Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class header file 29 // GEANT4 Class header file 30 // 30 // 31 // 31 // 32 // File name: G4BetheHeitlerModel 32 // File name: G4BetheHeitlerModel 33 // 33 // 34 // Author: Vladimir Ivanchenko on base 34 // Author: Vladimir Ivanchenko on base of Michel Maire code 35 // 35 // 36 // Creation date: 19.04.2005 36 // Creation date: 19.04.2005 37 // 37 // 38 // Modifications by Vladimir Ivanchenko, Miche 38 // Modifications by Vladimir Ivanchenko, Michel Maire, Mihaly Novak 39 // 39 // 40 // Class Description: 40 // Class Description: 41 // 41 // 42 // Implementation of gamma conversion to e+e- 42 // Implementation of gamma conversion to e+e- in the field of a nucleus 43 // For details see Physics Reference Manual 43 // For details see Physics Reference Manual 44 44 45 // ------------------------------------------- 45 // ------------------------------------------------------------------- 46 // 46 // 47 47 48 #ifndef G4BetheHeitlerModel_h 48 #ifndef G4BetheHeitlerModel_h 49 #define G4BetheHeitlerModel_h 1 49 #define G4BetheHeitlerModel_h 1 50 50 51 #include "G4VEmModel.hh" 51 #include "G4VEmModel.hh" 52 #include "G4PhysicsTable.hh" 52 #include "G4PhysicsTable.hh" 53 #include "G4Log.hh" 53 #include "G4Log.hh" 54 54 55 #include <vector> 55 #include <vector> 56 56 57 class G4ParticleChangeForGamma; 57 class G4ParticleChangeForGamma; 58 class G4Pow; 58 class G4Pow; 59 class G4EmElementXS; << 60 59 61 class G4BetheHeitlerModel : public G4VEmModel 60 class G4BetheHeitlerModel : public G4VEmModel 62 { 61 { 63 62 64 public: 63 public: 65 64 66 explicit G4BetheHeitlerModel(const G4Particl 65 explicit G4BetheHeitlerModel(const G4ParticleDefinition* p = nullptr, 67 const G4String& 66 const G4String& nam = "BetheHeitler"); 68 67 69 ~G4BetheHeitlerModel() override; 68 ~G4BetheHeitlerModel() override; 70 69 71 void Initialise(const G4ParticleDefinition*, 70 void Initialise(const G4ParticleDefinition*, const G4DataVector&) override; 72 71 73 void InitialiseLocal(const G4ParticleDefinit 72 void InitialiseLocal(const G4ParticleDefinition*, 74 G4VEmModel* masterModel) override; 73 G4VEmModel* masterModel) override; 75 74 76 G4double ComputeCrossSectionPerAtom(const G4 75 G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 77 G4double kinEnergy, 76 G4double kinEnergy, 78 G4double Z, 77 G4double Z, 79 G4double A=0., 78 G4double A=0., 80 G4double cut=0., 79 G4double cut=0., 81 G4double emax=DBL_MAX) override; 80 G4double emax=DBL_MAX) override; 82 81 83 void SampleSecondaries(std::vector<G4Dynamic 82 void SampleSecondaries(std::vector<G4DynamicParticle*>*, 84 const G4MaterialCutsCouple*, 83 const G4MaterialCutsCouple*, 85 const G4DynamicParticle*, 84 const G4DynamicParticle*, 86 G4double tmin, 85 G4double tmin, 87 G4double maxEnergy) override; 86 G4double maxEnergy) override; 88 87 89 // hide assignment operator 88 // hide assignment operator 90 G4BetheHeitlerModel & operator=(const G4Beth 89 G4BetheHeitlerModel & operator=(const G4BetheHeitlerModel &right) = delete; 91 G4BetheHeitlerModel(const G4BetheHeitlerMod 90 G4BetheHeitlerModel(const G4BetheHeitlerModel&) = delete; 92 91 93 protected: 92 protected: 94 93 95 inline G4double ScreenFunction1(const G4doub 94 inline G4double ScreenFunction1(const G4double delta); 96 95 97 inline G4double ScreenFunction2(const G4doub 96 inline G4double ScreenFunction2(const G4double delta); 98 97 99 inline void ScreenFunction12(const G4double 98 inline void ScreenFunction12(const G4double delta, G4double &f1, G4double &f2); 100 99 101 void InitialiseElementData(); 100 void InitialiseElementData(); 102 101 103 struct ElementData { 102 struct ElementData { 104 G4double fDeltaMaxLow; 103 G4double fDeltaMaxLow; 105 G4double fDeltaMaxHigh; 104 G4double fDeltaMaxHigh; 106 }; 105 }; 107 106 108 static const G4int gMaxZet; 107 static const G4int gMaxZet; 109 108 110 G4Pow* fG4Calc; 109 G4Pow* fG4Calc; 111 const G4ParticleDefinition* fTheGamma; 110 const G4ParticleDefinition* fTheGamma; 112 const G4ParticleDefinition* fTheElectr 111 const G4ParticleDefinition* fTheElectron; 113 const G4ParticleDefinition* fThePositr 112 const G4ParticleDefinition* fThePositron; 114 G4ParticleChangeForGamma* fParticleC 113 G4ParticleChangeForGamma* fParticleChange; 115 G4EmElementXS* fXSection{ << 116 << 117 G4bool isFirstInstance{false}; << 118 G4bool useEPICS2017{false}; << 119 114 120 static std::vector<ElementData*> gElementDa 115 static std::vector<ElementData*> gElementData; 121 }; 116 }; 122 117 123 // 118 // 124 // Bethe screening functions for the elastic ( 119 // Bethe screening functions for the elastic (coherent) scattering: 125 // Bethe's phi1, phi2 coherent screening funct 120 // Bethe's phi1, phi2 coherent screening functions were computed numerically 126 // by using (the universal) atomic form factor 121 // by using (the universal) atomic form factors computed based on the Thomas- 127 // Fermi model of the atom (using numerical so 122 // Fermi model of the atom (using numerical solution of the Thomas-Fermi 128 // screening function instead of Moliere's ana 123 // screening function instead of Moliere's analytical approximation). The 129 // numerical results can be well approximated 124 // numerical results can be well approximated (better than Butcher & Messel 130 // especially near the delta=1 limit) by: 125 // especially near the delta=1 limit) by: 131 // ## if delta <= 1.4 126 // ## if delta <= 1.4 132 // phi1(delta) = 20.806 - delta*(3.190 - 0.57 127 // phi1(delta) = 20.806 - delta*(3.190 - 0.5710*delta) 133 // phi2(delta) = 20.234 - delta*(2.126 - 0.09 128 // phi2(delta) = 20.234 - delta*(2.126 - 0.0903*delta) 134 // ## if delta > 1.4 129 // ## if delta > 1.4 135 // phi1(delta) = phi2(delta) = 21.0190 - 4.14 130 // phi1(delta) = phi2(delta) = 21.0190 - 4.145*ln(delta + 0.958) 136 // with delta = 136mc^2kZ^{-1/3}/[E(Eg-E)] = 1 131 // with delta = 136mc^2kZ^{-1/3}/[E(Eg-E)] = 136Z^{-1/3}eps0/[eps(1-eps)] where 137 // Eg is the initial photon energy, E is the t 132 // Eg is the initial photon energy, E is the total energy transferred to one of 138 // the e-/e+ pair, eps0 = mc^2/Eg and eps = E/ 133 // the e-/e+ pair, eps0 = mc^2/Eg and eps = E/Eg. 139 134 140 // Compute the value of the screening function 135 // Compute the value of the screening function 3*PHI1(delta) - PHI2(delta): 141 inline G4double G4BetheHeitlerModel::ScreenFun 136 inline G4double G4BetheHeitlerModel::ScreenFunction1(const G4double delta) 142 { 137 { 143 return (delta > 1.4) ? 42.038 - 8.29*G4Log(d 138 return (delta > 1.4) ? 42.038 - 8.29*G4Log(delta + 0.958) 144 : 42.184 - delta*(7.444 139 : 42.184 - delta*(7.444 - 1.623*delta); 145 } 140 } 146 141 147 // Compute the value of the screening function 142 // Compute the value of the screening function 1.5*PHI1(delta) +0.5*PHI2(delta): 148 inline G4double G4BetheHeitlerModel::ScreenFun 143 inline G4double G4BetheHeitlerModel::ScreenFunction2(const G4double delta) 149 { 144 { 150 return (delta > 1.4) ? 42.038 - 8.29*G4Log(d 145 return (delta > 1.4) ? 42.038 - 8.29*G4Log(delta + 0.958) 151 : 41.326 - delta*(5.848 146 : 41.326 - delta*(5.848 - 0.902*delta); 152 } 147 } 153 148 154 // Same as ScreenFunction1 and ScreenFunction2 149 // Same as ScreenFunction1 and ScreenFunction2 but computes them at once 155 inline void G4BetheHeitlerModel::ScreenFunctio 150 inline void G4BetheHeitlerModel::ScreenFunction12(const G4double delta, 156 151 G4double &f1, G4double &f2) 157 { 152 { 158 if (delta > 1.4) { 153 if (delta > 1.4) { 159 f1 = 42.038 - 8.29*G4Log(delta + 0.958); 154 f1 = 42.038 - 8.29*G4Log(delta + 0.958); 160 f2 = f1; 155 f2 = f1; 161 } else { 156 } else { 162 f1 = 42.184 - delta*(7.444 - 1.623*delta); 157 f1 = 42.184 - delta*(7.444 - 1.623*delta); 163 f2 = 41.326 - delta*(5.848 - 0.902*delta); 158 f2 = 41.326 - delta*(5.848 - 0.902*delta); 164 } 159 } 165 } 160 } 166 161 167 #endif 162 #endif 168 163