Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4WentzelVIModel.hh,v 1.21 2009/10/10 15:16:57 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // 31 // 30 // GEANT4 Class header file 32 // GEANT4 Class header file 31 // 33 // 32 // 34 // 33 // File name: G4WentzelVIModel 35 // File name: G4WentzelVIModel 34 // 36 // 35 // Author: V.Ivanchenko 37 // Author: V.Ivanchenko 36 // 38 // 37 // Creation date: 09.04.2008 from G4MuMscModel 39 // Creation date: 09.04.2008 from G4MuMscModel 38 // 40 // 39 // Modifications: 41 // Modifications: 40 // 27-05-2010 V.Ivanchenko added G4WentzelOKan << 42 // 41 // compute cross sections and sam << 42 // 43 // 43 // Class Description: 44 // Class Description: 44 // 45 // 45 // Implementation of the model of multiple sca 46 // Implementation of the model of multiple scattering based on 46 // G.Wentzel, Z. Phys. 40 (1927) 590. 47 // G.Wentzel, Z. Phys. 40 (1927) 590. 47 // H.W.Lewis, Phys Rev 78 (1950) 526. 48 // H.W.Lewis, Phys Rev 78 (1950) 526. 48 // J.M. Fernandez-Varea et al., NIM B73 (1993) 49 // J.M. Fernandez-Varea et al., NIM B73 (1993) 447. 49 // L.Urban, CERN-OPEN-2006-077. 50 // L.Urban, CERN-OPEN-2006-077. 50 51 51 // ------------------------------------------- 52 // ------------------------------------------------------------------- 52 // 53 // 53 54 54 #ifndef G4WentzelVIModel_h 55 #ifndef G4WentzelVIModel_h 55 #define G4WentzelVIModel_h 1 56 #define G4WentzelVIModel_h 1 56 57 57 //....oooOO0OOooo........oooOO0OOooo........oo 58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 58 59 59 #include "G4VMscModel.hh" 60 #include "G4VMscModel.hh" >> 61 #include "G4PhysicsTable.hh" >> 62 #include "G4MscStepLimitType.hh" 60 #include "G4MaterialCutsCouple.hh" 63 #include "G4MaterialCutsCouple.hh" 61 #include "G4WentzelOKandVIxSection.hh" << 64 #include "G4NistManager.hh" >> 65 >> 66 class G4LossTableManager; >> 67 class G4ParticleChangeForMSC; >> 68 class G4ParticleDefinition; 62 69 63 //....oooOO0OOooo........oooOO0OOooo........oo 70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 64 71 65 class G4WentzelVIModel : public G4VMscModel 72 class G4WentzelVIModel : public G4VMscModel 66 { 73 { 67 74 68 public: 75 public: 69 76 70 explicit G4WentzelVIModel(G4bool comb=true, << 77 G4WentzelVIModel(const G4String& nam = "WentzelVIUni"); 71 << 72 ~G4WentzelVIModel() override; << 73 << 74 void Initialise(const G4ParticleDefinition*, << 75 78 76 void InitialiseLocal(const G4ParticleDefinit << 79 virtual ~G4WentzelVIModel(); 77 G4VEmModel* masterModel) override; << 78 80 79 void StartTracking(G4Track*) override; << 81 virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&); 80 82 81 G4double ComputeCrossSectionPerAtom(const G4 << 83 virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 82 G4double KineticEnergy, << 84 G4double KineticEnergy, 83 G4double AtomicNumber, << 85 G4double AtomicNumber, 84 G4double AtomicWeight=0., << 86 G4double AtomicWeight=0., 85 G4double cut = DBL_MAX, << 87 G4double cut = DBL_MAX, 86 G4double emax= DBL_MAX) override << 88 G4double emax= DBL_MAX); 87 89 88 G4ThreeVector& SampleScattering(const G4Thre << 90 virtual void SampleScattering(const G4DynamicParticle*, G4double safety); 89 G4double safety) override; << 90 91 91 G4double << 92 virtual G4double ComputeTruePathLengthLimit(const G4Track& track, 92 ComputeTruePathLengthLimit(const G4Track& tr << 93 G4PhysicsTable* theLambdaTable, 93 G4double& currentMinimalStep) overr << 94 G4double currentMinimalStep); 94 95 95 G4double ComputeGeomPathLength(G4double true << 96 virtual G4double ComputeGeomPathLength(G4double truePathLength); 96 97 97 G4double ComputeTrueStepLength(G4double geom << 98 virtual G4double ComputeTrueStepLength(G4double geomStepLength); 98 99 99 // defines low energy limit on energy transf << 100 private: 100 void SetFixedCut(G4double); << 101 << 102 // low energy limit on energy transfer to at << 103 G4double GetFixedCut() const; << 104 << 105 // access to cross section class << 106 void SetWVICrossSection(G4WentzelOKandVIxSec << 107 << 108 G4WentzelOKandVIxSection* GetWVICrossSection << 109 101 110 void SetUseSecondMoment(G4bool); << 102 G4double ComputeTransportXSectionPerAtom(); 111 103 112 G4bool UseSecondMoment() const; << 104 G4double ComputeXSectionPerVolume(); 113 105 114 G4PhysicsTable* GetSecondMomentTable(); << 106 void ComputeMaxElectronScattering(G4double cut); 115 107 116 G4double SecondMoment(const G4ParticleDefini << 108 inline G4double GetLambda(G4double kinEnergy); 117 const G4MaterialCutsCouple*, << 118 G4double kineticEnergy); << 119 109 120 void SetSingleScatteringFactor(G4double); << 110 inline void SetupParticle(const G4ParticleDefinition*); 121 111 122 void DefineMaterial(const G4MaterialCutsCoup << 112 inline void SetupKinematic(G4double kinEnergy, G4double cut); >> 113 >> 114 inline void SetupTarget(G4double Z, G4double kinEnergy); 123 115 124 G4WentzelVIModel & operator=(const G4Wentzel << 116 inline void DefineMaterial(const G4MaterialCutsCouple*); 125 G4WentzelVIModel(const G4WentzelVIModel&) = << 126 117 127 protected: << 118 // hide assignment operator >> 119 G4WentzelVIModel & operator=(const G4WentzelVIModel &right); >> 120 G4WentzelVIModel(const G4WentzelVIModel&); 128 121 129 G4double ComputeTransportXSectionPerVolume(G << 122 const G4ParticleDefinition* theProton; >> 123 const G4ParticleDefinition* theElectron; >> 124 const G4ParticleDefinition* thePositron; 130 125 131 inline void SetupParticle(const G4ParticleDe << 126 G4ParticleChangeForMSC* fParticleChange; 132 127 133 private: << 128 G4PhysicsTable* theLambdaTable; >> 129 G4PhysicsTable* theLambda2Table; >> 130 G4LossTableManager* theManager; >> 131 const G4DataVector* currentCuts; 134 132 135 G4double ComputeSecondMoment(const G4Particl << 133 G4NistManager* fNistManager; 136 G4double kineticEnergy); << 137 134 138 protected: << 135 G4double numlimit; >> 136 G4double tlimitminfix; >> 137 G4double invsqrt12; 139 138 140 G4WentzelOKandVIxSection* wokvi; << 139 // cash 141 const G4MaterialCutsCouple* currentCouple = << 140 G4double preKinEnergy; 142 const G4Material* currentMaterial = nullptr; << 141 G4double ecut; 143 << 142 G4double lambda0; 144 const G4ParticleDefinition* particle = nullp << 143 G4double tPathLength; 145 G4ParticleChangeForMSC* fParticleChange = nu << 144 G4double zPathLength; 146 const G4DataVector* currentCuts = nullptr; << 145 G4double lambdaeff; 147 G4PhysicsTable* fSecondMoments = nullptr; << 146 G4double currentRange; >> 147 G4double par1; >> 148 G4double par2; >> 149 G4double par3; 148 150 149 G4double lowEnergyLimit; << 151 G4double xtsec; 150 G4double tlimitminfix; << 152 std::vector<G4double> xsecn; 151 G4double ssFactor = 1.05; << 153 std::vector<G4double> prob; 152 G4double invssFactor = 1.0; << 154 G4int nelments; 153 155 154 // cache kinematics << 156 G4int nbins; 155 G4double preKinEnergy = 0.0; << 157 G4int nwarnings; 156 G4double tPathLength = 0.0; << 158 G4int nwarnlimit; 157 G4double zPathLength = 0.0; << 158 G4double lambdaeff = 0.0; << 159 G4double currentRange = 0.0; << 160 G4double cosTetMaxNuc = 0.0; << 161 159 162 G4double fixedCut = -1.0; << 160 G4int currentMaterialIndex; 163 161 164 // cache kinematics << 162 const G4MaterialCutsCouple* currentCouple; 165 G4double effKinEnergy = 0.0; << 163 const G4Material* currentMaterial; 166 164 167 // single scattering parameters 165 // single scattering parameters 168 G4double cosThetaMin = 1.0; << 166 G4double coeff; 169 G4double cosThetaMax = -1.0; << 167 G4double cosThetaMin; 170 G4double xtsec = 0.0; << 168 G4double cosThetaMax; >> 169 G4double cosTetMaxNuc; >> 170 G4double cosTetMaxNuc2; >> 171 G4double cosTetMaxElec; >> 172 G4double cosTetMaxElec2; >> 173 G4double q2Limit; >> 174 G4double alpha2; >> 175 >> 176 // projectile >> 177 const G4ParticleDefinition* particle; >> 178 >> 179 G4double chargeSquare; >> 180 G4double spin; >> 181 G4double mass; >> 182 G4double tkin; >> 183 G4double mom2; >> 184 G4double invbeta2; >> 185 G4double kinFactor; >> 186 G4double etag; >> 187 G4double lowEnergyLimit; 171 188 172 G4int currentMaterialIndex = 0; << 189 // target 173 size_t idx2 = 0; << 190 G4double targetZ; >> 191 G4double targetMass; >> 192 G4double screenZ; >> 193 G4double formfactA; >> 194 G4int iz; 174 195 175 // data for single scattering mode << 196 static G4double ScreenRSquare[100]; 176 G4int nelments = 0; << 197 static G4double FormFactor[100]; 177 198 178 // flags 199 // flags 179 G4bool singleScatteringMode; << 200 G4bool isInitialized; 180 G4bool isCombined; << 201 G4bool inside; 181 G4bool useSecondMoment; << 182 << 183 std::vector<G4double> xsecn; << 184 std::vector<G4double> prob; << 185 }; 202 }; 186 203 187 //....oooOO0OOooo........oooOO0OOooo........oo 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 188 //....oooOO0OOooo........oooOO0OOooo........oo 205 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 189 206 190 inline void G4WentzelVIModel::SetupParticle(co << 207 inline 191 { << 208 void G4WentzelVIModel::DefineMaterial(const G4MaterialCutsCouple* cup) 192 // Initialise mass and charge << 209 { 193 if(p != particle) { << 210 if(cup != currentCouple) { 194 particle = p; << 211 currentCouple = cup; 195 wokvi->SetupParticle(p); << 212 currentMaterial = cup->GetMaterial(); >> 213 currentMaterialIndex = currentCouple->GetIndex(); 196 } 214 } 197 } 215 } 198 216 199 //....oooOO0OOooo........oooOO0OOooo........oo << 217 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 200 << 201 inline void G4WentzelVIModel::SetFixedCut(G4do << 202 { << 203 fixedCut = val; << 204 } << 205 << 206 //....oooOO0OOooo........oooOO0OOooo........oo << 207 << 208 inline G4double G4WentzelVIModel::GetFixedCut( << 209 { << 210 return fixedCut; << 211 } << 212 << 213 //....oooOO0OOooo........oooOO0OOooo........oo << 214 218 215 inline void G4WentzelVIModel::SetWVICrossSecti << 219 inline >> 220 G4double G4WentzelVIModel::GetLambda(G4double e) 216 { 221 { 217 if(ptr != wokvi) { << 222 G4double x; 218 delete wokvi; << 223 if(theLambdaTable) { 219 wokvi = ptr; << 224 G4bool b; >> 225 x = ((*theLambdaTable)[currentMaterialIndex])->GetValue(e, b); >> 226 } else { >> 227 x = CrossSection(currentCouple,particle,e, >> 228 (*currentCuts)[currentMaterialIndex]); 220 } 229 } >> 230 if(x > DBL_MIN) x = 1./x; >> 231 else x = DBL_MAX; >> 232 return x; 221 } 233 } 222 234 223 //....oooOO0OOooo........oooOO0OOooo........oo 235 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 224 236 225 inline G4WentzelOKandVIxSection* G4WentzelVIMo << 237 inline void G4WentzelVIModel::SetupParticle(const G4ParticleDefinition* p) 226 { << 227 return wokvi; << 228 } << 229 << 230 //....oooOO0OOooo........oooOO0OOooo........oo << 231 << 232 inline void G4WentzelVIModel::SetUseSecondMome << 233 { << 234 useSecondMoment = val; << 235 } << 236 << 237 //....oooOO0OOooo........oooOO0OOooo........oo << 238 << 239 inline G4bool G4WentzelVIModel::UseSecondMomen << 240 { 238 { 241 return useSecondMoment; << 239 // Initialise mass and charge >> 240 if(p != particle) { >> 241 particle = p; >> 242 mass = particle->GetPDGMass(); >> 243 spin = particle->GetPDGSpin(); >> 244 G4double q = particle->GetPDGCharge()/eplus; >> 245 chargeSquare = q*q; >> 246 tkin = 0.0; >> 247 } 242 } 248 } 243 249 244 //....oooOO0OOooo........oooOO0OOooo........oo 250 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 245 251 246 inline G4PhysicsTable* G4WentzelVIModel::GetSe << 252 inline void G4WentzelVIModel::SetupKinematic(G4double ekin, G4double cut) 247 { 253 { 248 return fSecondMoments; << 254 if(ekin != tkin || ecut != cut) { >> 255 tkin = ekin; >> 256 mom2 = tkin*(tkin + 2.0*mass); >> 257 invbeta2 = 1.0 + mass*mass/mom2; >> 258 cosTetMaxNuc = cosThetaMax; >> 259 if(mass < MeV && ekin <= 10.*cut) { >> 260 cosTetMaxNuc = ekin*(cosThetaMax + 1.0)/(10.*cut) - 1.0; >> 261 } >> 262 ComputeMaxElectronScattering(cut); >> 263 } 249 } 264 } 250 265 251 //....oooOO0OOooo........oooOO0OOooo........oo 266 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 252 << 267 253 inline G4double << 268 inline void G4WentzelVIModel::SetupTarget(G4double Z, G4double e) 254 G4WentzelVIModel::SecondMoment(const G4Particl << 255 const G4MaterialCutsCouple* coupl << 256 G4double ekin) << 257 { 269 { 258 G4double x = 0.0; << 270 if(Z != targetZ || e != etag) { 259 if(useSecondMoment) { << 271 etag = e; 260 DefineMaterial(couple); << 272 targetZ = Z; 261 x = (fSecondMoments) ? << 273 iz = G4int(Z); 262 (*fSecondMoments)[(*theDensityIdx)[curre << 274 if(iz > 99) iz = 99; 263 *(*theDensityFactor)[currentMaterialInde << 275 targetMass = fNistManager->GetAtomicMassAmu(iz)*amu_c2; 264 : ComputeSecondMoment(part, ekin); << 276 screenZ = ScreenRSquare[iz]/mom2; 265 } << 277 G4double meff = targetMass/(mass+targetMass); 266 return x; << 278 kinFactor = coeff*targetZ*chargeSquare*invbeta2/(mom2*meff*meff); 267 } << 279 screenZ *=(1.13 + std::min(1.0,3.76*Z*Z*invbeta2*alpha2)); >> 280 if(mass > MeV) { screenZ *= 2.0; } >> 281 formfactA = FormFactor[iz]*mom2; >> 282 cosTetMaxNuc2 = cosTetMaxNuc; >> 283 cosTetMaxElec2 = cosTetMaxElec; >> 284 } >> 285 } 268 286 269 //....oooOO0OOooo........oooOO0OOooo........oo 287 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 270 288 271 #endif 289 #endif 272 290 273 291