[3][2] = { {11., -16.},{-1.17, -2.95},{-2., -0.5} };
271   static const G4double tr[2][10] = {          << 
272     //electron                                 << 
273     { 0.0332350, 4.3942537, 2.8515925,  2.6351 << 
274       1.5737305, 1.8104647, 20.6434021, -0.027 << 
275     //muon                                     << 
276     {0.10382E-03, 0.14408E+17, 4.1368679, 3.26 << 
277      0.0000, 0.0, 0.0, 0.0000, 1.0000}         << 
278   };                                           << 
279   //                                           << 
280   static const G4double para[2][3][2] = {      << 
281     //electron                                 << 
282     { {11., -16.},{-1.17, -2.95},{-2., -0.5} } << 
283     //muon                                     << 
284     { {17.5, 1.},{-1.17, -2.95},{2., 6.} }     << 
285   };                                           << 
286   //                                              251   //
287   static const G4double correctionIndex = 1.4;    252   static const G4double correctionIndex = 1.4;
288   //                                              253   //
289   const G4double GammaEnergy  = aDynamicGamma-    254   const G4double GammaEnergy  = aDynamicGamma->GetKineticEnergy();
290   // Protection, Will not be true tot cross se << 
291   if ( GammaEnergy <= PairInvMassMin) { return << 
292                                                << 
293   const G4double GammaEnergy2 = GammaEnergy*Ga    255   const G4double GammaEnergy2 = GammaEnergy*GammaEnergy;
294                                                << 256   // Will not be true tot cross section = 0
295   //////////////////////////////////////////// << 257   if ( GammaEnergy <= 2.0*ElectronMass) { return; }
296   const G4ParticleMomentum GammaDirection =    << 258   //
297     aDynamicGamma->GetMomentumDirection();     << 259   const G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection();
298   G4ThreeVector GammaPolarization = aDynamicGa    260   G4ThreeVector GammaPolarization = aDynamicGamma->GetPolarization();
299                                                   261 
300   // The protection polarization perpendicular    262   // The protection polarization perpendicular to the direction vector,
301   // as it done in G4LivermorePolarizedGammaCo    263   // as it done in G4LivermorePolarizedGammaConversionModel,
302   // assuming Direction is unitary vector         264   // assuming Direction is unitary vector
303   //  (projection to plane) p_proj = p - (p o     265   //  (projection to plane) p_proj = p - (p o d)/(d o d) x d
304   if ( GammaPolarization.howOrthogonal(GammaDi    266   if ( GammaPolarization.howOrthogonal(GammaDirection) != 0) {
305     GammaPolarization -= GammaPolarization.dot    267     GammaPolarization -= GammaPolarization.dot(GammaDirection) * GammaDirection;
306   }                                               268   }
307   // End of Protection                            269   // End of Protection
308   //                                              270   //
309   const G4double GammaPolarizationMag = GammaP    271   const G4double GammaPolarizationMag = GammaPolarization.mag();
310                                                << 
311   ////////////////////////////////////////////    272   //////////////////////////////////////////////////////////////
312   // target element                               273   // target element
313   // select randomly one element constituting     274   // select randomly one element constituting the material
314   const G4Element* anElement  = SelectTargetAt << 275   const G4Element* anElement  = SelectRandomAtom(couple, fTheGamma, GammaEnergy);
315                                          aDyna << 
316   // Atomic number                                276   // Atomic number
317   const G4int Z       = anElement->GetZasInt()    277   const G4int Z       = anElement->GetZasInt();
318   const G4int A       = SelectIsotopeNumber(an    278   const G4int A       = SelectIsotopeNumber(anElement);
319   const G4double iZ13 = 1./anElement->GetIonis    279   const G4double iZ13 = 1./anElement->GetIonisation()->GetZ3();
320   const G4double targetMass = G4NucleiProperti    280   const G4double targetMass = G4NucleiProperties::GetNuclearMass(A, Z);
321                                                   281 
322   const G4double NuThreshold =   2.0 * ( (Lept << 
323   // No conversion possible below nuclear thre << 
324   if ( GammaEnergy <= NuThreshold) { return; } << 
325                                                << 
326   CLHEP::HepRandomEngine* rndmEngine = G4Rando    282   CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
327                                                   283 
328   // itriplet : true -- triplet, false -- nucl    284   // itriplet : true -- triplet, false -- nuclear.
329   G4bool itriplet = false;                        285   G4bool itriplet = false;
330   if (fConversionType == 1) {                     286   if (fConversionType == 1) {
331     itriplet = false;                             287     itriplet = false;
332   } else if (fConversionType == 2) {              288   } else if (fConversionType == 2) {
333     itriplet = true;                              289     itriplet = true;
334     if ( GammaEnergy <= TrThreshold ) return;  << 290     if ( GammaEnergy <= 4.0*ElectronMass ) return;
335   } else if ( GammaEnergy > TrThreshold ) {    << 291   } else if ( GammaEnergy > 4.0*ElectronMass ) {
336     // choose triplet or nuclear from a triple    292     // choose triplet or nuclear from a triplet/nuclear=1/Z
337     // total cross section ratio.                 293     // total cross section ratio.
338     // approximate at low energies !              294     // approximate at low energies !
339     if(rndmEngine->flat()*(Z+1) < 1.)  {          295     if(rndmEngine->flat()*(Z+1) < 1.)  {
340       itriplet = true;                            296       itriplet = true;
341     }                                             297     }
342   }                                               298   }
343                                                << 
344   //                                              299   //
345   const G4double RecoilMass  = itriplet ? Elec    300   const G4double RecoilMass  = itriplet ? ElectronMass : targetMass;
346   const G4double RecoilMass2 = RecoilMass*Reco    301   const G4double RecoilMass2 = RecoilMass*RecoilMass;
347   const G4double sCMS        = 2.*RecoilMass*G    302   const G4double sCMS        = 2.*RecoilMass*GammaEnergy + RecoilMass2;
348   const G4double sCMSPlusRM2 = sCMS + RecoilMa    303   const G4double sCMSPlusRM2 = sCMS + RecoilMass2;
349   const G4double sqrts       = std::sqrt(sCMS)    304   const G4double sqrts       = std::sqrt(sCMS);
350   const G4double isqrts2     = 1./(2.*sqrts);     305   const G4double isqrts2     = 1./(2.*sqrts);
351   //                                              306   //
352   const G4double PairInvMassMax   = sqrts-Reco    307   const G4double PairInvMassMax   = sqrts-RecoilMass;
353   const G4double PairInvMassRange = PairInvMas    308   const G4double PairInvMassRange = PairInvMassMax/PairInvMassMin;
354   const G4double lnPairInvMassRange = G4Log(Pa    309   const G4double lnPairInvMassRange = G4Log(PairInvMassRange);
355                                                   310 
356   // initial state. Defines z axis of "0" fram    311   // initial state. Defines z axis of "0" frame as along photon propagation.
357   // Since CMS(0., 0., GammaEnergy, GammaEnerg << 312   // create 4-vectors: gamma0 + target0 and CMS=gamma0+target0
358   const G4double betaCMS = G4LorentzVector(0.0 << 313   // Since CMS(0., 0., GammaEnergy, GammaEnergy+RecoilMass) set some constants 
359                                                << 314   // for the special boost that makes use of the form of CMS 4-vector 
                                                   >> 315   const G4double CMSqz    = GammaEnergy;
                                                   >> 316   const G4double CMSt     = GammaEnergy+RecoilMass;
                                                   >> 317   const G4double iCMSmass = 1./std::sqrt(RecoilMass*(RecoilMass+2.*GammaEnergy));
                                                   >> 318   const G4double CMSfact  = (CMSt-1./iCMSmass)/(CMSqz*CMSqz);
360   // maximum value of pdf                         319   // maximum value of pdf
361   const G4double EffectiveZ = iraw ? 0.5 : Z;     320   const G4double EffectiveZ = iraw ? 0.5 : Z;
362   const G4double Threshold  = itriplet ? TrThr << 321   const G4double Threshold  = itriplet ? 4.*ElectronMass : 2.*ElectronMass;
363   const G4double AvailableEnergy    = GammaEne    322   const G4double AvailableEnergy    = GammaEnergy - Threshold;
364   const G4double LogAvailableEnergy = G4Log(Av    323   const G4double LogAvailableEnergy = G4Log(AvailableEnergy);
365   //                                              324   //
366   const G4double MaxDiffCross = itriplet          325   const G4double MaxDiffCross = itriplet
367     ? MaxDiffCrossSection(tr[fConvMode],       << 326     ? MaxDiffCrossSection(tr, EffectiveZ, AvailableEnergy, LogAvailableEnergy)
368         EffectiveZ, AvailableEnergy, LogAvaila << 327     : MaxDiffCrossSection(nu, EffectiveZ, AvailableEnergy, LogAvailableEnergy);
369     : MaxDiffCrossSection(nu[fConvMode],       << 
370            EffectiveZ, AvailableEnergy, LogAva << 
371   //                                              328   //
372   // 50% safety marging factor                    329   // 50% safety marging factor
373   const G4double ymax = 1.5 * MaxDiffCross;       330   const G4double ymax = 1.5 * MaxDiffCross;
374   // x1 bounds                                    331   // x1 bounds
375   const G4double xu1 =   (LogAvailableEnergy > << 332   const G4double xu1 =   (LogAvailableEnergy > para[2][0])
376         ? para[fConvMode][0][0] +              << 333                        ? para[0][0] + para[1][0]*LogAvailableEnergy
377         para[fConvMode][1][0]*LogAvailableEner << 334                        : para[0][0] + para[2][0]*para[1][0];
378                        : para[fConvMode][0][0] << 335   const G4double xl1 =   (LogAvailableEnergy > para[2][1])
379         para[fConvMode][2][0]*para[fConvMode][ << 336                        ? para[0][1] + para[1][1]*LogAvailableEnergy
380   const G4double xl1 =   (LogAvailableEnergy > << 337                        : para[0][1] + para[2][1]*para[1][1];
381                        ? para[fConvMode][0][1] << 338   //
382         para[fConvMode][1][1]*LogAvailableEner << 339   G4LorentzVector Recoil0;
383                        : para[fConvMode][0][1] << 340   G4LorentzVector Positron0;
384         para[fConvMode][2][1]*para[fConvMode][ << 341   G4LorentzVector Electron0;
385   //                                           << 
386   G4LorentzVector Recoil;                      << 
387   G4LorentzVector LeptonPlus;                  << 
388   G4LorentzVector LeptonMinus;                 << 
389   G4double pdf    = 0.;                           342   G4double pdf    = 0.;
390                                                << 
391   G4double rndmv6[6] = {0.0};                  << 
392   const G4double corrFac = 1.0/(correctionInde << 
393   const G4double expLowLim = -20.;             << 
394   const G4double logLowLim = G4Exp(expLowLim/c << 
395   G4double z0, z1, z2, x0, x1;                 << 
396   G4double betheheitler, sinTheta, cosTheta, d << 
397   // START Sampling                               343   // START Sampling
398   do {                                            344   do {
399                                                << 345     ////////////////////////////////////////////////// 
400     rndmEngine->flatArray(6, rndmv6);          << 
401                                                << 
402     ////////////////////////////////////////// << 
403     // pdf  pow(x,c) with c = 1.4                 346     // pdf  pow(x,c) with c = 1.4
404     // integral y = pow(x,(c+1))/(c+1) @ x = 1    347     // integral y = pow(x,(c+1))/(c+1) @ x = 1 =>  y = 1 /(1+c)
405     // invCdf exp( log(y /* *( c + 1.0 )/ (c +    348     // invCdf exp( log(y /* *( c + 1.0 )/ (c + 1.0 ) */ ) /( c + 1.0) )
406     ////////////////////////////////////////// << 349     ////////////////////////////////////////////////// 
407                                                << 350     const G4double X1 =
408     z0 = (rndmv6[0] > logLowLim) ? G4Log(rndmv << 351       G4Exp(G4Log(rndmEngine->flat())/(correctionIndex + 1.0));
409     G4double X1 = (z0 > expLowLim) ? G4Exp(z0) << 352  
410     z1 = xl1 + (xu1 - xl1)*rndmv6[1];          << 353     const G4double x0       = G4Exp(xl1 + (xu1 - xl1)*rndmEngine->flat());
411     if (z1 > expLowLim) {                      << 354     const G4double dum0     = 1./(1.+x0);
412       x0 = G4Exp(z1);                          << 355     const G4double cosTheta = (x0-1.)*dum0;
413       dum0 = 1.0/(1.0 + x0);                   << 356     const G4double sinTheta = std::sqrt(4.*x0)*dum0;
414       x1 = dum0*x0;                            << 357 
415       cosTheta = -1.0 + 2.0*x1;                << 358     const G4double PairInvMass  = PairInvMassMin*G4Exp(X1*X1*lnPairInvMassRange);
416       sinTheta = 2*std::sqrt(x1*(1.0 - x1));   << 359 
417     } else {                                   << 360     G4double rndmv3[3];
418       x0 = 0.0;                                << 361     rndmEngine->flatArray(3, rndmv3);
419       dum0 = 1.0;                              << 362     //--------------------------------------------------------------------------
420       cosTheta = -1.0;                         << 363     // const G4double ThetaLept    = pi*rndmv3[0];
421       sinTheta = 0.0;                          << 364     // const G4double cosThetaLept = std::cos(ThetaLept);
422     }                                          << 365     // const G4double sinThetaLept = std::sin(ThetaLept);
423                                                << 366     // 
424     z2 = X1*X1*lnPairInvMassRange;             << 367     // const G4double PhiLept      = twoPi*rndmv3[1]-pi;
425     const G4double PairInvMass = PairInvMassMi << 368     // const G4double cosPhiLept   = std::cos(PhiLept);
426                                                << 369     // const G4double sinPhiLept   = std::sin(PhiLept);
                                                   >> 370     //
                                                   >> 371     // const G4double Phi          = twoPi*rndmv3[2]-pi;
                                                   >> 372     // const G4double cosPhi       = std::cos(Phi);
                                                   >> 373     // const G4double sinPhi       = std::sin(Phi);
                                                   >> 374     //---------------------------------------------------------------------------
427     // cos and sin theta-lepton                   375     // cos and sin theta-lepton
428     const G4double cosThetaLept = std::cos(pi* << 376     const G4double cosThetaLept = std::cos(pi*rndmv3[0]);
429     // sin(ThetaLept) is always in [0,+1] if T    377     // sin(ThetaLept) is always in [0,+1] if ThetaLept is in [0,pi]
430     const G4double sinThetaLept = std::sqrt((1 << 378     const G4double sinThetaLept = std::sqrt((1.-cosThetaLept)*(1.+cosThetaLept)); 
431     // cos and sin phi-lepton                     379     // cos and sin phi-lepton
432     const G4double cosPhiLept   = std::cos(two << 380     const G4double cosPhiLept   = std::cos(twoPi*rndmv3[1]-pi);
433     // sin(PhiLept) is in [-1,0] if PhiLept in    381     // sin(PhiLept) is in [-1,0] if PhiLept in [-pi,0) and
434     //              is in [0,+1] if PhiLept in    382     //              is in [0,+1] if PhiLept in [0,+pi]
435     const G4double sinPhiLept   = std::copysig << 383     const G4double sinPhiLept   = std::copysign(std::sqrt((1.-cosPhiLept)*(1.+cosPhiLept)),rndmv3[1]-0.5);
436     // cos and sin phi                            384     // cos and sin phi
437     const G4double cosPhi       = std::cos(two << 385     const G4double cosPhi       = std::cos(twoPi*rndmv3[2]-pi);
438     const G4double sinPhi       = std::copysig << 386     const G4double sinPhi        = std::copysign(std::sqrt((1.-cosPhi)*(1.+cosPhi)),rndmv3[2]-0.5);
439                                                   387 
440     ////////////////////////////////////////// << 
441     // frames:                                    388     // frames:
442     // 3 : the laboratory Lorentz frame, Geant << 
443     // 0 : the laboratory Lorentz frame, axes     389     // 0 : the laboratory Lorentz frame, axes along photon direction and polarisation
444     // 1 : the center-of-mass Lorentz frame       390     // 1 : the center-of-mass Lorentz frame
445     // 2 : the pair Lorentz frame                 391     // 2 : the pair Lorentz frame
446     ////////////////////////////////////////// << 392     // 3 : the laboratory Lorentz frame, Geant4 axes definition
447                                                   393 
448     // in the center-of-mass frame                394     // in the center-of-mass frame
449                                                << 
450     const G4double RecEnergyCMS  = (sCMSPlusRM    395     const G4double RecEnergyCMS  = (sCMSPlusRM2-PairInvMass*PairInvMass)*isqrts2;
451     const G4double LeptonEnergy2 = PairInvMass    396     const G4double LeptonEnergy2 = PairInvMass*0.5;
452                                                << 397     // Denis ** correction
453     // New way of calucaltion thePRecoil to av << 398     //    const G4double thePRecoil    = std::sqrt( (RecEnergyCMS-RecoilMass)
454     G4double abp = std::max((2.0*GammaEnergy*R << 399     //                                         *(RecEnergyCMS+RecoilMass));
455            PairInvMass*PairInvMass + 2.0*PairI << 400     const G4double ap1 = 2.0*GammaEnergy*RecoilMass -
456                             (2.0*GammaEnergy*R << 401       PairInvMass*PairInvMass + 2.0*PairInvMass*RecoilMass;
457            PairInvMass*PairInvMass - 2.0*PairI << 402     const G4double bp1 = 2.0*GammaEnergy*RecoilMass -
458                                                << 403       PairInvMass*PairInvMass - 2.0*PairInvMass*RecoilMass;
459     G4double thePRecoil = std::sqrt(abp) * isq << 404     
                                                   >> 405     if (bp1 <= 0.0 ) {
                                                   >> 406       if ( fVerbose > 3 ) {
                                                   >> 407   G4cout
                                                   >> 408     << "G4BetheHeitler5DModel::SampleSecondaries Warning bp1 "
                                                   >> 409     << bp1 << "point rejected" <<  G4endl
                                                   >> 410     << "GammaEnergy " << GammaEnergy << G4endl
                                                   >> 411     << "PairInvMass " << PairInvMass << G4endl;
                                                   >> 412     }
                                                   >> 413       pdf = -1.0; // force next iteration
                                                   >> 414       continue;
                                                   >> 415     }
                                                   >> 416     const G4double thePRecoil = std::sqrt(ap1 * bp1) * isqrts2;
                                                   >> 417     // Denis ** correction
460                                                   418 
461     // back to the center-of-mass frame           419     // back to the center-of-mass frame
462     Recoil.set( thePRecoil*sinTheta*cosPhi,    << 420     const G4LorentzVector Recoil1( thePRecoil*sinTheta*cosPhi,
463            thePRecoil*sinTheta*sinPhi,            421            thePRecoil*sinTheta*sinPhi,
464            thePRecoil*cosTheta,                   422            thePRecoil*cosTheta,
465            RecEnergyCMS);                         423            RecEnergyCMS);
466                                                   424 
467     // in the pair frame                       << 425     const G4LorentzVector Pair1(-Recoil1.x(),
468     const G4double thePLepton    = std::sqrt(  << 426         -Recoil1.y(),
469                                              * << 427         -Recoil1.z(),
                                                   >> 428         sqrts-RecEnergyCMS);
470                                                   429 
471     LeptonPlus.set(thePLepton*sinThetaLept*cos << 430     // in the pair frame
472      thePLepton*sinThetaLept*sinPhiLept,       << 431     const G4double thePLepton    = std::sqrt( (LeptonEnergy2-ElectronMass)
473      thePLepton*cosThetaLept,                  << 432                                              *(LeptonEnergy2+ElectronMass));
474      LeptonEnergy2);                           << 433     
475                                                << 434     const G4LorentzVector Positron2( thePLepton*sinThetaLept*cosPhiLept,
476     LeptonMinus.set(-LeptonPlus.x(),           << 435              thePLepton*sinThetaLept*sinPhiLept,
477      -LeptonPlus.y(),                          << 436              thePLepton*cosThetaLept,
478      -LeptonPlus.z(),                          << 437              LeptonEnergy2);
479      LeptonEnergy2);                           << 438 
                                                   >> 439     const G4LorentzVector Electron2(-Positron2.x(),
                                                   >> 440             -Positron2.y(),
                                                   >> 441             -Positron2.z(),
                                                   >> 442             LeptonEnergy2);
480                                                   443 
481                                                   444 
482     // Normalisation of final state phase spac    445     // Normalisation of final state phase space:
483     // Section 47 of Particle Data Group, Chin    446     // Section 47 of Particle Data Group, Chin. Phys. C, 40, 100001 (2016)
484     //    const G4double Norme = Recoil1.vect( << 447     const G4double Norme = Recoil1.vect().mag() * Positron2.vect().mag();
485     const G4double Norme = Recoil.vect().mag() << 448     //
486                                                << 449     G4LorentzVector Positron1;
487     // e+, e- to CMS frame from pair frame     << 450     G4LorentzVector Electron1;
488                                                << 451     BoostG4LorentzVector(Positron2, Pair1, Positron1);
489     // boost vector from Pair to CMS           << 452     BoostG4LorentzVector(Electron2, Pair1, Electron1);
490     const G4ThreeVector pair2cms =             << 453     
491     G4LorentzVector( -Recoil.x(), -Recoil.y(), << 
492          sqrts-RecEnergyCMS).boostVector();    << 
493                                                << 
494     LeptonPlus.boost(pair2cms);                << 
495     LeptonMinus.boost(pair2cms);               << 
496                                                << 
497     // back to the laboratory frame (make use     454     // back to the laboratory frame (make use of the CMS(0,0,Eg,Eg+RM)) form
498                                                << 455     Recoil0.setX(Recoil1.x());
499     Recoil.boostZ(betaCMS);                    << 456     Recoil0.setY(Recoil1.y());
500     LeptonPlus.boostZ(betaCMS);                << 457     BoostG4LorentzVector(Recoil1  , CMSqz, CMSt, CMSfact, iCMSmass, Recoil0);
501     LeptonMinus.boostZ(betaCMS);               << 458 
                                                   >> 459     Positron0.setX(Positron1.x());
                                                   >> 460     Positron0.setY(Positron1.y());
                                                   >> 461     BoostG4LorentzVector(Positron1, CMSqz, CMSt, CMSfact, iCMSmass, Positron0);
                                                   >> 462 
                                                   >> 463     Electron0.setX(Electron1.x());
                                                   >> 464     Electron0.setY(Electron1.y());    
                                                   >> 465     BoostG4LorentzVector(Electron1,  CMSqz, CMSt, CMSfact, iCMSmass, Electron0);
502                                                   466 
503     // Jacobian factors                           467     // Jacobian factors
504     const G4double Jacob0 = x0*dum0*dum0;         468     const G4double Jacob0 = x0*dum0*dum0;
505     const G4double Jacob1 = 2.*X1*lnPairInvMas    469     const G4double Jacob1 = 2.*X1*lnPairInvMassRange*PairInvMass;
506     const G4double Jacob2 = std::abs(sinThetaL    470     const G4double Jacob2 = std::abs(sinThetaLept);
507                                                   471 
508     // there is no probability to have a lepto << 472     const G4double EPlus = Positron0.t();
509     // X and Y components of momentum may be z << 473     const G4double PPlus = Positron0.vect().mag();
510     const G4double EPlus = LeptonPlus.t();     << 474     const G4double sinThetaPlus = Positron0.vect().perp()/PPlus;
511     const G4double PPlus = LeptonPlus.vect().m << 475     const G4double cosThetaPlus = Positron0.vect().cosTheta();
512     const G4double pPX = LeptonPlus.x();       << 476 
513     const G4double pPY = LeptonPlus.y();       << 477     const G4double pPX  = Positron0.x();
514     const G4double pPZ = LeptonPlus.z();       << 478     const G4double pPY  = Positron0.y();
515     G4double sinPhiPlus = 1.0;                 << 479     const G4double dum1 = 1./std::sqrt( pPX*pPX + pPY*pPY );
516     G4double cosPhiPlus = 0.0;                 << 480     const G4double cosPhiPlus = pPX*dum1;
517     G4double sinThetaPlus = 0.0;               << 481     const G4double sinPhiPlus = pPY*dum1;
518     G4double cosThetaPlus = pPZ/PPlus;         << 
519     if (cosThetaPlus < 1.0 && cosThetaPlus > - << 
520       sinThetaPlus = std::sqrt((1.0 - cosTheta << 
521       sinPhiPlus = pPY/(PPlus*sinThetaPlus);   << 
522       cosPhiPlus = pPX/(PPlus*sinThetaPlus);   << 
523     }                                          << 
524                                                   482 
525     // denominators:                              483     // denominators:
526     // the two cancelling leading terms for fo    484     // the two cancelling leading terms for forward emission at high energy, removed
527     const G4double elMassCTP = LeptonMass*cosT << 485     const G4double elMassCTP = ElectronMass*cosThetaPlus;
528     const G4double ePlusSTP  = EPlus*sinThetaP << 486     const G4double ePlusSTP  = EPlus*sinThetaPlus; 
529     const G4double DPlus     = (elMassCTP*elMa    487     const G4double DPlus     = (elMassCTP*elMassCTP + ePlusSTP*ePlusSTP)
530                               /(EPlus + PPlus*    488                               /(EPlus + PPlus*cosThetaPlus);
531                                                   489 
532     // there is no probability to have a lepto << 490     const G4double EMinus = Electron0.t();
533     // X and Y components of momentum may be z << 491     const G4double PMinus = Electron0.vect().mag();
534     const G4double EMinus = LeptonMinus.t();   << 492     const G4double sinThetaMinus = Electron0.vect().perp()/PMinus;
535     const G4double PMinus = LeptonMinus.vect() << 493     const G4double cosThetaMinus = Electron0.vect().cosTheta();
536     const G4double ePX = LeptonMinus.x();      << 494 
537     const G4double ePY = LeptonMinus.y();      << 495     const G4double ePX  = Electron0.x();
538     const G4double ePZ = LeptonMinus.z();      << 496     const G4double ePY  = Electron0.y();
539     G4double sinPhiMinus = 0.0;                << 497     const G4double dum2 = 1./std::sqrt( ePX*ePX + ePY*ePY ); 
540     G4double cosPhiMinus = 1.0;                << 498     const G4double cosPhiMinus =  ePX*dum2;
541     G4double sinThetaMinus = 0.0;              << 499     const G4double sinPhiMinus =  ePY*dum2;
542     G4double cosThetaMinus = ePZ/PMinus;       << 500 
543     if (cosThetaMinus < 1.0 && cosThetaMinus > << 501     const G4double elMassCTM = ElectronMass*cosThetaMinus;
544       sinThetaMinus = std::sqrt((1.0 - cosThet << 502     const G4double eMinSTM   = EMinus*sinThetaMinus; 
545       sinPhiMinus = ePY/(PMinus*sinThetaMinus) << 503     const G4double DMinus    = (elMassCTM*elMassCTM + eMinSTM*eMinSTM) 
546       cosPhiMinus = ePX/(PMinus*sinThetaMinus) << 
547     }                                          << 
548                                                << 
549     const G4double elMassCTM = LeptonMass*cosT << 
550     const G4double eMinSTM   = EMinus*sinTheta << 
551     const G4double DMinus    = (elMassCTM*elMa << 
552                               /(EMinus + PMinu    504                               /(EMinus + PMinus*cosThetaMinus);
553                                                   505 
554     // cos(phiMinus-PhiPlus)                      506     // cos(phiMinus-PhiPlus)
555     const G4double cosdPhi = cosPhiPlus*cosPhi    507     const G4double cosdPhi = cosPhiPlus*cosPhiMinus + sinPhiPlus*sinPhiMinus;
556     const G4double PRec    = Recoil.vect().mag << 508     const G4double PRec    = Recoil0.vect().mag();
557     const G4double q2      = PRec*PRec;           509     const G4double q2      = PRec*PRec;
558                                                << 510     const G4double BigPhi  = -ElectronMass2 / (GammaEnergy*GammaEnergy2 * q2*q2);
559     const G4double BigPhi  = -LeptonMass2 / (G << 
560                                                   511 
561     G4double FormFactor = 1.;                     512     G4double FormFactor = 1.;
562     if (!iraw) {                                  513     if (!iraw) {
563       if (itriplet) {                             514       if (itriplet) {
564   const G4double qun = factor1*iZ13*iZ13;         515   const G4double qun = factor1*iZ13*iZ13;
565   const G4double nun = qun * PRec;                516   const G4double nun = qun * PRec;
566   if (nun < 1.) {                                 517   if (nun < 1.) {
567           FormFactor =  (nun < 0.01) ? (13.8-5 << 518           FormFactor =  (nun < 0.01) ? (13.8-55.4*std::sqrt(nun))*nun 
568                                      : std::sq << 519                                      : std::sqrt(1-(nun-1)*(nun-1)); 
569   } // else FormFactor = 1 by default             520   } // else FormFactor = 1 by default
570       } else {                                    521       } else {
571         const G4double dum3 = 217.*PRec*iZ13;     522         const G4double dum3 = 217.*PRec*iZ13;
572   const G4double AFF  = 1./(1. + dum3*dum3);      523   const G4double AFF  = 1./(1. + dum3*dum3);
573   FormFactor = (1.-AFF)*(1-AFF);                  524   FormFactor = (1.-AFF)*(1-AFF);
574       }                                           525       }
575     } // else FormFactor = 1 by default           526     } // else FormFactor = 1 by default
576                                                   527 
                                                   >> 528     G4double betheheitler;
577     if (GammaPolarizationMag==0.) {               529     if (GammaPolarizationMag==0.) {
578       const G4double pPlusSTP   = PPlus*sinThe    530       const G4double pPlusSTP   = PPlus*sinThetaPlus;
579       const G4double pMinusSTM  = PMinus*sinTh    531       const G4double pMinusSTM  = PMinus*sinThetaMinus;
580       const G4double pPlusSTPperDP  = pPlusSTP    532       const G4double pPlusSTPperDP  = pPlusSTP/DPlus;
581       const G4double pMinusSTMperDM = pMinusST    533       const G4double pMinusSTMperDM = pMinusSTM/DMinus;
582       const G4double dunpol = BigPhi*(         << 534       const G4double dunpol = BigPhi*( 
583                   pPlusSTPperDP *pPlusSTPperDP    535                   pPlusSTPperDP *pPlusSTPperDP *(4.*EMinus*EMinus-q2)
584                 + pMinusSTMperDM*pMinusSTMperD    536                 + pMinusSTMperDM*pMinusSTMperDM*(4.*EPlus*EPlus - q2)
585                 + 2.*pPlusSTPperDP*pMinusSTMpe    537                 + 2.*pPlusSTPperDP*pMinusSTMperDM*cosdPhi
586                     *(4.*EPlus*EMinus + q2 - 2    538                     *(4.*EPlus*EMinus + q2 - 2.*GammaEnergy2)
587                 - 2.*GammaEnergy2*(pPlusSTP*pP    539                 - 2.*GammaEnergy2*(pPlusSTP*pPlusSTP+pMinusSTM*pMinusSTM)/(DMinus*DPlus));
588       betheheitler = dunpol * factor;             540       betheheitler = dunpol * factor;
589     } else {                                      541     } else {
590       const G4double pPlusSTP  = PPlus*sinThet    542       const G4double pPlusSTP  = PPlus*sinThetaPlus;
591       const G4double pMinusSTM = PMinus*sinThe    543       const G4double pMinusSTM = PMinus*sinThetaMinus;
592       const G4double pPlusSTPCPPperDP  = pPlus    544       const G4double pPlusSTPCPPperDP  = pPlusSTP*cosPhiPlus/DPlus;
593       const G4double pMinusSTMCPMperDM = pMinu    545       const G4double pMinusSTMCPMperDM = pMinusSTM*cosPhiMinus/DMinus;
594       const G4double caa = 2.*(EPlus*pMinusSTM    546       const G4double caa = 2.*(EPlus*pMinusSTMCPMperDM+EMinus*pPlusSTPCPPperDP);
595       const G4double cbb = pMinusSTMCPMperDM-p    547       const G4double cbb = pMinusSTMCPMperDM-pPlusSTPCPPperDP;
596       const G4double ccc = (pPlusSTP*pPlusSTP  << 548       const G4double ccc = (pPlusSTP*pPlusSTP + pMinusSTM*pMinusSTM 
597                           +2.*pPlusSTP*pMinusS    549                           +2.*pPlusSTP*pMinusSTM*cosdPhi)/ (DMinus*DPlus);
598       const G4double dtot= 2.*BigPhi*( caa*caa    550       const G4double dtot= 2.*BigPhi*( caa*caa - q2*cbb*cbb - GammaEnergy2*ccc);
599       betheheitler = dtot * factor;               551       betheheitler = dtot * factor;
600     }                                             552     }
601     //                                            553     //
602     const G4double cross =  Norme * Jacob0 * J << 554     const G4double cross =  Norme * Jacob0 * Jacob1 * Jacob2 * betheheitler 
603                           * FormFactor * Recoi    555                           * FormFactor * RecoilMass / sqrts;
604     pdf = cross * (xu1 - xl1) / G4Exp(correcti    556     pdf = cross * (xu1 - xl1) / G4Exp(correctionIndex*G4Log(X1)); // cond1;
605   } while ( pdf < ymax * rndmv6[5] );          << 557   } while ( pdf < ymax * rndmEngine->flat() ); 
606   // END of Sampling                              558   // END of Sampling
607                                                << 559 
608   if ( fVerbose > 2 ) {                           560   if ( fVerbose > 2 ) {
609     G4double recul = std::sqrt(Recoil.x()*Reco << 561     G4double recul = std::sqrt(Recoil0.x()*Recoil0.x()+Recoil0.y()*Recoil0.y()
610                               +Recoil.z()*Reco << 562                               +Recoil0.z()*Recoil0.z());
611     G4cout << "BetheHeitler5DModel GammaEnergy    563     G4cout << "BetheHeitler5DModel GammaEnergy= " << GammaEnergy
612      << " PDF= " <<  pdf << " ymax= " << ymax  << 564      << " PDF= " <<  pdf << " ymax= " << ymax 
613            << " recul= " << recul << G4endl;      565            << " recul= " << recul << G4endl;
614   }                                               566   }
615                                                << 567   
616   // back to Geant4 system                        568   // back to Geant4 system
617                                                   569 
618   if ( fVerbose > 4 ) {                           570   if ( fVerbose > 4 ) {
619     G4cout << "BetheHeitler5DModel GammaDirect    571     G4cout << "BetheHeitler5DModel GammaDirection " << GammaDirection << G4endl;
620     G4cout << "BetheHeitler5DModel GammaPolari    572     G4cout << "BetheHeitler5DModel GammaPolarization " << GammaPolarization << G4endl;
621     G4cout << "BetheHeitler5DModel GammaEnergy    573     G4cout << "BetheHeitler5DModel GammaEnergy " << GammaEnergy << G4endl;
622     G4cout << "BetheHeitler5DModel Conv "         574     G4cout << "BetheHeitler5DModel Conv "
623      << (itriplet ? "triplet" : "nucl") << G4e    575      << (itriplet ? "triplet" : "nucl") << G4endl;
624   }                                               576   }
625                                                   577 
626   if (GammaPolarizationMag == 0.0) {              578   if (GammaPolarizationMag == 0.0) {
627     // set polarization axis orthohonal to dir    579     // set polarization axis orthohonal to direction
628     GammaPolarization = GammaDirection.orthogo    580     GammaPolarization = GammaDirection.orthogonal().unit();
629   } else {                                        581   } else {
630     // GammaPolarization not a unit vector        582     // GammaPolarization not a unit vector
631     GammaPolarization /= GammaPolarizationMag;    583     GammaPolarization /= GammaPolarizationMag;
632   }                                               584   }
633                                                   585 
634   // The unit norm vector that is orthogonal t    586   // The unit norm vector that is orthogonal to the two others
635   G4ThreeVector yGrec = GammaDirection.cross(G    587   G4ThreeVector yGrec = GammaDirection.cross(GammaPolarization);
636                                                << 588   // rotation
637   // rotation from  gamma ref. sys. to World   << 589   G4ThreeVector Rot =  Recoil0.x()*GammaPolarization + Recoil0.y()*yGrec 
638   G4RotationMatrix GtoW(GammaPolarization,yGre << 590     + Recoil0.z()*GammaDirection;
639                                                << 591   Recoil0.setVect(Rot); 
640   Recoil.transform(GtoW);                      << 592   Rot =  Positron0.x()*GammaPolarization + Positron0.y()*yGrec 
641   LeptonPlus.transform(GtoW);                  << 593     + Positron0.z()*GammaDirection;
642   LeptonMinus.transform(GtoW);                 << 594   Positron0.setVect(Rot);
643                                                << 595   Rot =  Electron0.x()*GammaPolarization + Electron0.y()*yGrec 
                                                   >> 596     + Electron0.z()*GammaDirection;
                                                   >> 597   Electron0.setVect(Rot);
                                                   >> 598   //
644   if ( fVerbose > 2 ) {                           599   if ( fVerbose > 2 ) {
645     G4cout << "BetheHeitler5DModel Recoil " << << 600     G4cout << "BetheHeitler5DModel Recoil0 " << Recoil0.x() << " " << Recoil0.y() << " " << Recoil0.z() 
646      << " " << Recoil.t() << " " << G4endl;    << 601      << " " << Recoil0.t() << " " << G4endl;
647     G4cout << "BetheHeitler5DModel LeptonPlus  << 602     G4cout << "BetheHeitler5DModel Positron0 " << Positron0.x() << " " << Positron0.y() << " " 
648      << LeptonPlus.z() << " " << LeptonPlus.t( << 603      << Positron0.z() << " " << Positron0.t() << " " << G4endl;
649     G4cout << "BetheHeitler5DModel LeptonMinus << 604     G4cout << "BetheHeitler5DModel Electron0 " << Electron0.x() << " " << Electron0.y() << " " 
650      << LeptonMinus.z() << " " << LeptonMinus. << 605      << Electron0.z() << " " << Electron0.t() << " " << G4endl;
651   }                                               606   }
652                                                << 607   
653   // Create secondaries                           608   // Create secondaries
654   auto aParticle1 = new G4DynamicParticle(fLep << 609   
655   auto aParticle2 = new G4DynamicParticle(fLep << 610   // electron
656                                                << 611   G4DynamicParticle* aParticle1 = new G4DynamicParticle(fTheElectron,Electron0);
                                                   >> 612   // positron
                                                   >> 613   G4DynamicParticle* aParticle2 = new G4DynamicParticle(fThePositron,Positron0);
657   // create G4DynamicParticle object for the p    614   // create G4DynamicParticle object for the particle3 ( recoil )
658   G4ParticleDefinition* RecoilPart;               615   G4ParticleDefinition* RecoilPart;
659   if (itriplet) {                                 616   if (itriplet) {
660     // triplet                                    617     // triplet
661     RecoilPart = fTheElectron;                    618     RecoilPart = fTheElectron;
662   } else{                                         619   } else{
663     RecoilPart = theIonTable->GetIon(Z, A, 0);    620     RecoilPart = theIonTable->GetIon(Z, A, 0);
664   }                                               621   }
665   auto aParticle3 = new G4DynamicParticle(Reco << 622   G4DynamicParticle* aParticle3 = new G4DynamicParticle(RecoilPart,Recoil0);
666                                                << 623   
667   // Fill output vector                           624   // Fill output vector
668   fvect->push_back(aParticle1);                   625   fvect->push_back(aParticle1);
669   fvect->push_back(aParticle2);                   626   fvect->push_back(aParticle2);
670   fvect->push_back(aParticle3);                   627   fvect->push_back(aParticle3);
671                                                   628 
672   // kill incident photon                         629   // kill incident photon
673   fParticleChange->SetProposedKineticEnergy(0.    630   fParticleChange->SetProposedKineticEnergy(0.);
674   fParticleChange->ProposeTrackStatus(fStopAnd    631   fParticleChange->ProposeTrackStatus(fStopAndKill);
675 }                                                 632 }
676                                                   633 
677 //....oooOO0OOooo........oooOO0OOooo........oo    634 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
678                                                   635