Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4BetheBlochModel.cc,v 1.41 2010-11-12 18:37:47 vnivanch Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class header file 31 // GEANT4 Class header file 29 // 32 // 30 // 33 // 31 // File name: G4BetheBlochModel 34 // File name: G4BetheBlochModel 32 // 35 // 33 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 37 // 35 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 36 // 39 // 37 // Modifications: 40 // Modifications: 38 // 41 // 39 // 04-12-02 Fix problem of G4DynamicParticle c 42 // 04-12-02 Fix problem of G4DynamicParticle constructor (V.Ivanchenko) 40 // 23-12-02 Change interface in order to move 43 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 41 // 27-01-03 Make models region aware (V.Ivanch 44 // 27-01-03 Make models region aware (V.Ivanchenko) 42 // 13-02-03 Add name (V.Ivanchenko) 45 // 13-02-03 Add name (V.Ivanchenko) 43 // 24-03-05 Add G4EmCorrections (V.Ivanchenko) 46 // 24-03-05 Add G4EmCorrections (V.Ivanchenko) 44 // 11-04-05 Major optimisation of internal int 47 // 11-04-05 Major optimisation of internal interfaces (V.Ivanchenko) 45 // 11-02-06 ComputeCrossSectionPerElectron, Co 48 // 11-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 46 // 12-02-06 move G4LossTableManager::Instance( 49 // 12-02-06 move G4LossTableManager::Instance()->EmCorrections() 47 // in constructor (mma) 50 // in constructor (mma) 48 // 12-08-08 Added methods GetParticleCharge, G 51 // 12-08-08 Added methods GetParticleCharge, GetChargeSquareRatio, 49 // CorrectionsAlongStep needed for io 52 // CorrectionsAlongStep needed for ions(V.Ivanchenko) 50 // 53 // 51 // ------------------------------------------- 54 // ------------------------------------------------------------------- 52 // 55 // 53 56 >> 57 54 //....oooOO0OOooo........oooOO0OOooo........oo 58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 60 57 #include "G4BetheBlochModel.hh" 61 #include "G4BetheBlochModel.hh" 58 #include "Randomize.hh" 62 #include "Randomize.hh" 59 #include "G4PhysicalConstants.hh" << 60 #include "G4SystemOfUnits.hh" << 61 #include "G4NistManager.hh" << 62 #include "G4Electron.hh" 63 #include "G4Electron.hh" 63 #include "G4LossTableManager.hh" 64 #include "G4LossTableManager.hh" 64 #include "G4EmCorrections.hh" 65 #include "G4EmCorrections.hh" 65 #include "G4EmParameters.hh" << 66 #include "G4ParticleChangeForLoss.hh" 66 #include "G4ParticleChangeForLoss.hh" 67 #include "G4ICRU90StoppingData.hh" << 68 #include "G4Log.hh" << 69 #include "G4DeltaAngle.hh" << 70 #include <vector> << 71 67 72 //....oooOO0OOooo........oooOO0OOooo........oo 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 73 69 74 G4BetheBlochModel::G4BetheBlochModel(const G4P << 70 using namespace std; >> 71 >> 72 G4BetheBlochModel::G4BetheBlochModel(const G4ParticleDefinition* p, 75 const G4S 73 const G4String& nam) 76 : G4VEmModel(nam), 74 : G4VEmModel(nam), 77 twoln10(2.0*G4Log(10.0)), << 75 particle(0), 78 fAlphaTlimit(1*CLHEP::GeV), << 76 tlimit(DBL_MAX), 79 fProtonTlimit(10*CLHEP::GeV) << 77 twoln10(2.0*log(10.0)), >> 78 bg2lim(0.0169), >> 79 taulim(8.4146e-3), >> 80 isIon(false), >> 81 isInitialised(false) 80 { 82 { >> 83 fParticleChange = 0; 81 theElectron = G4Electron::Electron(); 84 theElectron = G4Electron::Electron(); >> 85 if(p) { >> 86 SetGenericIon(p); >> 87 SetParticle(p); >> 88 } else { >> 89 SetParticle(theElectron); >> 90 } 82 corr = G4LossTableManager::Instance()->EmCor 91 corr = G4LossTableManager::Instance()->EmCorrections(); 83 nist = G4NistManager::Instance(); 92 nist = G4NistManager::Instance(); 84 SetLowEnergyLimit(2.0*CLHEP::MeV); << 93 SetLowEnergyLimit(2.0*MeV); 85 } 94 } 86 95 87 //....oooOO0OOooo........oooOO0OOooo........oo 96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 88 97 89 G4BetheBlochModel::~G4BetheBlochModel() = defa << 98 G4BetheBlochModel::~G4BetheBlochModel() >> 99 {} >> 100 >> 101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 102 >> 103 G4double G4BetheBlochModel::MinEnergyCut(const G4ParticleDefinition*, >> 104 const G4MaterialCutsCouple* couple) >> 105 { >> 106 return couple->GetMaterial()->GetIonisation()->GetMeanExcitationEnergy(); >> 107 } 90 108 91 //....oooOO0OOooo........oooOO0OOooo........oo 109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 92 110 93 void G4BetheBlochModel::Initialise(const G4Par 111 void G4BetheBlochModel::Initialise(const G4ParticleDefinition* p, 94 const G4Dat 112 const G4DataVector&) 95 { 113 { 96 if(p != particle) { SetupParameters(p); } << 114 SetGenericIon(p); >> 115 SetParticle(p); >> 116 >> 117 //G4cout << "G4BetheBlochModel::Initialise for " << p->GetParticleName() >> 118 // << " isIon= " << isIon >> 119 // << G4endl; 97 120 98 // always false before the run 121 // always false before the run 99 SetDeexcitationFlag(false); 122 SetDeexcitationFlag(false); 100 123 101 // initialisation once << 124 if(!isInitialised) { 102 if(nullptr == fParticleChange) { << 125 isInitialised = true; 103 const G4String& pname = particle->GetParti << 104 if(G4EmParameters::Instance()->UseICRU90Da << 105 (pname == "proton" || pname == "Generic << 106 fICRU90 = nist->GetICRU90StoppingData(); << 107 } << 108 if (pname == "GenericIon") { << 109 isIon = true; << 110 } else if (pname == "alpha") { << 111 isAlpha = true; << 112 } else if (particle->GetPDGCharge() > 1.1* << 113 isIon = true; << 114 } << 115 << 116 fParticleChange = GetParticleChangeForLoss 126 fParticleChange = GetParticleChangeForLoss(); 117 if(UseAngularGeneratorFlag() && nullptr == << 118 SetAngularDistribution(new G4DeltaAngle( << 119 } << 120 } << 121 // initialisation for each new run << 122 if(IsMaster() && nullptr != fICRU90) { << 123 fICRU90->Initialise(); << 124 } 127 } 125 } 128 } 126 129 127 //....oooOO0OOooo........oooOO0OOooo........oo 130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 128 131 129 G4double G4BetheBlochModel::GetChargeSquareRat 132 G4double G4BetheBlochModel::GetChargeSquareRatio(const G4ParticleDefinition* p, 130 << 133 const G4Material* mat, 131 << 134 G4double kineticEnergy) 132 { 135 { 133 // this method is called only for ions, so n << 136 // this method is called only for ions 134 if(isAlpha) { return 1.0; } << 137 G4double q2 = corr->EffectiveChargeSquareRatio(p,mat,kineticEnergy); 135 chargeSquare = corr->EffectiveChargeSquareRa << 138 corrFactor = q2*corr->EffectiveChargeCorrection(p,mat,kineticEnergy); 136 return chargeSquare; << 139 return corrFactor; 137 } 140 } 138 141 139 //....oooOO0OOooo........oooOO0OOooo........oo 142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 140 143 141 G4double G4BetheBlochModel::GetParticleCharge( 144 G4double G4BetheBlochModel::GetParticleCharge(const G4ParticleDefinition* p, 142 << 145 const G4Material* mat, 143 << 146 G4double kineticEnergy) 144 { 147 { 145 // this method is called only for ions, so n 148 // this method is called only for ions, so no check if it is an ion 146 return corr->GetParticleCharge(p, mat, kinet << 149 return corr->GetParticleCharge(p,mat,kineticEnergy); 147 } 150 } 148 151 149 //....oooOO0OOooo........oooOO0OOooo........oo 152 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 150 153 151 void G4BetheBlochModel::SetupParameters(const << 154 void G4BetheBlochModel::SetupParameters() 152 { 155 { 153 particle = p; << 154 mass = particle->GetPDGMass(); 156 mass = particle->GetPDGMass(); 155 spin = particle->GetPDGSpin(); 157 spin = particle->GetPDGSpin(); 156 G4double q = particle->GetPDGCharge()*invepl << 158 G4double q = particle->GetPDGCharge()/eplus; 157 chargeSquare = q*q; 159 chargeSquare = q*q; >> 160 corrFactor = chargeSquare; 158 ratio = electron_mass_c2/mass; 161 ratio = electron_mass_c2/mass; 159 constexpr G4double aMag = 1./(0.5*eplus*CLHE << 162 G4double magmom = 160 G4double magmom = particle->GetPDGMagneticMo << 163 particle->GetPDGMagneticMoment()*mass/(0.5*eplus*hbar_Planck*c_squared); 161 magMoment2 = magmom*magmom - 1.0; 164 magMoment2 = magmom*magmom - 1.0; 162 formfact = 0.0; 165 formfact = 0.0; 163 tlimit = DBL_MAX; << 164 if(particle->GetLeptonNumber() == 0) { 166 if(particle->GetLeptonNumber() == 0) { 165 G4double x = 0.8426*CLHEP::GeV; << 167 G4double x = 0.8426*GeV; 166 if(spin == 0.0 && mass < CLHEP::GeV) { x = << 168 if(spin == 0.0 && mass < GeV) {x = 0.736*GeV;} 167 else if (mass > CLHEP::GeV) { << 169 else if(mass > GeV) { 168 G4int iz = G4lrint(std::abs(q)); << 170 x /= nist->GetZ13(mass/proton_mass_c2); 169 if(iz > 1) { x /= nist->GetA27(iz); } << 171 // tlimit = 51.2*GeV*A13[iz]*A13[iz]; 170 } 172 } 171 formfact = 2.0*CLHEP::electron_mass_c2/(x* << 173 formfact = 2.0*electron_mass_c2/(x*x); 172 tlimit = 2.0/formfact; << 174 tlimit = 2.0/formfact; 173 } 175 } 174 } 176 } 175 177 176 //....oooOO0OOooo........oooOO0OOooo........oo 178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 177 179 178 G4double G4BetheBlochModel::MinEnergyCut(const << 179 const << 180 { << 181 return couple->GetMaterial()->GetIonisation( << 182 } << 183 << 184 //....oooOO0OOooo........oooOO0OOooo........oo << 185 << 186 G4double 180 G4double 187 G4BetheBlochModel::ComputeCrossSectionPerElect 181 G4BetheBlochModel::ComputeCrossSectionPerElectron(const G4ParticleDefinition* p, 188 << 182 G4double kineticEnergy, 189 << 183 G4double cutEnergy, 190 << 184 G4double maxKinEnergy) 191 { 185 { 192 G4double cross = 0.0; 186 G4double cross = 0.0; 193 const G4double tmax = MaxSecondaryEnergy(p, << 187 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 194 const G4double cutEnergy = std::min(std::min << 188 G4double maxEnergy = min(tmax,maxKinEnergy); 195 const G4double maxEnergy = std::min(tmax, ma << 196 if(cutEnergy < maxEnergy) { 189 if(cutEnergy < maxEnergy) { 197 190 198 G4double totEnergy = kineticEnergy + mass; 191 G4double totEnergy = kineticEnergy + mass; 199 G4double energy2 = totEnergy*totEnergy; 192 G4double energy2 = totEnergy*totEnergy; 200 G4double beta2 = kineticEnergy*(kineti 193 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; 201 194 202 cross = (maxEnergy - cutEnergy)/(cutEnergy << 195 cross = 1.0/cutEnergy - 1.0/maxEnergy 203 - beta2*G4Log(maxEnergy/cutEnergy)/tmax; << 196 - beta2*log(maxEnergy/cutEnergy)/tmax; 204 197 205 // +term for spin=1/2 particle 198 // +term for spin=1/2 particle 206 if( 0.0 < spin ) { cross += 0.5*(maxEnergy << 199 if( 0.5 == spin ) { cross += 0.5*(maxEnergy - cutEnergy)/energy2; } >> 200 >> 201 // High order correction different for hadrons and ions >> 202 // nevetheless they are applied to reduce high energy transfers >> 203 // if(!isIon) >> 204 //cross += corr->FiniteSizeCorrectionXS(p,currentMaterial, >> 205 // kineticEnergy,cutEnergy); 207 206 208 cross *= CLHEP::twopi_mc2_rcl2*chargeSquar << 207 cross *= twopi_mc2_rcl2*chargeSquare/beta2; 209 } 208 } 210 209 211 // G4cout << "BB: e= " << kineticEnergy << 210 // G4cout << "BB: e= " << kineticEnergy << " tmin= " << cutEnergy 212 // << " tmax= " << tmax << " cross= 211 // << " tmax= " << tmax << " cross= " << cross << G4endl; 213 212 214 return cross; 213 return cross; 215 } 214 } 216 215 217 //....oooOO0OOooo........oooOO0OOooo........oo 216 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 218 217 219 G4double G4BetheBlochModel::ComputeCrossSectio 218 G4double G4BetheBlochModel::ComputeCrossSectionPerAtom( 220 con 219 const G4ParticleDefinition* p, 221 << 220 G4double kineticEnergy, 222 << 221 G4double Z, G4double, 223 222 G4double cutEnergy, 224 223 G4double maxEnergy) 225 { 224 { 226 return Z*ComputeCrossSectionPerElectron(p,ki << 225 G4double cross = Z*ComputeCrossSectionPerElectron >> 226 (p,kineticEnergy,cutEnergy,maxEnergy); >> 227 return cross; 227 } 228 } 228 229 229 //....oooOO0OOooo........oooOO0OOooo........oo 230 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 230 231 231 G4double G4BetheBlochModel::CrossSectionPerVol 232 G4double G4BetheBlochModel::CrossSectionPerVolume( 232 con << 233 const G4Material* material, 233 con 234 const G4ParticleDefinition* p, 234 << 235 G4double kineticEnergy, 235 236 G4double cutEnergy, 236 237 G4double maxEnergy) 237 { 238 { 238 G4double sigma = mat->GetElectronDensity() << 239 currentMaterial = material; 239 *ComputeCrossSectionPerElectron(p,kinEnerg << 240 G4double eDensity = material->GetElectronDensity(); 240 if(isAlpha) { << 241 G4double cross = eDensity*ComputeCrossSectionPerElectron 241 sigma *= corr->EffectiveChargeSquareRatio( << 242 (p,kineticEnergy,cutEnergy,maxEnergy); 242 } << 243 return cross; 243 return sigma; << 244 } 244 } 245 245 246 //....oooOO0OOooo........oooOO0OOooo........oo 246 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 247 247 248 G4double G4BetheBlochModel::ComputeDEDXPerVolu 248 G4double G4BetheBlochModel::ComputeDEDXPerVolume(const G4Material* material, 249 << 249 const G4ParticleDefinition* p, 250 << 250 G4double kineticEnergy, 251 << 251 G4double cut) 252 { 252 { 253 const G4double tmax = MaxSecondaryEnergy(p, << 253 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 254 // projectile formfactor limit energy loss << 254 G4double cutEnergy = std::min(cut,tmax); 255 const G4double cutEnergy = std::min(std::min << 256 255 257 G4double tau = kineticEnergy/mass; 256 G4double tau = kineticEnergy/mass; 258 G4double gam = tau + 1.0; 257 G4double gam = tau + 1.0; 259 G4double bg2 = tau * (tau+2.0); 258 G4double bg2 = tau * (tau+2.0); 260 G4double beta2 = bg2/(gam*gam); 259 G4double beta2 = bg2/(gam*gam); 261 G4double xc = cutEnergy/tmax; << 262 260 263 G4double eexc = material->GetIonisation()-> 261 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 264 G4double eexc2 = eexc*eexc; 262 G4double eexc2 = eexc*eexc; 265 263 266 G4double eDensity = material->GetElectronDen 264 G4double eDensity = material->GetElectronDensity(); 267 265 268 // added ICRU90 stopping data for limited li << 266 G4double dedx = log(2.0*electron_mass_c2*bg2*cutEnergy/eexc2) 269 /* << 267 - (1.0 + cutEnergy/tmax)*beta2; 270 G4cout << "### DEDX ICRI90:" << (nullptr != << 271 << " Ekin=" << kineticEnergy << 272 << " " << p->GetParticleName() << 273 << " q2=" << chargeSquare << 274 << " inside " << material->GetName() << G4 << 275 */ << 276 if(nullptr != fICRU90 && kineticEnergy < fPr << 277 if(material != currentMaterial) { << 278 currentMaterial = material; << 279 baseMaterial = material->GetBaseMaterial << 280 ? material->GetBaseMaterial() : materi << 281 iICRU90 = fICRU90->GetIndex(baseMaterial << 282 } << 283 if(iICRU90 >= 0) { << 284 G4double dedx = 0.0; << 285 // only for alpha << 286 if(isAlpha) { << 287 if(kineticEnergy <= fAlphaTlimit) { << 288 dedx = fICRU90->GetElectronicDEDXforAlpha( << 289 } else { << 290 const G4double e = kineticEnergy*CLH << 291 dedx = fICRU90->GetElectronicDEDXforProton << 292 } << 293 } else { << 294 dedx = fICRU90->GetElectronicDEDXforPr << 295 *chargeSquare; << 296 } << 297 dedx *= material->GetDensity(); << 298 if(cutEnergy < tmax) { << 299 dedx += (G4Log(xc) + (1.0 - xc)*beta2) << 300 *(eDensity*chargeSquare/beta2); << 301 } << 302 //G4cout << " iICRU90=" << iICRU90 << << 303 if(dedx > 0.0) { return dedx; } << 304 } << 305 } << 306 // general Bethe-Bloch formula << 307 G4double dedx = G4Log(2.0*CLHEP::electron_ma << 308 - (1.0 + xc)*beta2; << 309 268 310 if(0.0 < spin) { << 269 if(0.5 == spin) { 311 G4double del = 0.5*cutEnergy/(kineticEnerg 270 G4double del = 0.5*cutEnergy/(kineticEnergy + mass); 312 dedx += del*del; 271 dedx += del*del; 313 } 272 } 314 273 315 // density correction 274 // density correction 316 G4double x = G4Log(bg2)/twoln10; << 275 G4double x = log(bg2)/twoln10; 317 dedx -= material->GetIonisation()->DensityCo 276 dedx -= material->GetIonisation()->DensityCorrection(x); 318 277 319 // shell correction 278 // shell correction 320 dedx -= 2.0*corr->ShellCorrection(p,material 279 dedx -= 2.0*corr->ShellCorrection(p,material,kineticEnergy); 321 280 322 // now compute the total ionization loss 281 // now compute the total ionization loss 323 dedx *= CLHEP::twopi_mc2_rcl2*chargeSquare*e << 282 dedx *= twopi_mc2_rcl2*chargeSquare*eDensity/beta2; 324 283 325 //High order correction different for hadron 284 //High order correction different for hadrons and ions 326 if(isIon) { 285 if(isIon) { 327 dedx += corr->IonBarkasCorrection(p,materi 286 dedx += corr->IonBarkasCorrection(p,material,kineticEnergy); 328 } else { 287 } else { 329 dedx += corr->HighOrderCorrections(p,mater 288 dedx += corr->HighOrderCorrections(p,material,kineticEnergy,cutEnergy); 330 } 289 } 331 290 332 dedx = std::max(dedx, 0.0); << 291 if (dedx < 0.0) { dedx = 0.0; } 333 /* << 334 G4cout << "E(MeV)= " << kineticEnergy/CLHEP: << 335 << " " << material->GetName() << G << 336 */ << 337 return dedx; 292 return dedx; 338 } 293 } 339 294 340 //....oooOO0OOooo........oooOO0OOooo........oo 295 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 341 296 342 void G4BetheBlochModel::CorrectionsAlongStep(c 297 void G4BetheBlochModel::CorrectionsAlongStep(const G4MaterialCutsCouple* couple, 343 c << 298 const G4DynamicParticle* dp, 344 c << 299 G4double& eloss, 345 G << 300 G4double&, 346 { << 301 G4double length) 347 // no correction for alpha << 302 { 348 if(isAlpha) { return; } << 303 if(isIon) { 349 << 304 const G4ParticleDefinition* p = dp->GetDefinition(); 350 // no correction at the last step or at smal << 305 const G4Material* mat = couple->GetMaterial(); 351 const G4double preKinEnergy = dp->GetKinetic << 306 G4double preKinEnergy = dp->GetKineticEnergy(); 352 if(eloss >= preKinEnergy || eloss < preKinEn << 307 G4double e = preKinEnergy - eloss*0.5; 353 << 308 if(e < 0.0) e = preKinEnergy*0.5; 354 // corrections for all charged particles wit << 309 355 const G4ParticleDefinition* p = dp->GetDefin << 310 G4double q2 = corr->EffectiveChargeSquareRatio(p,mat,e); 356 if(p != particle) { SetupParameters(p); } << 311 GetModelOfFluctuations()->SetParticleAndCharge(p, q2); 357 if(!isIon) { return; } << 312 G4double qfactor = q2*corr->EffectiveChargeCorrection(p,mat,e)/corrFactor; 358 << 313 G4double highOrder = length*corr->IonHighOrderCorrections(p,couple,e); 359 // effective energy and charge at a step << 314 eloss *= qfactor; 360 const G4double e = std::max(preKinEnergy - e << 315 eloss += highOrder; 361 const G4Material* mat = couple->GetMaterial( << 316 //G4cout << "G4BetheBlochModel::CorrectionsAlongStep: e= " << preKinEnergy 362 const G4double q20 = corr->EffectiveChargeSq << 317 // << " qfactor= " << qfactor 363 const G4double q2 = corr->EffectiveChargeSqu << 318 // << " highOrder= " << highOrder << " (" << highOrder/eloss << ")" << G4endl; 364 const G4double qfactor = q2/q20; << 319 } 365 << 366 /* << 367 G4cout << "G4BetheBlochModel::CorrectionsA << 368 << preKinEnergy << " Eeff(MeV)=" << e << 369 << " eloss=" << eloss << " elossnew=" << e << 370 << " qfactor=" << qfactor << " Qpre=" << q << 371 << p->GetParticleName() <<G4endl; << 372 */ << 373 eloss *= qfactor; << 374 } 320 } 375 321 376 //....oooOO0OOooo........oooOO0OOooo........oo 322 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 377 323 378 void G4BetheBlochModel::SampleSecondaries(std: << 324 void G4BetheBlochModel::SampleSecondaries(vector<G4DynamicParticle*>* vdp, 379 cons << 325 const G4MaterialCutsCouple*, 380 cons << 326 const G4DynamicParticle* dp, 381 G4do << 327 G4double minKinEnergy, 382 G4do << 328 G4double maxEnergy) 383 { << 329 { 384 G4double kinEnergy = dp->GetKineticEnergy(); << 330 G4double kineticEnergy = dp->GetKineticEnergy(); 385 const G4double tmax = MaxSecondaryEnergy(dp- << 331 G4double tmax = MaxSecondaryEnergy(dp->GetDefinition(),kineticEnergy); 386 const G4double minKinEnergy = std::min(cut, << 332 387 const G4double maxKinEnergy = std::min(maxEn << 333 G4double maxKinEnergy = std::min(maxEnergy,tmax); 388 if(minKinEnergy >= maxKinEnergy) { return; } << 334 if(minKinEnergy >= maxKinEnergy) return; 389 << 335 390 //G4cout << "G4BetheBlochModel::SampleSecond << 336 G4double totEnergy = kineticEnergy + mass; 391 // << " Emax= " << maxKinEnergy << G << 337 G4double etot2 = totEnergy*totEnergy; 392 << 338 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/etot2; 393 const G4double totEnergy = kinEnergy + mass; << 394 const G4double etot2 = totEnergy*totEnergy; << 395 const G4double beta2 = kinEnergy*(kinEnergy << 396 339 397 G4double deltaKinEnergy, f; 340 G4double deltaKinEnergy, f; 398 G4double f1 = 0.0; 341 G4double f1 = 0.0; 399 G4double fmax = 1.0; 342 G4double fmax = 1.0; 400 if( 0.0 < spin ) { fmax += 0.5*maxKinEnergy* << 343 if( 0.5 == spin ) fmax += 0.5*maxKinEnergy*maxKinEnergy/etot2; 401 << 402 CLHEP::HepRandomEngine* rndmEngineMod = G4Ra << 403 G4double rndm[2]; << 404 344 405 // sampling without nuclear size effect 345 // sampling without nuclear size effect 406 do { 346 do { 407 rndmEngineMod->flatArray(2, rndm); << 347 G4double q = G4UniformRand(); 408 deltaKinEnergy = minKinEnergy*maxKinEnergy 348 deltaKinEnergy = minKinEnergy*maxKinEnergy 409 /(minKinEnergy*(1.0 - rndm << 349 /(minKinEnergy*(1.0 - q) + maxKinEnergy*q); 410 350 411 f = 1.0 - beta2*deltaKinEnergy/tmax; 351 f = 1.0 - beta2*deltaKinEnergy/tmax; 412 if( 0.0 < spin ) { << 352 if( 0.5 == spin ) { 413 f1 = 0.5*deltaKinEnergy*deltaKinEnergy/e 353 f1 = 0.5*deltaKinEnergy*deltaKinEnergy/etot2; 414 f += f1; 354 f += f1; 415 } 355 } 416 356 417 // Loop checking, 03-Aug-2015, Vladimir Iv << 357 } while( fmax*G4UniformRand() > f); 418 } while( fmax*rndm[1] > f); << 419 358 420 // projectile formfactor - suppresion of hig 359 // projectile formfactor - suppresion of high energy 421 // delta-electron production at high energy 360 // delta-electron production at high energy 422 361 423 G4double x = formfact*deltaKinEnergy; 362 G4double x = formfact*deltaKinEnergy; 424 if(x > 1.e-6) { 363 if(x > 1.e-6) { 425 364 426 G4double x1 = 1.0 + x; 365 G4double x1 = 1.0 + x; 427 G4double grej = 1.0/(x1*x1); << 366 G4double g = 1.0/(x1*x1); 428 if( 0.0 < spin ) { << 367 if( 0.5 == spin ) { 429 G4double x2 = 0.5*electron_mass_c2*delta 368 G4double x2 = 0.5*electron_mass_c2*deltaKinEnergy/(mass*mass); 430 grej *= (1.0 + magMoment2*(x2 - f1/f)/(1 << 369 g *= (1.0 + magMoment2*(x2 - f1/f)/(1.0 + x2)); 431 } 370 } 432 if(grej > 1.1) { << 371 if(g > 1.0) { 433 G4cout << "### G4BetheBlochModel WARNING << 372 G4cout << "### G4BetheBlochModel WARNING: g= " << g 434 << " " << dp->GetDefinition()->G << 373 << dp->GetDefinition()->GetParticleName() 435 << " Ekin(MeV)= " << kinEnergy << 374 << " Ekin(MeV)= " << kineticEnergy 436 << " delEkin(MeV)= " << deltaKinE << 375 << " delEkin(MeV)= " << deltaKinEnergy 437 << G4endl; << 376 << G4endl; 438 } 377 } 439 if(rndmEngineMod->flat() > grej) { return; << 378 if(G4UniformRand() > g) return; 440 } 379 } 441 380 442 G4ThreeVector deltaDirection; << 381 // delta-electron is produced 443 << 382 G4double totMomentum = totEnergy*sqrt(beta2); 444 if(UseAngularGeneratorFlag()) { << 383 G4double deltaMomentum = 445 const G4Material* mat = couple->GetMateria << 384 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); 446 deltaDirection = << 385 G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) / 447 GetAngularDistribution()->SampleDirectio << 386 (deltaMomentum * totMomentum); 448 SelectRandomAtomNumber(mat), << 449 mat); << 450 } else { << 451 << 452 G4double deltaMomentum = << 453 std::sqrt(deltaKinEnergy * (deltaKinEner << 454 G4double cost = deltaKinEnergy * (totEnerg << 455 (deltaMomentum * dp->GetTotalMomentum()) << 456 cost = std::min(cost, 1.0); << 457 const G4double sint = std::sqrt((1.0 - cos << 458 const G4double phi = twopi*rndmEngineMod-> << 459 << 460 deltaDirection.set(sint*std::cos(phi),sint << 461 deltaDirection.rotateUz(dp->GetMomentumDir << 462 } << 463 /* 387 /* 464 G4cout << "### G4BetheBlochModel " << 388 if(cost > 1.0) { 465 << dp->GetDefinition()->GetParticle << 389 G4cout << "### G4BetheBlochModel WARNING: cost= " 466 << " Ekin(MeV)= " << kinEnergy << 390 << cost << " > 1 for " 467 << " delEkin(MeV)= " << deltaKinEne << 391 << dp->GetDefinition()->GetParticleName() 468 << " tmin(MeV)= " << minKinEnergy << 392 << " Ekin(MeV)= " << kineticEnergy 469 << " tmax(MeV)= " << maxKinEnergy << 393 << " p(MeV/c)= " << totMomentum >> 394 << " delEkin(MeV)= " << deltaKinEnergy >> 395 << " delMom(MeV/c)= " << deltaMomentum >> 396 << " tmin(MeV)= " << minKinEnergy >> 397 << " tmax(MeV)= " << maxKinEnergy 470 << " dir= " << dp->GetMomentumDirec 398 << " dir= " << dp->GetMomentumDirection() 471 << " dirDelta= " << deltaDirection << 399 << G4endl; 472 << G4endl; << 400 cost = 1.0; >> 401 } 473 */ 402 */ >> 403 G4double sint = sqrt((1.0 - cost)*(1.0 + cost)); >> 404 >> 405 G4double phi = twopi * G4UniformRand() ; >> 406 >> 407 >> 408 G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost); >> 409 G4ThreeVector direction = dp->GetMomentumDirection(); >> 410 deltaDirection.rotateUz(direction); >> 411 474 // create G4DynamicParticle object for delta 412 // create G4DynamicParticle object for delta ray 475 auto delta = new G4DynamicParticle(theElectr << 413 G4DynamicParticle* delta = new G4DynamicParticle(theElectron, >> 414 deltaDirection,deltaKinEnergy); 476 415 477 vdp->push_back(delta); 416 vdp->push_back(delta); 478 417 479 // Change kinematics of primary particle 418 // Change kinematics of primary particle 480 kinEnergy -= deltaKinEnergy; << 419 kineticEnergy -= deltaKinEnergy; 481 G4ThreeVector finalP = dp->GetMomentum() - d << 420 G4ThreeVector finalP = direction*totMomentum - deltaDirection*deltaMomentum; 482 finalP = finalP.unit(); << 421 finalP = finalP.unit(); 483 422 484 fParticleChange->SetProposedKineticEnergy(ki << 423 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 485 fParticleChange->SetProposedMomentumDirectio 424 fParticleChange->SetProposedMomentumDirection(finalP); 486 } 425 } 487 426 488 //....oooOO0OOooo........oooOO0OOooo........oo 427 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 489 428 490 G4double G4BetheBlochModel::MaxSecondaryEnergy 429 G4double G4BetheBlochModel::MaxSecondaryEnergy(const G4ParticleDefinition* pd, 491 << 430 G4double kinEnergy) 492 { 431 { 493 // here particle type is checked for the cas << 432 // here particle type is checked for any method 494 // when this model is shared between particl << 433 SetParticle(pd); 495 if(pd != particle) { SetupParameters(pd); } << 496 G4double tau = kinEnergy/mass; 434 G4double tau = kinEnergy/mass; 497 return 2.0*CLHEP::electron_mass_c2*tau*(tau << 435 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) / 498 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio); << 436 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio); >> 437 return std::min(tmax,tlimit); 499 } 438 } 500 439 501 //....oooOO0OOooo........oooOO0OOooo........oo 440 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 502 441