Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** >> 25 // >> 26 // >> 27 // $Id: G4PAIySection.hh,v 1.1 2007/10/01 17:45:14 vnivanch Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02-patch-03 $ >> 29 // 25 // 30 // 26 // G4PAIySection.hh -- header file 31 // G4PAIySection.hh -- header file 27 // 32 // 28 // 33 // 29 // Preparation of ionizing collision cross sec 34 // Preparation of ionizing collision cross section according to Photo Absorption 30 // Ionization (PAI) model for simulation of io 35 // Ionization (PAI) model for simulation of ionization energy losses in very thin 31 // absorbers. Author: Vladimir.Grichine@cern.c 36 // absorbers. Author: Vladimir.Grichine@cern.ch 32 // 37 // 33 // History: 38 // History: 34 // 39 // 35 // 01.10.07, V.Ivanchenko create using V.Grich 40 // 01.10.07, V.Ivanchenko create using V.Grichine G4PAIxSection class 36 // 21.11.10, V.Grichine fVerbose and SetVerb << 37 // 28.10.11, V.Ivanchenko Migration of excepti << 38 41 39 #ifndef G4PAIYSECTION_HH 42 #ifndef G4PAIYSECTION_HH 40 #define G4PAIYSECTION_HH 43 #define G4PAIYSECTION_HH 41 44 42 #include "G4ios.hh" 45 #include "G4ios.hh" 43 #include "globals.hh" 46 #include "globals.hh" 44 #include "Randomize.hh" 47 #include "Randomize.hh" 45 48 46 #include "G4SandiaTable.hh" 49 #include "G4SandiaTable.hh" 47 50 48 class G4PAIySection 51 class G4PAIySection 49 { 52 { 50 public: 53 public: 51 54 52 explicit G4PAIySection(); << 55 G4PAIySection(); 53 << 56 54 ~G4PAIySection() = default; << 57 ~G4PAIySection(); 55 << 58 56 void Initialize(const G4Material* material, << 59 void Initialize(const G4Material* material, 57 G4double betaGammaSq, G4Sand << 60 G4double maxEnergyTransfer, 58 << 61 G4double betaGammaSq); 59 void ComputeLowEnergyCof(const G4Material* m << 62 60 << 63 void InitPAI() ; 61 void InitPAI(); << 62 64 63 void NormShift( G4double betaGammaSq ); << 65 void NormShift( G4double betaGammaSq ) ; 64 66 65 void SplainPAI( G4double betaGammaSq ); << 67 void SplainPAI( G4double betaGammaSq ) ; 66 << 68 67 // Physical methods 69 // Physical methods 68 G4double RutherfordIntegral( G4int intervalN 70 G4double RutherfordIntegral( G4int intervalNumber, 69 G4double limitL << 71 G4double limitLow, 70 G4double limitH << 72 G4double limitHigh ) ; 71 73 72 G4double ImPartDielectricConst( G4int interv 74 G4double ImPartDielectricConst( G4int intervalNumber, 73 G4double ene << 75 G4double energy ) ; 74 76 75 G4double RePartDielectricConst(G4double ener << 77 G4double RePartDielectricConst(G4double energy) ; 76 78 77 G4double DifPAIySection( G4int intervalNumbe 79 G4double DifPAIySection( G4int intervalNumber, 78 G4double betaGammaS << 80 G4double betaGammaSq ) ; 79 81 80 G4double PAIdNdxCerenkov( G4int intervalNumb 82 G4double PAIdNdxCerenkov( G4int intervalNumber, 81 G4double betaGamma << 83 G4double betaGammaSq ) ; 82 84 83 G4double PAIdNdxPlasmon( G4int intervalNumbe 85 G4double PAIdNdxPlasmon( G4int intervalNumber, 84 G4double betaGammaS << 86 G4double betaGammaSq ) ; 85 87 86 void IntegralPAIySection(); << 88 void IntegralPAIySection() ; 87 void IntegralCerenkov(); << 89 void IntegralCerenkov() ; 88 void IntegralPlasmon(); << 90 void IntegralPlasmon() ; 89 << 91 90 G4double SumOverInterval(G4int intervalNumbe << 92 G4double SumOverInterval(G4int intervalNumber) ; 91 G4double SumOverIntervaldEdx(G4int intervalN << 93 G4double SumOverIntervaldEdx(G4int intervalNumber) ; 92 G4double SumOverInterCerenkov(G4int interval << 94 G4double SumOverInterCerenkov(G4int intervalNumber) ; 93 G4double SumOverInterPlasmon(G4int intervalN << 95 G4double SumOverInterPlasmon(G4int intervalNumber) ; 94 96 95 G4double SumOverBorder( G4int intervalNumber 97 G4double SumOverBorder( G4int intervalNumber, 96 G4double energy << 98 G4double energy ) ; 97 G4double SumOverBorderdEdx( G4int intervalNu 99 G4double SumOverBorderdEdx( G4int intervalNumber, 98 G4double energy << 100 G4double energy ) ; 99 G4double SumOverBordCerenkov( G4int interval 101 G4double SumOverBordCerenkov( G4int intervalNumber, 100 G4double energ << 102 G4double energy ) ; 101 G4double SumOverBordPlasmon( G4int intervalN 103 G4double SumOverBordPlasmon( G4int intervalNumber, 102 G4double energy << 104 G4double energy ) ; 103 105 104 G4double GetStepEnergyLoss( G4double step ); << 106 G4double GetStepEnergyLoss( G4double step ) ; 105 G4double GetStepCerenkovLoss( G4double step << 107 G4double GetStepCerenkovLoss( G4double step ) ; 106 G4double GetStepPlasmonLoss( G4double step ) << 108 G4double GetStepPlasmonLoss( G4double step ) ; 107 << 109 108 G4double GetLorentzFactor(G4int j) const; << 109 << 110 // Inline access functions 110 // Inline access functions 111 111 112 inline G4int GetNumberOfGammas() const { ret << 112 G4int GetNumberOfGammas() const { return fNumberOfGammas ; } 113 << 113 114 inline G4int GetSplineSize() const { return << 114 G4int GetSplineSize() const { return fSplineNumber ; } 115 << 115 116 inline G4int GetIntervalNumber() const { ret << 116 G4int GetIntervalNumber() const { return fIntervalNumber ; } 117 << 117 118 inline G4double GetEnergyInterval(G4int i){ << 118 G4double GetEnergyInterval(G4int i){ return fEnergyInterval[i] ; } 119 << 119 120 inline G4double GetDifPAIySection(G4int i){ << 120 G4double GetDifPAIySection(G4int i){ return fDifPAIySection[i] ; } 121 inline G4double GetPAIdNdxCrenkov(G4int i){ << 121 G4double GetPAIdNdxCrenkov(G4int i){ return fdNdxCerenkov[i] ; } 122 inline G4double GetPAIdNdxPlasmon(G4int i){ << 122 G4double GetPAIdNdxPlasmon(G4int i){ return fdNdxPlasmon[i] ; } 123 << 123 124 inline G4double GetMeanEnergyLoss() const {r << 124 G4double GetMeanEnergyLoss() const {return fIntegralPAIySection[0] ; } 125 inline G4double GetMeanCerenkovLoss() const << 125 G4double GetMeanCerenkovLoss() const {return fIntegralCerenkov[0] ; } 126 inline G4double GetMeanPlasmonLoss() const { << 126 G4double GetMeanPlasmonLoss() const {return fIntegralPlasmon[0] ; } 127 << 127 128 inline G4double GetNormalizationCof() const << 128 G4double GetNormalizationCof() const { return fNormalizationCof ; } 129 << 129 130 inline G4double GetPAItable(G4int i,G4int j) << 130 inline G4double GetPAItable(G4int i,G4int j) const ; 131 << 131 132 inline G4double GetSplineEnergy(G4int i) con << 132 inline G4double GetLorentzFactor(G4int i) const ; 133 << 133 134 inline G4double GetIntegralPAIySection(G4int << 134 inline G4double GetSplineEnergy(G4int i) const ; 135 inline G4double GetIntegralPAIdEdx(G4int i) << 135 136 inline G4double GetIntegralCerenkov(G4int i) << 136 inline G4double GetIntegralPAIySection(G4int i) const ; 137 inline G4double GetIntegralPlasmon(G4int i) << 137 inline G4double GetIntegralPAIdEdx(G4int i) const ; 138 << 138 inline G4double GetIntegralCerenkov(G4int i) const ; 139 inline void SetVerbose(G4int v) { fVerbose = << 139 inline G4double GetIntegralPlasmon(G4int i) const ; 140 << 141 G4PAIySection & operator=(const G4PAIySectio << 142 G4PAIySection(const G4PAIySection&) = delete << 143 140 144 private : 141 private : 145 142 146 void CallError(G4int i, const G4String& meth << 143 // Local class constants 147 << 148 // Local class constants << 149 144 150 static const G4double fDelta; // energy shif << 145 static const G4double fDelta ; // energy shift from interval border = 0.001 151 static const G4double fError; // error in li << 146 static const G4double fError ; // error in lin-log approximation = 0.005 152 147 153 static G4int fNumberOfGammas; // = 111; << 148 static G4int fNumberOfGammas ; // = 111 ; 154 static const G4double fLorentzFactor[112]; << 149 static const G4double fLorentzFactor[112] ; // static gamma array 155 150 156 static 151 static 157 const G4int fRefGammaNumber; // The number o << 152 const G4int fRefGammaNumber ; // The number of gamma for creation of spline (15) 158 << 159 G4int fIntervalNumber ; // The number << 160 G4double fNormalizationCof; // Normalizatio << 161 153 162 G4double betaBohr; << 154 G4int fIntervalNumber ; // The number of energy intervals 163 G4double betaBohr4; << 155 G4double fNormalizationCof ; // Normalization cof for PhotoAbsorptionXsection 164 156 165 G4double fDensity; // Current den << 157 G4double fDensity ; // Current density 166 G4double fElectronDensity; // Current ele << 158 G4double fElectronDensity ; // Current electron (number) density 167 G4double fLowEnergyCof; // Correction << 159 G4int fSplineNumber ; // Current size of spline 168 G4int fSplineNumber; // Current siz << 169 G4int fVerbose; // verbose fla << 170 160 171 G4SandiaTable* fSandia; 161 G4SandiaTable* fSandia; 172 162 173 G4DataVector fEnergyInterval; << 163 G4double fEnergyInterval[500] ; 174 G4DataVector fA1; << 164 G4double fA1[500] ; 175 G4DataVector fA2; << 165 G4double fA2[500] ; 176 G4DataVector fA3; << 166 G4double fA3[500] ; 177 G4DataVector fA4; << 167 G4double fA4[500] ; 178 168 179 static 169 static 180 const G4int fMaxSplineSize; // Max size of << 170 const G4int fMaxSplineSize ; // Max size of output splain arrays = 500 >> 171 >> 172 G4double fSplineEnergy[500] ; // energy points of splain >> 173 G4double fRePartDielectricConst[500] ; // Real part of dielectric const >> 174 G4double fImPartDielectricConst[500] ; // Imaginary part of dielectric const >> 175 G4double fIntegralTerm[500] ; // Integral term in PAI cross section >> 176 G4double fDifPAIySection[500] ; // Differential PAI cross section >> 177 G4double fdNdxCerenkov[500] ; // dNdx of Cerenkov collisions >> 178 G4double fdNdxPlasmon[500] ; // dNdx of Plasmon collisions >> 179 >> 180 G4double fIntegralPAIySection[500] ; // Integral PAI cross section ? >> 181 G4double fIntegralPAIdEdx[500] ; // Integral PAI dEdx ? >> 182 G4double fIntegralCerenkov[500] ; // Integral Cerenkov N>omega ? >> 183 G4double fIntegralPlasmon[500] ; // Integral Plasmon N>omega ? 181 184 182 G4DataVector fSplineEnergy; // ener << 185 G4double fPAItable[500][112] ; // Output array 183 G4DataVector fRePartDielectricConst; // Real << 186 184 G4DataVector fImPartDielectricConst; // Imag << 187 } ; 185 G4DataVector fIntegralTerm; // Inte << 188 186 G4DataVector fDifPAIySection; // Diff << 189 //////////////// Inline methods ////////////////////////////////// 187 G4DataVector fdNdxCerenkov; // dNdx << 190 // 188 G4DataVector fdNdxPlasmon; // dNdx << 189 << 190 G4DataVector fIntegralPAIySection; // Inte << 191 G4DataVector fIntegralPAIdEdx; // Inte << 192 G4DataVector fIntegralCerenkov; // Inte << 193 G4DataVector fIntegralPlasmon; // Inte << 194 191 195 G4double fPAItable[500][112]; // Outp << 196 }; << 197 192 198 inline G4double G4PAIySection::GetPAItable(G4i 193 inline G4double G4PAIySection::GetPAItable(G4int i, G4int j) const 199 { 194 { 200 return fPAItable[i][j]; << 195 return fPAItable[i][j] ; >> 196 } >> 197 >> 198 inline G4double G4PAIySection::GetLorentzFactor(G4int j) const >> 199 { >> 200 return fLorentzFactor[j] ; 201 } 201 } 202 202 203 inline G4double G4PAIySection::GetSplineEnergy 203 inline G4double G4PAIySection::GetSplineEnergy(G4int i) const 204 { 204 { 205 if(i < 1 || i > fSplineNumber) { CallError(i << 205 if(i < 1 || i > fSplineNumber) 206 return fSplineEnergy[i]; << 206 { >> 207 G4Exception("Invalid argument in G4PAIySection::GetSplineEnergy"); >> 208 } >> 209 return fSplineEnergy[i] ; 207 } 210 } 208 << 211 209 inline G4double G4PAIySection::GetIntegralPAIy 212 inline G4double G4PAIySection::GetIntegralPAIySection(G4int i) const 210 { 213 { 211 if(i < 1 || i > fSplineNumber) { CallError(i << 214 if(i < 1 || i > fSplineNumber) 212 return fIntegralPAIySection[i]; << 215 { >> 216 G4Exception("Invalid argument in G4PAIySection::GetIntegralPAIySection"); >> 217 } >> 218 return fIntegralPAIySection[i] ; 213 } 219 } 214 220 215 inline G4double G4PAIySection::GetIntegralPAId 221 inline G4double G4PAIySection::GetIntegralPAIdEdx(G4int i) const 216 { 222 { 217 if(i < 1 || i > fSplineNumber) { CallError(i << 223 if(i < 1 || i > fSplineNumber) 218 return fIntegralPAIdEdx[i]; << 224 { >> 225 G4Exception("Invalid argument in G4PAIySection::GetIntegralPAIySection"); >> 226 } >> 227 return fIntegralPAIdEdx[i] ; 219 } 228 } 220 229 221 inline G4double G4PAIySection::GetIntegralCere 230 inline G4double G4PAIySection::GetIntegralCerenkov(G4int i) const 222 { 231 { 223 if(i < 1 || i > fSplineNumber) { CallError(i << 232 if(i < 1 || i > fSplineNumber) 224 return fIntegralCerenkov[i]; << 233 { >> 234 G4Exception("Invalid argument in G4PAIySection::GetIntegralCerenkov"); >> 235 } >> 236 return fIntegralCerenkov[i] ; 225 } 237 } 226 238 227 inline G4double G4PAIySection::GetIntegralPlas 239 inline G4double G4PAIySection::GetIntegralPlasmon(G4int i) const 228 { 240 { 229 if(i < 1 || i > fSplineNumber) { CallError(i << 241 if(i < 1 || i > fSplineNumber) 230 return fIntegralPlasmon[i]; << 242 { >> 243 G4Exception("Invalid argument in G4PAIySection::GetIntegralPlasmon"); >> 244 } >> 245 return fIntegralPlasmon[i] ; 231 } 246 } 232 247 233 #endif 248 #endif 234 249 235 // ----------------- end of G4PAIySection he 250 // ----------------- end of G4PAIySection header file ------------------- 236 251