Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4PairProductionRelModel.hh 106628 2017-10-17 06:25:38Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class header file 30 // GEANT4 Class header file 30 // 31 // 31 // 32 // 32 // File name: G4PairProductionRelModel 33 // File name: G4PairProductionRelModel 33 // 34 // 34 // Author: Andreas Schaelicke 35 // Author: Andreas Schaelicke 35 // 36 // 36 // Creation date: 02.04.2009 37 // Creation date: 02.04.2009 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 28-05-18 New version with improved screenin << 40 // LPM function approximation, effici << 41 // Corrected call to selecting target << 42 // (M. Novak) << 43 // 40 // 44 // Class Description: 41 // Class Description: 45 // 42 // 46 // Implementation of gamma conversion to e+e- << 43 // Implementation of gamma convertion to e+e- in the field of a nucleus 47 // relativistic approximation 44 // relativistic approximation 48 // 45 // 49 46 50 // ------------------------------------------- 47 // ------------------------------------------------------------------- 51 // 48 // 52 49 53 #ifndef G4PairProductionRelModel_h 50 #ifndef G4PairProductionRelModel_h 54 #define G4PairProductionRelModel_h 1 51 #define G4PairProductionRelModel_h 1 55 52 56 #include <CLHEP/Units/PhysicalConstants.h> 53 #include <CLHEP/Units/PhysicalConstants.h> 57 54 58 #include "G4VEmModel.hh" 55 #include "G4VEmModel.hh" >> 56 #include "G4PhysicsTable.hh" 59 #include "G4Log.hh" 57 #include "G4Log.hh" 60 #include <vector> << 58 #include "G4Exp.hh" >> 59 #include "G4Pow.hh" 61 60 62 class G4ParticleChangeForGamma; 61 class G4ParticleChangeForGamma; 63 class G4Pow; << 64 62 65 class G4PairProductionRelModel : public G4VEmM 63 class G4PairProductionRelModel : public G4VEmModel 66 { 64 { 67 65 68 public: 66 public: 69 67 70 explicit G4PairProductionRelModel(const G4Pa 68 explicit G4PairProductionRelModel(const G4ParticleDefinition* p = nullptr, 71 const G4St << 69 const G4String& nam = "BetheHeitlerLPM"); 72 70 73 ~G4PairProductionRelModel() override; << 71 virtual ~G4PairProductionRelModel(); 74 72 75 void Initialise(const G4ParticleDefinition*, << 73 virtual void Initialise(const G4ParticleDefinition*, >> 74 const G4DataVector&) override; 76 75 77 void InitialiseLocal(const G4ParticleDefinit << 76 virtual void InitialiseLocal(const G4ParticleDefinition*, 78 G4VEmModel* masterModel) override; << 77 G4VEmModel* masterModel) override; 79 78 80 G4double ComputeCrossSectionPerAtom(const G4 << 79 virtual G4double ComputeCrossSectionPerAtom( 81 G4double kinEnergy, << 80 const G4ParticleDefinition*, 82 G4double Z, << 81 G4double kinEnergy, 83 G4double A=0., << 82 G4double Z, 84 G4double cut=0., << 83 G4double A=0., 85 G4double emax=DBL_MAX) override; << 84 G4double cut=0., 86 << 85 G4double emax=DBL_MAX) override; 87 void SampleSecondaries(std::vector<G4Dynamic << 86 88 const G4MaterialCutsCouple*, << 87 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 89 const G4DynamicParticle*, << 88 const G4MaterialCutsCouple*, 90 G4double tmin, << 89 const G4DynamicParticle*, 91 G4double maxEnergy) override; << 90 G4double tmin, >> 91 G4double maxEnergy) override; >> 92 >> 93 virtual void SetupForMaterial(const G4ParticleDefinition*, >> 94 const G4Material*,G4double) override; >> 95 >> 96 // * fast inline functions * >> 97 inline void SetCurrentElement(G4double Z); >> 98 >> 99 // set / get methods >> 100 inline void SetLPMconstant(G4double val); >> 101 inline G4double LPMconstant() const; 92 102 93 void SetupForMaterial(const G4ParticleDefini << 103 inline void SetLPMflag(G4bool); 94 const G4Material*,G4double) override; << 104 inline G4bool LPMflag() const; 95 105 96 inline void SetLPMflag(G4bool val) { fIsUs << 106 protected: 97 inline G4bool LPMflag() const { retur << 107 >> 108 // screening functions >> 109 inline G4double Phi1(G4double delta) const; >> 110 inline G4double Phi2(G4double delta) const; >> 111 inline G4double ScreenFunction1(G4double ScreenVariable); >> 112 inline G4double ScreenFunction2(G4double ScreenVariable); >> 113 inline G4double DeltaMax() const; >> 114 inline G4double DeltaMin(G4double) const; >> 115 >> 116 // lpm functions >> 117 void CalcLPMFunctions(G4double k, G4double eplus); >> 118 >> 119 G4double ComputeXSectionPerAtom(G4double totalEnergy, G4double Z); 98 120 >> 121 G4double ComputeDXSectionPerAtom(G4double eplusEnergy, G4double totalEnergy, G4double Z); >> 122 G4double ComputeRelDXSectionPerAtom(G4double eplusEnergy, G4double totalEnergy, G4double Z); >> 123 >> 124 // hide assignment operator 99 G4PairProductionRelModel & operator= 125 G4PairProductionRelModel & operator= 100 (const G4PairProductionRelModel &right) = de 126 (const G4PairProductionRelModel &right) = delete; 101 G4PairProductionRelModel(const G4PairProduc 127 G4PairProductionRelModel(const G4PairProductionRelModel&) = delete; 102 128 103 protected: << 129 G4Pow* g4calc; >> 130 G4ParticleDefinition* theGamma; >> 131 G4ParticleDefinition* theElectron; >> 132 G4ParticleDefinition* thePositron; >> 133 G4ParticleChangeForGamma* fParticleChange; >> 134 >> 135 G4double fLPMconstant; >> 136 G4bool fLPMflag; >> 137 >> 138 // cash >> 139 G4double z13, z23, lnZ; >> 140 G4double Fel, Finel, fCoulomb; >> 141 G4double currentZ; >> 142 >> 143 // LPM effect >> 144 G4double lpmEnergy; >> 145 G4double xiLPM, phiLPM, gLPM; >> 146 >> 147 // consts >> 148 G4bool use_completescreening; >> 149 >> 150 static const G4double xgi[8], wgi[8]; >> 151 static const G4double Fel_light[5]; >> 152 static const G4double Finel_light[5]; >> 153 static const G4double facFel; >> 154 static const G4double facFinel; 104 155 105 // for evaluating screening related function << 156 static const G4double preS1, logTwo, xsfactor, Egsmall, Eghigh; 106 inline void ComputePhi12(const G4double delt << 107 G4double &phi1, G4double &phi2); << 108 inline G4double ScreenFunction1(const G4doub << 109 inline G4double ScreenFunction2(const G4doub << 110 inline void ScreenFunction12(const G4double << 111 G4double &f1, G4double &f2); << 112 // helper methods for cross-section computat << 113 G4double ComputeParametrizedXSectionPerAtom( << 114 G4double ComputeXSectionPerAtom(G4double gam << 115 G4double ComputeDXSectionPerAtom(G4double ep << 116 G4double Z) << 117 G4double ComputeRelDXSectionPerAtom(G4double << 118 G4double gammaEnergy, G4double Z << 119 << 120 private: << 121 << 122 // for creating some data structure per Z << 123 void InitialiseElementData(); << 124 struct ElementData { << 125 G4double fLogZ13; << 126 G4double fCoulomb; << 127 G4double fLradEl; << 128 G4double fDeltaFactor; << 129 G4double fDeltaMaxLow; << 130 G4double fDeltaMaxHigh; << 131 G4double fEtaValue; << 132 G4double fLPMVarS1Cond; << 133 G4double fLPMILVarS1Cond; << 134 }; << 135 // for precomputing comp. intensive parts of << 136 // using them at run-time << 137 void InitLPMFunctions(); << 138 void ComputeLPMGsPhis(G4double &funcGS, G4do << 139 const G4double varShat << 140 void GetLPMFunctions(G4double &lpmGs, G4doub << 141 void ComputeLPMfunctions(G4double &fXiS, G4d << 142 const G4double eps, << 143 const G4int izet); << 144 struct LPMFuncs { << 145 LPMFuncs() : fIsInitialized(false), fISDel << 146 G4bool fIsInitialized; << 147 G4double fISDelta; << 148 G4double fSLimit; << 149 std::vector<G4double> fLPMFuncG; << 150 std::vector<G4double> fLPMFuncPhi; << 151 }; << 152 157 153 protected: << 154 static const G4int gMaxZet; << 155 // << 156 static const G4double gLPMconsta << 157 // << 158 static const G4double gXGL[8]; << 159 static const G4double gWGL[8]; << 160 static const G4double gFelLowZet << 161 static const G4double gFinelLowZ << 162 // << 163 static const G4double gXSecFacto << 164 static const G4double gEgLPMActi << 165 // << 166 static std::vector<ElementData*> gElementDa << 167 static LPMFuncs gLPMFuncs; << 168 // << 169 G4bool isFirstInstance{false}; << 170 G4bool fIsUseLPMC << 171 G4bool fIsUseComp << 172 // << 173 G4double fLPMEnergy << 174 // << 175 G4double fParametri << 176 G4double fCoulombCo << 177 // << 178 G4Pow* fG4Calc; << 179 G4ParticleDefinition* fTheGamma; << 180 G4ParticleDefinition* fTheElectr << 181 G4ParticleDefinition* fThePositr << 182 G4ParticleChangeForGamma* fParticleC << 183 }; 158 }; 184 // << 159 185 // Bethe screening functions for the elastic ( << 160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 186 // Bethe's phi1, phi2 coherent screening funct << 161 187 // by using (the universal) atomic form factor << 162 inline 188 // Fermi model of the atom (using numerical so << 163 void G4PairProductionRelModel::SetLPMconstant(G4double val) 189 // screening function instead of Moliere's ana << 164 { 190 // numerical results can be well approximated << 165 fLPMconstant = val; 191 // especially near the delta=1 limit) by: << 192 // ## if delta <= 1.4 << 193 // phi1(delta) = 20.806 - delta*(3.190 - 0.57 << 194 // phi2(delta) = 20.234 - delta*(2.126 - 0.09 << 195 // ## if delta > 1.4 << 196 // phi1(delta) = phi2(delta) = 21.0190 - 4.14 << 197 // with delta = 136mc^2kZ^{-1/3}/[E(Eg-E)] = 1 << 198 // Eg is the initial photon energy, E is the t << 199 // the e-/e+ pair, eps0 = mc^2/Eg and eps = E/ << 200 << 201 inline void G4PairProductionRelModel::ComputeP << 202 G4double &phi1, << 203 G4double &phi2) << 204 { << 205 if (delta > 1.4) { << 206 phi1 = 21.0190 - 4.145*G4Log(delta + 0.9 << 207 phi2 = phi1; << 208 } else { << 209 phi1 = 20.806 - delta*(3.190 - 0.5710*de << 210 phi2 = 20.234 - delta*(2.126 - 0.0903*de << 211 } << 212 } 166 } 213 167 214 // Compute the value of the screening function << 168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 215 inline G4double G4PairProductionRelModel::Scre << 169 >> 170 inline >> 171 G4double G4PairProductionRelModel::LPMconstant() const 216 { 172 { 217 return (delta > 1.4) ? 42.038 - 8.29*G4Log(d << 173 return fLPMconstant; 218 : 42.184 - delta*(7.444 << 219 } 174 } 220 175 221 // Compute the value of the screening function << 176 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 222 inline G4double G4PairProductionRelModel::Scre << 177 >> 178 inline >> 179 void G4PairProductionRelModel::SetLPMflag(G4bool val) 223 { 180 { 224 return (delta > 1.4) ? 42.038 - 8.29*G4Log(d << 181 fLPMflag = val; 225 : 41.326 - delta*(5.848 << 226 } 182 } 227 183 228 // Same as ScreenFunction1 and ScreenFunction2 << 184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 229 inline void G4PairProductionRelModel::ScreenFu << 185 230 << 186 inline >> 187 G4bool G4PairProductionRelModel::LPMflag() const 231 { 188 { 232 if (delta > 1.4) { << 189 return fLPMflag; 233 f1 = 42.038 - 8.29*G4Log(delta + 0.958); << 190 } 234 f2 = f1; << 191 235 } else { << 192 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 236 f1 = 42.184 - delta*(7.444 - 1.623*delta); << 193 237 f2 = 41.326 - delta*(5.848 - 0.902*delta); << 194 inline void G4PairProductionRelModel::SetCurrentElement(G4double Z) >> 195 { >> 196 if(Z != currentZ) { >> 197 currentZ = Z; >> 198 >> 199 G4int iz = G4lrint(Z); >> 200 z13 = g4calc->Z13(iz); >> 201 z23 = z13*z13; >> 202 lnZ = g4calc->logZ(iz); >> 203 >> 204 if (iz <= 4) { >> 205 Fel = Fel_light[iz]; >> 206 Finel = Finel_light[iz] ; >> 207 } >> 208 else { >> 209 Fel = facFel - lnZ/3. ; >> 210 Finel = facFinel - 2.*lnZ/3. ; >> 211 } >> 212 fCoulomb=GetCurrentElement()->GetfCoulomb(); 238 } 213 } >> 214 } >> 215 >> 216 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 217 >> 218 inline G4double G4PairProductionRelModel::Phi1(G4double delta) const >> 219 { >> 220 return (delta > 1.) >> 221 ? 21.12 - 4.184*G4Log(delta+0.952) >> 222 : 20.868 - delta*(3.242 - 0.625*delta); >> 223 } >> 224 >> 225 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 226 >> 227 inline G4double G4PairProductionRelModel::Phi2(G4double delta) const >> 228 { >> 229 return (delta > 1.) >> 230 ? 21.12 - 4.184*G4Log(delta+0.952) >> 231 : 20.209 - delta*(1.930 + 0.086*delta); >> 232 } >> 233 >> 234 inline G4double G4PairProductionRelModel::ScreenFunction1(G4double ScreenVariable) >> 235 // compute the value of the screening function 3*PHI1 - PHI2 >> 236 { >> 237 return (ScreenVariable > 1.) >> 238 ? 42.24 - 8.368*G4Log(ScreenVariable+0.952) >> 239 : 42.392 - ScreenVariable*(7.796 - 1.961*ScreenVariable); >> 240 } >> 241 >> 242 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 243 >> 244 inline G4double G4PairProductionRelModel::ScreenFunction2(G4double ScreenVariable) >> 245 // compute the value of the screening function 1.5*PHI1 + 0.5*PHI2 >> 246 { >> 247 return (ScreenVariable > 1.) >> 248 ? 42.24 - 8.368*G4Log(ScreenVariable+0.952) >> 249 : 41.405 - ScreenVariable*(5.828 - 0.8945*ScreenVariable); >> 250 } >> 251 >> 252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 253 >> 254 inline G4double G4PairProductionRelModel::DeltaMax() const >> 255 { >> 256 // k > 50 MeV >> 257 G4double FZ = 8.*(lnZ/3. + fCoulomb); >> 258 return G4Exp( (42.24-FZ)/8.368 ) + 0.952; >> 259 } >> 260 >> 261 inline G4double G4PairProductionRelModel::DeltaMin(G4double k) const >> 262 { >> 263 return 544.*CLHEP::electron_mass_c2/(z13*k); 239 } 264 } 240 265 241 #endif 266 #endif 242 267