Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** >> 25 // >> 26 // >> 27 // $Id: G4PAIxSection.hh 75582 2013-11-04 12:13:01Z gcosmo $ >> 28 // 25 // 29 // 26 // G4PAIxSection.hh -- header file 30 // G4PAIxSection.hh -- header file 27 // 31 // 28 // GEANT 4 class header file --- Copyright CER 32 // GEANT 4 class header file --- Copyright CERN 1995 29 // CERB Geneva Switzerland 33 // CERB Geneva Switzerland 30 // 34 // 31 // for information related to this code, pleas 35 // for information related to this code, please, contact 32 // CERN, CN Division, ASD Group 36 // CERN, CN Division, ASD Group 33 // 37 // 34 // Preparation of ionizing collision cross sec 38 // Preparation of ionizing collision cross section according to Photo Absorption 35 // Ionization (PAI) model for simulation of io 39 // Ionization (PAI) model for simulation of ionization energy losses in very thin 36 // absorbers. Author: Vladimir.Grichine@cern.c 40 // absorbers. Author: Vladimir.Grichine@cern.ch 37 // 41 // 38 // History: 42 // History: 39 // 43 // 40 // 28.10.11, V. Ivanchenko: Migration of excep 44 // 28.10.11, V. Ivanchenko: Migration of exceptions to the new design 41 // 19.10.03, V. Grichine: Integral dEdx was ad 45 // 19.10.03, V. Grichine: Integral dEdx was added for G4PAIModel class 42 // 13.05.03, V. Grichine: Numerical instabilit 46 // 13.05.03, V. Grichine: Numerical instability was fixed in SumOverInterval/Border 43 // functions 47 // functions 44 // 10.02.02, V. Grichine: New functions and ar 48 // 10.02.02, V. Grichine: New functions and arrays/gets for Cerenkov and 45 // plasmon collisions d 49 // plasmon collisions dN/dx 46 // 27.10.99, V. Grichine: Bug fixed in constru 50 // 27.10.99, V. Grichine: Bug fixed in constructors, 3rd constructor and 47 // GetStepEnergyLoss(st 51 // GetStepEnergyLoss(step) were added, fDelta = 0.005 48 // 30.11.97, V. Grichine: 2nd version 52 // 30.11.97, V. Grichine: 2nd version 49 // 11.06.97, V. Grichine: 1st version 53 // 11.06.97, V. Grichine: 1st version 50 54 51 #ifndef G4PAIXSECTION_HH 55 #ifndef G4PAIXSECTION_HH 52 #define G4PAIXSECTION_HH 56 #define G4PAIXSECTION_HH 53 57 54 #include "G4ios.hh" 58 #include "G4ios.hh" 55 #include "globals.hh" 59 #include "globals.hh" 56 #include "Randomize.hh" 60 #include "Randomize.hh" 57 61 58 #include "G4SandiaTable.hh" << 62 #include"G4SandiaTable.hh" 59 63 60 class G4MaterialCutsCouple; 64 class G4MaterialCutsCouple; 61 class G4Sandiatable; 65 class G4Sandiatable; 62 66 63 67 64 class G4PAIxSection 68 class G4PAIxSection 65 { 69 { 66 public: 70 public: 67 // Constructors 71 // Constructors 68 G4PAIxSection(); 72 G4PAIxSection(); 69 G4PAIxSection( G4MaterialCutsCouple* matCC); 73 G4PAIxSection( G4MaterialCutsCouple* matCC); 70 74 71 G4PAIxSection( G4int materialIndex, G4double << 75 G4PAIxSection( G4int materialIndex, >> 76 G4double maxEnergyTransfer ); 72 77 73 G4PAIxSection( G4int materialIndex, 78 G4PAIxSection( G4int materialIndex, // for proton loss table 74 G4double maxEnergyTransfer, 79 G4double maxEnergyTransfer, 75 G4double betaGammaSq , 80 G4double betaGammaSq , 76 G4double** photoAbsCo 81 G4double** photoAbsCof, G4int intNumber ); 77 82 78 G4PAIxSection( G4int materialIndex, 83 G4PAIxSection( G4int materialIndex, // test constructor 79 G4double maxEnergyTransfer, 84 G4double maxEnergyTransfer, 80 G4double betaGammaSq ); 85 G4double betaGammaSq ); 81 86 82 ~G4PAIxSection(); << 87 // G4PAIxSection(const G4PAIxSection& right); >> 88 >> 89 // Destructor >> 90 >> 91 ~G4PAIxSection(); 83 92 84 void Initialize(const G4Material* material, << 93 void Initialize(const G4Material* material, 85 G4double betaGammaSq, G4SandiaTable*); << 94 G4double maxEnergyTransfer, G4double betaGammaSq, G4SandiaTable*); 86 95 87 // General control functions << 96 // Operators >> 97 // G4PAIxSection& operator=(const G4PAIxSection& right); >> 98 // G4int operator==(const G4PAIxSection& right)const; >> 99 // G4int operator!=(const G4PAIxSection& right)const; >> 100 >> 101 // Methods >> 102 >> 103 // General control functions 88 104 89 void ComputeLowEnergyCof(const G4Materia 105 void ComputeLowEnergyCof(const G4Material* material); 90 void ComputeLowEnergyCof(); << 106 void ComputeLowEnergyCof(); 91 107 92 void InitPAI(); << 108 void InitPAI(); 93 109 94 void NormShift( G4double betaGammaSq ); << 110 void NormShift( G4double betaGammaSq ); 95 111 96 void SplainPAI( G4double betaGammaSq ); << 112 void SplainPAI( G4double betaGammaSq ); 97 113 98 // Physical methods << 114 // Physical methods 99 115 100 G4double RutherfordIntegral( G4int intervalN << 116 101 G4double limitLow, << 117 G4double RutherfordIntegral( G4int intervalNumber, 102 G4double limitHigh ); << 118 G4double limitLow, 103 << 119 G4double limitHigh ); 104 G4double ImPartDielectricConst( G4int interv << 120 105 G4double energy ); << 121 G4double ImPartDielectricConst( G4int intervalNumber, 106 << 122 G4double energy ); 107 G4double GetPhotonRange( G4double energy ); << 123 108 G4double GetElectronRange( G4double energy ) << 124 G4double GetPhotonRange( G4double energy ); 109 << 125 G4double GetElectronRange( G4double energy ); 110 G4double RePartDielectricConst(G4double ener << 126 111 << 127 G4double RePartDielectricConst(G4double energy); 112 G4double DifPAIxSection( G4int intervalNumbe << 128 113 G4double betaGammaSq ); << 129 G4double DifPAIxSection( G4int intervalNumber, 114 << 130 G4double betaGammaSq ); 115 G4double PAIdNdxCerenkov( G4int intervalNumb << 131 116 G4double betaGammaSq ); << 132 G4double PAIdNdxCerenkov( G4int intervalNumber, 117 G4double PAIdNdxMM( G4int intervalNumber, << 133 G4double betaGammaSq ); 118 G4double betaGammaSq ); << 134 G4double PAIdNdxMM( G4int intervalNumber, 119 << 135 G4double betaGammaSq ); 120 G4double PAIdNdxPlasmon( G4int intervalNumbe << 136 121 G4double betaGammaSq ); << 137 G4double PAIdNdxPlasmon( G4int intervalNumber, 122 << 138 G4double betaGammaSq ); 123 G4double PAIdNdxResonance( G4int intervalNum << 139 124 G4double betaGammaSq ); << 140 G4double PAIdNdxResonance( G4int intervalNumber, 125 << 141 G4double betaGammaSq ); 126 << 142 127 void IntegralPAIxSection(); << 143 128 void IntegralCerenkov(); << 144 void IntegralPAIxSection(); 129 void IntegralMM(); << 145 void IntegralCerenkov(); 130 void IntegralPlasmon(); << 146 void IntegralMM(); 131 void IntegralResonance(); << 147 void IntegralPlasmon(); 132 << 148 void IntegralResonance(); 133 G4double SumOverInterval(G4int intervalNumbe << 149 134 G4double SumOverIntervaldEdx(G4int intervalN << 150 G4double SumOverInterval(G4int intervalNumber); 135 G4double SumOverInterCerenkov(G4int interval << 151 G4double SumOverIntervaldEdx(G4int intervalNumber); 136 G4double SumOverInterMM(G4int intervalNumber << 152 G4double SumOverInterCerenkov(G4int intervalNumber); 137 G4double SumOverInterPlasmon(G4int intervalN << 153 G4double SumOverInterMM(G4int intervalNumber); 138 G4double SumOverInterResonance(G4int interva << 154 G4double SumOverInterPlasmon(G4int intervalNumber); 139 << 155 G4double SumOverInterResonance(G4int intervalNumber); 140 G4double SumOverBorder( G4int intervalNumber << 156 141 G4double energy ); << 157 G4double SumOverBorder( G4int intervalNumber, 142 G4double SumOverBorderdEdx( G4int intervalNu << 158 G4double energy ); 143 G4double energy ); << 159 G4double SumOverBorderdEdx( G4int intervalNumber, 144 G4double SumOverBordCerenkov( G4int interval << 160 G4double energy ); 145 G4double energy ); << 161 G4double SumOverBordCerenkov( G4int intervalNumber, 146 G4double SumOverBordMM( G4int intervalNumber << 162 G4double energy ); 147 G4double energy ); << 163 G4double SumOverBordMM( G4int intervalNumber, 148 G4double SumOverBordPlasmon( G4int intervalN << 164 G4double energy ); 149 G4double energy ); << 165 G4double SumOverBordPlasmon( G4int intervalNumber, 150 G4double SumOverBordResonance( G4int interva << 166 G4double energy ); 151 G4double energy ); << 167 G4double SumOverBordResonance( G4int intervalNumber, 152 << 168 G4double energy ); 153 G4double GetStepEnergyLoss( G4double step ); << 169 154 G4double GetStepCerenkovLoss( G4double step << 170 G4double GetStepEnergyLoss( G4double step ); 155 G4double GetStepMMLoss( G4double step ); << 171 G4double GetStepCerenkovLoss( G4double step ); 156 G4double GetStepPlasmonLoss( G4double step ) << 172 G4double GetStepMMLoss( G4double step ); 157 G4double GetStepResonanceLoss( G4double step << 173 G4double GetStepPlasmonLoss( G4double step ); >> 174 G4double GetStepResonanceLoss( G4double step ); 158 175 159 G4double GetEnergyTransfer(); << 176 G4double GetEnergyTransfer(); 160 G4double GetCerenkovEnergyTransfer(); << 177 G4double GetCerenkovEnergyTransfer(); 161 G4double GetMMEnergyTransfer(); << 178 G4double GetMMEnergyTransfer(); 162 G4double GetPlasmonEnergyTransfer(); << 179 G4double GetPlasmonEnergyTransfer(); 163 G4double GetResonanceEnergyTransfer(); << 180 G4double GetResonanceEnergyTransfer(); 164 G4double GetRutherfordEnergyTransfer(); << 181 G4double GetRutherfordEnergyTransfer(); 165 182 166 // Inline access functions << 183 // Inline access functions 167 184 168 G4int GetNumberOfGammas() const { return fNu << 185 G4int GetNumberOfGammas() const { return fNumberOfGammas; } 169 186 170 G4int GetSplineSize() const { return fSpline << 187 G4int GetSplineSize() const { return fSplineNumber; } 171 188 172 G4int GetIntervalNumber() const { return fIn << 189 G4int GetIntervalNumber() const { return fIntervalNumber; } 173 190 174 G4double GetEnergyInterval(G4int i){ return << 191 G4double GetEnergyInterval(G4int i){ return fEnergyInterval[i]; } 175 192 176 G4double GetDifPAIxSection(G4int i){ return << 193 G4double GetDifPAIxSection(G4int i){ return fDifPAIxSection[i]; } 177 G4double GetPAIdNdxCerenkov(G4int i){ return << 194 G4double GetPAIdNdxCerenkov(G4int i){ return fdNdxCerenkov[i]; } 178 G4double GetPAIdNdxMM(G4int i){ return fdNdx << 195 G4double GetPAIdNdxMM(G4int i){ return fdNdxMM[i]; } 179 G4double GetPAIdNdxPlasmon(G4int i){ return << 196 G4double GetPAIdNdxPlasmon(G4int i){ return fdNdxPlasmon[i]; } 180 G4double GetPAIdNdxResonance(G4int i){ retur << 197 G4double GetPAIdNdxResonance(G4int i){ return fdNdxResonance[i]; } 181 198 182 G4double GetMeanEnergyLoss() const {return f << 199 G4double GetMeanEnergyLoss() const {return fIntegralPAIxSection[0]; } 183 G4double GetMeanCerenkovLoss() const {return << 200 G4double GetMeanCerenkovLoss() const {return fIntegralCerenkov[0]; } 184 G4double GetMeanMMLoss() const {return fInte << 201 G4double GetMeanMMLoss() const {return fIntegralMM[0]; } 185 G4double GetMeanPlasmonLoss() const {return << 202 G4double GetMeanPlasmonLoss() const {return fIntegralPlasmon[0]; } 186 G4double GetMeanResonanceLoss() const {retur << 203 G4double GetMeanResonanceLoss() const {return fIntegralResonance[0]; } 187 204 188 G4double GetNormalizationCof() const { retur << 205 G4double GetNormalizationCof() const { return fNormalizationCof; } 189 206 190 G4double GetLowEnergyCof() const { return fL << 207 G4double GetLowEnergyCof() const { return fLowEnergyCof; } 191 208 192 G4double GetLorentzFactor(G4int i) const; << 209 void SetVerbose(G4int v){fVerbose=v;}; >> 210 >> 211 inline G4double GetPAItable(G4int i,G4int j) const; 193 212 194 inline void SetVerbose(G4int v) { fVerbose=v << 213 inline G4double GetLorentzFactor(G4int i) const; 195 << 214 196 << 215 inline G4double GetSplineEnergy(G4int i) const; 197 inline G4double GetPAItable(G4int i,G4int j) << 198 << 199 inline G4double GetSplineEnergy(G4int i) con << 200 216 201 inline G4double GetIntegralPAIxSection(G4int << 217 inline G4double GetIntegralPAIxSection(G4int i) const; 202 inline G4double GetIntegralPAIdEdx(G4int i) << 218 inline G4double GetIntegralPAIdEdx(G4int i) const; 203 inline G4double GetIntegralCerenkov(G4int i) << 219 inline G4double GetIntegralCerenkov(G4int i) const; 204 inline G4double GetIntegralMM(G4int i) const << 220 inline G4double GetIntegralMM(G4int i) const; 205 inline G4double GetIntegralPlasmon(G4int i) << 221 inline G4double GetIntegralPlasmon(G4int i) const; 206 inline G4double GetIntegralResonance(G4int i << 222 inline G4double GetIntegralResonance(G4int i) const; 207 << 208 G4PAIxSection & operator=(const G4PAIxSectio << 209 G4PAIxSection(const G4PAIxSection&) = delete << 210 223 211 private : 224 private : 212 225 213 void CallError(G4int i, const G4String& meth 226 void CallError(G4int i, const G4String& methodName) const; 214 227 215 // Local class constants << 228 G4PAIxSection & operator=(const G4PAIxSection &right); >> 229 G4PAIxSection(const G4PAIxSection&); >> 230 >> 231 // Local class constants 216 232 217 static const G4double fDelta; // energy shif << 233 static const G4double fDelta; // energy shift from interval border = 0.001 218 static const G4double fError; // error in li << 234 static const G4double fError; // error in lin-log approximation = 0.005 219 235 220 static G4int fNumberOfGammas; // = 111; << 236 static G4int fNumberOfGammas; // = 111; 221 static const G4double fLorentzFactor[112]; / << 237 static const G4double fLorentzFactor[112]; // static gamma array 222 238 223 static << 239 static 224 const G4int fRefGammaNumber; // The number o << 240 const G4int fRefGammaNumber ; // The number of gamma for creation of spline (15) 225 241 226 G4int fIntervalNumber ; // The number o << 242 G4int fIntervalNumber ; // The number of energy intervals 227 G4double fNormalizationCof; // Normalizatio << 243 G4double fNormalizationCof; // Normalization cof for PhotoAbsorptionXsection 228 244 229 G4int fMaterialIndex; // current materi << 245 // G4double fBetaGammaSq; // (beta*gamma)^2 230 G4double fDensity; // Current densit << 246 231 G4double fElectronDensity; // Current electr << 247 G4int fMaterialIndex; // current material index >> 248 G4double fDensity; // Current density >> 249 G4double fElectronDensity; // Current electron (number) density 232 G4double fLowEnergyCof; // Correction cof 250 G4double fLowEnergyCof; // Correction cof for low energy region 233 G4int fSplineNumber; // Current size o << 251 G4int fSplineNumber; // Current size of spline 234 G4int fVerbose; // verbose flag << 252 G4int fVerbose; // verbose flag 235 253 236 // Arrays of Sandia coefficients << 254 // Arrays of Sandia coefficients 237 255 238 G4OrderedTable* fMatSandiaMatrix; 256 G4OrderedTable* fMatSandiaMatrix; 239 257 240 G4SandiaTable* fSandia; 258 G4SandiaTable* fSandia; 241 259 242 G4DataVector fEnergyInterval; 260 G4DataVector fEnergyInterval; 243 G4DataVector fA1; 261 G4DataVector fA1; 244 G4DataVector fA2; 262 G4DataVector fA2; 245 G4DataVector fA3; 263 G4DataVector fA3; 246 G4DataVector fA4; 264 G4DataVector fA4; 247 265 248 static << 266 static 249 const G4int fMaxSplineSize ; // Max size of << 267 const G4int fMaxSplineSize ; // Max size of output splain arrays = 500 >> 268 250 269 251 G4DataVector fSplineEnergy; // << 270 G4DataVector fSplineEnergy; // energy points of splain 252 G4DataVector fRePartDielectricConst; // 271 G4DataVector fRePartDielectricConst; // Real part of dielectric const 253 G4DataVector fImPartDielectricConst; // 272 G4DataVector fImPartDielectricConst; // Imaginary part of dielectric const 254 G4DataVector fIntegralTerm; // 273 G4DataVector fIntegralTerm; // Integral term in PAI cross section 255 G4DataVector fDifPAIxSection; // 274 G4DataVector fDifPAIxSection; // Differential PAI cross section 256 G4DataVector fdNdxCerenkov; // 275 G4DataVector fdNdxCerenkov; // dNdx of Cerenkov collisions 257 G4DataVector fdNdxPlasmon; // 276 G4DataVector fdNdxPlasmon; // dNdx of Plasmon collisions 258 G4DataVector fdNdxMM; // << 277 G4DataVector fdNdxMM; // dNdx of MM-Cerenkov collisions 259 G4DataVector fdNdxResonance; // << 278 G4DataVector fdNdxResonance; // dNdx of Resonance collisions 260 279 261 G4DataVector fIntegralPAIxSection; // 280 G4DataVector fIntegralPAIxSection; // Integral PAI cross section ? 262 G4DataVector fIntegralPAIdEdx; // 281 G4DataVector fIntegralPAIdEdx; // Integral PAI dEdx ? 263 G4DataVector fIntegralCerenkov; // 282 G4DataVector fIntegralCerenkov; // Integral Cerenkov N>omega ? 264 G4DataVector fIntegralPlasmon; // 283 G4DataVector fIntegralPlasmon; // Integral Plasmon N>omega ? 265 G4DataVector fIntegralMM; // << 284 G4DataVector fIntegralMM; // Integral MM N>omega ? 266 G4DataVector fIntegralResonance; // << 285 G4DataVector fIntegralResonance; // Integral resonance N>omega ? 267 286 268 G4double fPAItable[500][112]; // Output arra << 287 >> 288 >> 289 G4double fPAItable[500][112]; // Output array 269 290 270 }; 291 }; 271 292 272 //////////////// Inline methods ///////////// 293 //////////////// Inline methods ////////////////////////////////// 273 // 294 // 274 295 275 inline G4double G4PAIxSection::GetPAItable(G4i 296 inline G4double G4PAIxSection::GetPAItable(G4int i, G4int j) const 276 { 297 { 277 return fPAItable[i][j]; 298 return fPAItable[i][j]; >> 299 } >> 300 >> 301 inline G4double G4PAIxSection::GetLorentzFactor(G4int j) const >> 302 { >> 303 return fLorentzFactor[j]; 278 } 304 } 279 305 280 inline G4double G4PAIxSection::GetSplineEnergy 306 inline G4double G4PAIxSection::GetSplineEnergy(G4int i) const 281 { 307 { 282 if(i < 1 || i > fSplineNumber) { CallError(i 308 if(i < 1 || i > fSplineNumber) { CallError(i, "GetSplineEnergy"); } 283 return fSplineEnergy[i]; 309 return fSplineEnergy[i]; 284 } 310 } 285 311 286 inline G4double G4PAIxSection::GetIntegralPAIx 312 inline G4double G4PAIxSection::GetIntegralPAIxSection(G4int i) const 287 { 313 { 288 if(i < 1 || i > fSplineNumber) { CallError(i 314 if(i < 1 || i > fSplineNumber) { CallError(i, "GetIntegralPAIxSection"); } 289 return fIntegralPAIxSection[i]; 315 return fIntegralPAIxSection[i]; 290 } 316 } 291 317 292 inline G4double G4PAIxSection::GetIntegralPAId 318 inline G4double G4PAIxSection::GetIntegralPAIdEdx(G4int i) const 293 { 319 { 294 if(i < 1 || i > fSplineNumber) { CallError(i 320 if(i < 1 || i > fSplineNumber) { CallError(i, "GetIntegralPAIdEdx"); } 295 return fIntegralPAIdEdx[i]; 321 return fIntegralPAIdEdx[i]; 296 } 322 } 297 323 298 inline G4double G4PAIxSection::GetIntegralCere 324 inline G4double G4PAIxSection::GetIntegralCerenkov(G4int i) const 299 { 325 { 300 if(i < 1 || i > fSplineNumber) { CallError(i 326 if(i < 1 || i > fSplineNumber) { CallError(i, "GetIntegralCerenkov"); } 301 return fIntegralCerenkov[i]; 327 return fIntegralCerenkov[i]; 302 } 328 } 303 329 304 inline G4double G4PAIxSection::GetIntegralMM(G 330 inline G4double G4PAIxSection::GetIntegralMM(G4int i) const 305 { 331 { 306 if(i < 1 || i > fSplineNumber) { CallError(i 332 if(i < 1 || i > fSplineNumber) { CallError(i, "GetIntegralMM"); } 307 return fIntegralMM[i]; 333 return fIntegralMM[i]; 308 } 334 } 309 335 310 inline G4double G4PAIxSection::GetIntegralPlas 336 inline G4double G4PAIxSection::GetIntegralPlasmon(G4int i) const 311 { 337 { 312 if(i < 1 || i > fSplineNumber) { CallError(i 338 if(i < 1 || i > fSplineNumber) { CallError(i, "GetIntegralPlasmon"); } 313 return fIntegralPlasmon[i]; 339 return fIntegralPlasmon[i]; 314 } 340 } 315 341 316 inline G4double G4PAIxSection::GetIntegralReso 342 inline G4double G4PAIxSection::GetIntegralResonance(G4int i) const 317 { 343 { 318 if(i < 1 || i > fSplineNumber) { CallError(i 344 if(i < 1 || i > fSplineNumber) { CallError(i, "GetIntegralResonance"); } 319 return fIntegralResonance[i]; 345 return fIntegralResonance[i]; 320 } 346 } 321 347 322 #endif 348 #endif 323 349 324 // ----------------- end of G4PAIxSection he 350 // ----------------- end of G4PAIxSection header file ------------------- 325 351