Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PairProductionRelModel.hh,v 1.9 2010-10-26 10:35:22 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-04-patch-02 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4PairProductionRelModel 34 // File name: G4PairProductionRelModel 33 // 35 // 34 // Author: Andreas Schaelicke 36 // Author: Andreas Schaelicke 35 // 37 // 36 // Creation date: 02.04.2009 38 // Creation date: 02.04.2009 37 // 39 // 38 // Modifications: 40 // Modifications: 39 // 28-05-18 New version with improved screenin << 40 // LPM function approximation, effici << 41 // Corrected call to selecting target << 42 // (M. Novak) << 43 // 41 // 44 // Class Description: 42 // Class Description: 45 // 43 // 46 // Implementation of gamma conversion to e+e- << 44 // Implementation of gamma convertion to e+e- in the field of a nucleus 47 // relativistic approximation 45 // relativistic approximation 48 // 46 // 49 47 50 // ------------------------------------------- 48 // ------------------------------------------------------------------- 51 // 49 // 52 50 53 #ifndef G4PairProductionRelModel_h 51 #ifndef G4PairProductionRelModel_h 54 #define G4PairProductionRelModel_h 1 52 #define G4PairProductionRelModel_h 1 55 53 56 #include <CLHEP/Units/PhysicalConstants.h> << 57 << 58 #include "G4VEmModel.hh" 54 #include "G4VEmModel.hh" 59 #include "G4Log.hh" << 55 #include "G4PhysicsTable.hh" 60 #include <vector> << 56 #include "G4NistManager.hh" 61 57 62 class G4ParticleChangeForGamma; 58 class G4ParticleChangeForGamma; 63 class G4Pow; << 64 59 65 class G4PairProductionRelModel : public G4VEmM 60 class G4PairProductionRelModel : public G4VEmModel 66 { 61 { 67 62 68 public: 63 public: 69 64 70 explicit G4PairProductionRelModel(const G4Pa << 65 G4PairProductionRelModel(const G4ParticleDefinition* p = 0, 71 const G4St << 66 const G4String& nam = "BetheHeitlerLPM"); 72 67 73 ~G4PairProductionRelModel() override; << 68 virtual ~G4PairProductionRelModel(); 74 69 75 void Initialise(const G4ParticleDefinition*, << 70 virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&); 76 71 77 void InitialiseLocal(const G4ParticleDefinit << 72 virtual G4double ComputeCrossSectionPerAtom( 78 G4VEmModel* masterModel) override; << 73 const G4ParticleDefinition*, >> 74 G4double kinEnergy, >> 75 G4double Z, >> 76 G4double A=0., >> 77 G4double cut=0., >> 78 G4double emax=DBL_MAX); >> 79 >> 80 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, >> 81 const G4MaterialCutsCouple*, >> 82 const G4DynamicParticle*, >> 83 G4double tmin, >> 84 G4double maxEnergy); >> 85 >> 86 virtual void SetupForMaterial(const G4ParticleDefinition*, >> 87 const G4Material*,G4double); >> 88 >> 89 // * fast inline functions * >> 90 inline void SetCurrentElement(G4double /*Z*/); >> 91 >> 92 // set / get methods >> 93 inline void SetLPMconstant(G4double val); >> 94 inline G4double LPMconstant() const; 79 95 80 G4double ComputeCrossSectionPerAtom(const G4 << 96 inline void SetLPMflag(G4bool); 81 G4double kinEnergy, << 97 inline G4bool LPMflag() const; 82 G4double Z, << 83 G4double A=0., << 84 G4double cut=0., << 85 G4double emax=DBL_MAX) override; << 86 << 87 void SampleSecondaries(std::vector<G4Dynamic << 88 const G4MaterialCutsCouple*, << 89 const G4DynamicParticle*, << 90 G4double tmin, << 91 G4double maxEnergy) override; << 92 << 93 void SetupForMaterial(const G4ParticleDefini << 94 const G4Material*,G4double) override; << 95 << 96 inline void SetLPMflag(G4bool val) { fIsUs << 97 inline G4bool LPMflag() const { retur << 98 << 99 G4PairProductionRelModel & operator= << 100 (const G4PairProductionRelModel &right) = de << 101 G4PairProductionRelModel(const G4PairProduc << 102 98 103 protected: 99 protected: >> 100 // screening functions >> 101 inline G4double Phi1(G4double delta) const; >> 102 inline G4double Phi2(G4double delta) const; >> 103 inline G4double DeltaMax() const; >> 104 inline G4double DeltaMin(G4double) const; >> 105 // lpm functions >> 106 void CalcLPMFunctions(G4double k, G4double eplus); >> 107 >> 108 // obsolete >> 109 G4double ScreenFunction1(G4double ScreenVariable); >> 110 G4double ScreenFunction2(G4double ScreenVariable); >> 111 >> 112 G4double ComputeXSectionPerAtom(G4double totalEnergy, G4double Z); >> 113 >> 114 G4double ComputeDXSectionPerAtom(G4double eplusEnergy, G4double totalEnergy, G4double Z); >> 115 G4double ComputeRelDXSectionPerAtom(G4double eplusEnergy, G4double totalEnergy, G4double Z); >> 116 >> 117 // hide assignment operator >> 118 G4PairProductionRelModel & operator=(const G4PairProductionRelModel &right); >> 119 G4PairProductionRelModel(const G4PairProductionRelModel&); >> 120 >> 121 G4NistManager* nist; >> 122 >> 123 G4ParticleDefinition* theGamma; >> 124 G4ParticleDefinition* theElectron; >> 125 G4ParticleDefinition* thePositron; >> 126 G4ParticleChangeForGamma* fParticleChange; >> 127 >> 128 G4double fLPMconstant; >> 129 G4bool fLPMflag; >> 130 >> 131 // cash >> 132 G4double z13, z23, lnZ; >> 133 G4double Fel, Finel, fCoulomb; >> 134 G4double currentZ; >> 135 >> 136 // LPM effect >> 137 G4double lpmEnergy; >> 138 G4double xiLPM, phiLPM, gLPM; >> 139 >> 140 // consts >> 141 G4bool use_completescreening; >> 142 >> 143 static const G4double xgi[8], wgi[8]; >> 144 static const G4double Fel_light[5]; >> 145 static const G4double Finel_light[5]; >> 146 static const G4double facFel; >> 147 static const G4double facFinel; 104 148 105 // for evaluating screening related function << 149 static const G4double preS1, logTwo; 106 inline void ComputePhi12(const G4double delt << 107 G4double &phi1, G4double &phi2); << 108 inline G4double ScreenFunction1(const G4doub << 109 inline G4double ScreenFunction2(const G4doub << 110 inline void ScreenFunction12(const G4double << 111 G4double &f1, G4double &f2); << 112 // helper methods for cross-section computat << 113 G4double ComputeParametrizedXSectionPerAtom( << 114 G4double ComputeXSectionPerAtom(G4double gam << 115 G4double ComputeDXSectionPerAtom(G4double ep << 116 G4double Z) << 117 G4double ComputeRelDXSectionPerAtom(G4double << 118 G4double gammaEnergy, G4double Z << 119 << 120 private: << 121 << 122 // for creating some data structure per Z << 123 void InitialiseElementData(); << 124 struct ElementData { << 125 G4double fLogZ13; << 126 G4double fCoulomb; << 127 G4double fLradEl; << 128 G4double fDeltaFactor; << 129 G4double fDeltaMaxLow; << 130 G4double fDeltaMaxHigh; << 131 G4double fEtaValue; << 132 G4double fLPMVarS1Cond; << 133 G4double fLPMILVarS1Cond; << 134 }; << 135 // for precomputing comp. intensive parts of << 136 // using them at run-time << 137 void InitLPMFunctions(); << 138 void ComputeLPMGsPhis(G4double &funcGS, G4do << 139 const G4double varShat << 140 void GetLPMFunctions(G4double &lpmGs, G4doub << 141 void ComputeLPMfunctions(G4double &fXiS, G4d << 142 const G4double eps, << 143 const G4int izet); << 144 struct LPMFuncs { << 145 LPMFuncs() : fIsInitialized(false), fISDel << 146 G4bool fIsInitialized; << 147 G4double fISDelta; << 148 G4double fSLimit; << 149 std::vector<G4double> fLPMFuncG; << 150 std::vector<G4double> fLPMFuncPhi; << 151 }; << 152 150 153 protected: << 154 static const G4int gMaxZet; << 155 // << 156 static const G4double gLPMconsta << 157 // << 158 static const G4double gXGL[8]; << 159 static const G4double gWGL[8]; << 160 static const G4double gFelLowZet << 161 static const G4double gFinelLowZ << 162 // << 163 static const G4double gXSecFacto << 164 static const G4double gEgLPMActi << 165 // << 166 static std::vector<ElementData*> gElementDa << 167 static LPMFuncs gLPMFuncs; << 168 // << 169 G4bool isFirstInstance{false}; << 170 G4bool fIsUseLPMC << 171 G4bool fIsUseComp << 172 // << 173 G4double fLPMEnergy << 174 // << 175 G4double fParametri << 176 G4double fCoulombCo << 177 // << 178 G4Pow* fG4Calc; << 179 G4ParticleDefinition* fTheGamma; << 180 G4ParticleDefinition* fTheElectr << 181 G4ParticleDefinition* fThePositr << 182 G4ParticleChangeForGamma* fParticleC << 183 }; 151 }; 184 // << 152 185 // Bethe screening functions for the elastic ( << 153 186 // Bethe's phi1, phi2 coherent screening funct << 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 187 // by using (the universal) atomic form factor << 155 188 // Fermi model of the atom (using numerical so << 156 inline 189 // screening function instead of Moliere's ana << 157 void G4PairProductionRelModel::SetLPMconstant(G4double val) 190 // numerical results can be well approximated << 158 { 191 // especially near the delta=1 limit) by: << 159 fLPMconstant = val; 192 // ## if delta <= 1.4 << 193 // phi1(delta) = 20.806 - delta*(3.190 - 0.57 << 194 // phi2(delta) = 20.234 - delta*(2.126 - 0.09 << 195 // ## if delta > 1.4 << 196 // phi1(delta) = phi2(delta) = 21.0190 - 4.14 << 197 // with delta = 136mc^2kZ^{-1/3}/[E(Eg-E)] = 1 << 198 // Eg is the initial photon energy, E is the t << 199 // the e-/e+ pair, eps0 = mc^2/Eg and eps = E/ << 200 << 201 inline void G4PairProductionRelModel::ComputeP << 202 G4double &phi1, << 203 G4double &phi2) << 204 { << 205 if (delta > 1.4) { << 206 phi1 = 21.0190 - 4.145*G4Log(delta + 0.9 << 207 phi2 = phi1; << 208 } else { << 209 phi1 = 20.806 - delta*(3.190 - 0.5710*de << 210 phi2 = 20.234 - delta*(2.126 - 0.0903*de << 211 } << 212 } 160 } 213 161 214 // Compute the value of the screening function << 162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 215 inline G4double G4PairProductionRelModel::Scre << 163 >> 164 inline >> 165 G4double G4PairProductionRelModel::LPMconstant() const 216 { 166 { 217 return (delta > 1.4) ? 42.038 - 8.29*G4Log(d << 167 return fLPMconstant; 218 : 42.184 - delta*(7.444 << 219 } 168 } 220 169 221 // Compute the value of the screening function << 170 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 222 inline G4double G4PairProductionRelModel::Scre << 171 >> 172 inline >> 173 void G4PairProductionRelModel::SetLPMflag(G4bool val) >> 174 { >> 175 fLPMflag = val; >> 176 } >> 177 >> 178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 179 >> 180 inline >> 181 G4bool G4PairProductionRelModel::LPMflag() const 223 { 182 { 224 return (delta > 1.4) ? 42.038 - 8.29*G4Log(d << 183 return fLPMflag; 225 : 41.326 - delta*(5.848 << 226 } 184 } 227 185 228 // Same as ScreenFunction1 and ScreenFunction2 << 186 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 229 inline void G4PairProductionRelModel::ScreenFu << 187 230 << 188 inline void G4PairProductionRelModel::SetCurrentElement(G4double Z) 231 { 189 { 232 if (delta > 1.4) { << 190 if(Z != currentZ) { 233 f1 = 42.038 - 8.29*G4Log(delta + 0.958); << 191 currentZ = Z; 234 f2 = f1; << 192 235 } else { << 193 G4int iz = G4int(Z); 236 f1 = 42.184 - delta*(7.444 - 1.623*delta); << 194 z13 = nist->GetZ13(iz); 237 f2 = 41.326 - delta*(5.848 - 0.902*delta); << 195 z23 = z13*z13; >> 196 lnZ = nist->GetLOGZ(iz); >> 197 >> 198 if (iz <= 4) { >> 199 Fel = Fel_light[iz]; >> 200 Finel = Finel_light[iz] ; >> 201 } >> 202 else { >> 203 Fel = facFel - lnZ/3. ; >> 204 Finel = facFinel - 2.*lnZ/3. ; >> 205 } >> 206 fCoulomb=GetCurrentElement()->GetfCoulomb(); 238 } 207 } 239 } 208 } >> 209 >> 210 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 211 >> 212 inline G4double G4PairProductionRelModel::Phi1(G4double delta) const >> 213 { >> 214 G4double screenVal; >> 215 >> 216 if (delta > 1.) >> 217 screenVal = 21.12 - 4.184*std::log(delta+0.952); >> 218 else >> 219 screenVal = 20.868 - delta*(3.242 - 0.625*delta); >> 220 >> 221 return screenVal; >> 222 } >> 223 >> 224 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 225 >> 226 inline G4double G4PairProductionRelModel::Phi2(G4double delta) const >> 227 { >> 228 G4double screenVal; >> 229 >> 230 if (delta > 1.) >> 231 screenVal = 21.12 - 4.184*std::log(delta+0.952); >> 232 else >> 233 screenVal = 20.209 - delta*(1.930 + 0.086*delta); >> 234 >> 235 return screenVal; >> 236 } >> 237 >> 238 inline G4double G4PairProductionRelModel::ScreenFunction1(G4double ScreenVariable) >> 239 >> 240 // compute the value of the screening function 3*PHI1 - PHI2 >> 241 >> 242 { >> 243 G4double screenVal; >> 244 >> 245 if (ScreenVariable > 1.) >> 246 screenVal = 42.24 - 8.368*std::log(ScreenVariable+0.952); >> 247 else >> 248 screenVal = 42.392 - ScreenVariable*(7.796 - 1.961*ScreenVariable); >> 249 >> 250 return screenVal; >> 251 } >> 252 >> 253 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 254 >> 255 inline G4double G4PairProductionRelModel::ScreenFunction2(G4double ScreenVariable) >> 256 >> 257 // compute the value of the screening function 1.5*PHI1 + 0.5*PHI2 >> 258 >> 259 { >> 260 G4double screenVal; >> 261 >> 262 if (ScreenVariable > 1.) >> 263 screenVal = 42.24 - 8.368*std::log(ScreenVariable+0.952); >> 264 else >> 265 screenVal = 41.405 - ScreenVariable*(5.828 - 0.8945*ScreenVariable); >> 266 >> 267 return screenVal; >> 268 } >> 269 >> 270 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 271 >> 272 >> 273 inline G4double G4PairProductionRelModel::DeltaMax() const >> 274 { >> 275 // k > 50 MeV >> 276 G4double FZ = 8.*(lnZ/3. + fCoulomb); >> 277 return std::exp( (42.24-FZ)/8.368 ) + 0.952; >> 278 } >> 279 >> 280 inline G4double G4PairProductionRelModel::DeltaMin(G4double k) const >> 281 { >> 282 return 4.*136./z13*(electron_mass_c2/k); >> 283 } >> 284 >> 285 240 286 241 #endif 287 #endif 242 288