Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/muons/src/G4MuonToMuonPairProductionModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/muons/src/G4MuonToMuonPairProductionModel.cc (Version 11.3.0) and /processes/electromagnetic/muons/src/G4MuonToMuonPairProductionModel.cc (Version 9.3.p1)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 // -------------------------------------------    
 28 //                                                
 29 // GEANT4 Class file                              
 30 //                                                
 31 //                                                
 32 // File name:     G4MuonToMuonPairProductionMo    
 33 //                                                
 34 // Author:        Siddharth Yajaman on the bas    
 35 //                                                
 36 // Creation date: 12.07.2022                      
 37 //                                                
 38 //                                                
 39 // -------------------------------------------    
 40 //                                                
 41 //....oooOO0OOooo........oooOO0OOooo........oo    
 42 //....oooOO0OOooo........oooOO0OOooo........oo    
 43                                                   
 44 #include "G4MuonToMuonPairProductionModel.hh"     
 45 #include "G4PhysicalConstants.hh"                 
 46 #include "G4SystemOfUnits.hh"                     
 47 #include "G4EmParameters.hh"                      
 48 #include "G4MuonMinus.hh"                         
 49 #include "G4MuonPlus.hh"                          
 50 #include "Randomize.hh"                           
 51 #include "G4Material.hh"                          
 52 #include "G4Element.hh"                           
 53 #include "G4ParticleChangeForLoss.hh"             
 54 #include "G4Log.hh"                               
 55 #include "G4Exp.hh"                               
 56 #include <iostream>                               
 57 #include <fstream>                                
 58                                                   
 59 //....oooOO0OOooo........oooOO0OOooo........oo    
 60                                                   
 61 G4MuonToMuonPairProductionModel::G4MuonToMuonP    
 62                                  const G4Parti    
 63                                  const G4Strin    
 64   : G4MuPairProductionModel(p, nam)               
 65 {                                                 
 66   theMuonMinus = G4MuonMinus::MuonMinus();        
 67   theMuonPlus = G4MuonPlus::MuonPlus();           
 68   muonMass = theMuonPlus->GetPDGMass();           
 69   minPairEnergy = 2.*muonMass;                    
 70   mueRatio = muonMass/CLHEP::electron_mass_c2;    
 71   factorForCross = 2./(3*CLHEP::pi)*              
 72     std::pow(CLHEP::fine_structure_const*CLHEP    
 73 }                                                 
 74                                                   
 75 //....oooOO0OOooo........oooOO0OOooo........oo    
 76                                                   
 77 G4double G4MuonToMuonPairProductionModel::Comp    
 78                                            G4d    
 79                                            G4d    
 80                                            G4d    
 81 // Calculates the  differential (D) microscopi    
 82 // using the cross section formula of Kelner,     
 83 // Code written by Siddharth Yajaman (12/07/20    
 84 {                                                 
 85   if (pairEnergy <= minPairEnergy)                
 86     return 0.0;                                   
 87                                                   
 88   G4double totalEnergy = tkin + particleMass;     
 89   G4double residEnergy = totalEnergy - pairEne    
 90                                                   
 91   if (residEnergy <= muonMass) { return 0.0; }    
 92                                                   
 93   G4double a0 = 1.0 / (totalEnergy * residEner    
 94   G4double rhomax = 1.0 - 2*muonMass/pairEnerg    
 95   G4double tmnexp = 1. - rhomax;                  
 96                                                   
 97   if(tmnexp >= 1.0) { return 0.0; }               
 98                                                   
 99   G4double tmn = G4Log(tmnexp);                   
100                                                   
101   G4double z2 = Z*Z;                              
102   G4double beta = 0.5*pairEnergy*pairEnergy*a0    
103   G4double xi0 = 0.5*beta;                        
104                                                   
105   // Gaussian integration in ln(1-ro) ( with N    
106   G4double rho[NINTPAIR];                         
107   G4double rho2[NINTPAIR];                        
108   G4double xi[NINTPAIR];                          
109   G4double xi1[NINTPAIR];                         
110   G4double xii[NINTPAIR];                         
111                                                   
112   for (G4int i = 0; i < NINTPAIR; ++i)            
113   {                                               
114     rho[i] = G4Exp(tmn*xgi[i]) - 1.0; // rho =    
115     rho2[i] = rho[i] * rho[i];                    
116     xi[i] = xi0*(1.0-rho2[i]);                    
117     xi1[i] = 1.0 + xi[i];                         
118     xii[i] = 1.0 / xi[i];                         
119   }                                               
120                                                   
121   G4double ximax = xi0*(1. - rhomax*rhomax);      
122                                                   
123   G4double Y = 10 * std::sqrt(particleMass/tot    
124   G4double U[8];                                  
125                                                   
126   for (G4int i = 0; i < NINTPAIR; ++i)            
127   {                                               
128     U[i] = U_func(Z, rho2[i], xi[i], Y, pairEn    
129   }                                               
130                                                   
131   G4double UMax = U_func(Z, rhomax*rhomax, xim    
132                                                   
133   G4double sum = 0.0;                             
134   for (G4int i = 0; i < NINTPAIR; ++i)            
135   {                                               
136     G4double X = 1 + U[i] - UMax;                 
137     G4double lnX = G4Log(X);                      
138     G4double phi = ((2 + rho2[i])*(1 + beta) +    
139                     G4Log(1 + xii[i]) - 1 - 3*    
140                     + ((1 + rho2[i])*(1 + 1.5*    
141                     *(1 - rho2[i]))*G4Log(xi1[    
142     sum += wgi[i]*(1.0 + rho[i])*phi*lnX;         
143   }                                               
144                                                   
145   return -tmn*sum*factorForCross*z2*residEnerg    
146                                                   
147 }                                                 
148                                                   
149 G4double G4MuonToMuonPairProductionModel::U_fu    
150                                                   
151                                                   
152                                                   
153 {                                                 
154   G4int Z = G4lrint(ZZ);                          
155   G4double A27 = nist->GetA27(Z);                 
156   G4double Z13 = nist->GetZ13(Z);                 
157   static const G4double sqe = std::sqrt(G4Exp(    
158   G4double res = (0.65 * B / (A27*Z13) * mueRa    
159     (1 + (2*sqe*muonMass*muonMass*(B/Z13)*(1 +    
160      /(CLHEP::electron_mass_c2*pairEnergy*(1 -    
161   return res;                                     
162 }                                                 
163                                                   
164 //....oooOO0OOooo........oooOO0OOooo........oo    
165                                                   
166 void G4MuonToMuonPairProductionModel::SampleSe    
167                               std::vector<G4Dy    
168                               const G4Material    
169                               const G4DynamicP    
170                               G4double tmin,      
171                               G4double tmax)      
172 {                                                 
173   G4double kinEnergy = aDynamicParticle->GetKi    
174   //G4cout << "--- G4MuonToMuonPairProductionM    
175   //         << kinEnergy << "  "                 
176   //         << aDynamicParticle->GetDefinitio    
177   G4double totalMomentum = std::sqrt(kinEnergy    
178                                                   
179   G4ThreeVector partDirection = aDynamicPartic    
180                                                   
181   // select randomly one element constituing t    
182   const G4Element* anElement = SelectRandomAto    
183                                                   
184   // define interval of energy transfer           
185   G4double maxPairEnergy = MaxSecondaryEnergyF    
186                                                   
187   G4double maxEnergy = std::min(tmax, maxPairE    
188   G4double minEnergy = std::max(tmin, minPairE    
189                                                   
190   if(minEnergy >= maxEnergy) { return; }          
191   //G4cout << "emin= " << minEnergy << " emax=    
192   // << " minPair= " << minPairEnergy << " max    
193   //    << " ymin= " << ymin << " dy= " << dy     
194                                                   
195   G4double coeff = G4Log(minPairEnergy/kinEner    
196                                                   
197   // compute limits                               
198   G4double yymin = G4Log(minEnergy/kinEnergy)/    
199   G4double yymax = G4Log(maxEnergy/kinEnergy)/    
200                                                   
201   //G4cout << "yymin= " << yymin << "  yymax=     
202                                                   
203   // units should not be used, bacause table w    
204   G4double logTkin = G4Log(kinEnergy/CLHEP::Me    
205                                                   
206   // sample mu-mu+ pair energy first              
207                                                   
208   // select sample table via Z                    
209   G4int iz1(0), iz2(0);                           
210   for(G4int iz=0; iz<NZDATPAIR; ++iz) {           
211     if(currentZ == ZDATPAIR[iz]) {                
212       iz1 = iz2 = iz;                             
213       break;                                      
214     } else if(currentZ < ZDATPAIR[iz]) {          
215       iz2 = iz;                                   
216       if(iz > 0) { iz1 = iz-1; }                  
217       else { iz1 = iz2; }                         
218       break;                                      
219     }                                             
220   }                                               
221   if(0 == iz1) { iz1 = iz2 = NZDATPAIR-1; }       
222                                                   
223   G4double pairEnergy = 0.0;                      
224   G4int count = 0;                                
225   //G4cout << "start loop Z1= " << iz1 << " Z2    
226   do {                                            
227     ++count;                                      
228     // sampling using only one random number      
229     G4double rand = G4UniformRand();              
230                                                   
231     G4double x = FindScaledEnergy(iz1, rand, l    
232     if(iz1 != iz2) {                              
233       G4double x2 = FindScaledEnergy(iz2, rand    
234       G4double lz1= nist->GetLOGZ(ZDATPAIR[iz1    
235       G4double lz2= nist->GetLOGZ(ZDATPAIR[iz2    
236       //G4cout << count << ".  x= " << x << "     
237       //             << " Z1= " << iz1 << " Z2    
238       x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1);      
239     }                                             
240     //G4cout << "x= " << x << "  coeff= " << c    
241     pairEnergy = kinEnergy*G4Exp(x*coeff);        
242                                                   
243     // Loop checking, 03-Aug-2015, Vladimir Iv    
244   } while((pairEnergy < minEnergy || pairEnerg    
245                                                   
246   //G4cout << "## pairEnergy(GeV)= " << pairEn    
247   //         << " Etot(GeV)= " << totalEnergy/    
248                                                   
249   // sample r=(mu+mu-)/pairEnergy  ( uniformly    
250   G4double rmax = 1 - 2*muonMass/(pairEnergy);    
251   G4double r = rmax * (-1.+2.*G4UniformRand())    
252                                                   
253   // compute energies from pairEnergy,r           
254   G4double muMinusEnergy = (1.-r)*pairEnergy*0    
255   G4double muPlusEnergy = pairEnergy - muMinus    
256                                                   
257   // Sample angles                                
258   G4ThreeVector muMinusDirection, muPlusDirect    
259   //                                              
260   GetAngularDistribution()->SamplePairDirectio    
261                                                   
262                                                   
263   // create G4DynamicParticle object for mu+mu    
264   muMinusEnergy = std::max(muMinusEnergy - muo    
265   muPlusEnergy = std::max(muPlusEnergy - muonM    
266   G4DynamicParticle* aParticle1 =                 
267     new G4DynamicParticle(theMuonMinus,muMinus    
268   G4DynamicParticle* aParticle2 =                 
269     new G4DynamicParticle(theMuonPlus,muPlusDi    
270   // Fill output vector                           
271   vdp->push_back(aParticle1);                     
272   vdp->push_back(aParticle2);                     
273                                                   
274   // primary change                               
275   kinEnergy -= pairEnergy;                        
276   partDirection *= totalMomentum;                 
277   partDirection -= (aParticle1->GetMomentum()     
278   partDirection = partDirection.unit();           
279                                                   
280   // if energy transfer is higher than thresho    
281   // then stop tracking the primary particle a    
282   if (pairEnergy > SecondaryThreshold()) {        
283     fParticleChange->ProposeTrackStatus(fStopA    
284     fParticleChange->SetProposedKineticEnergy(    
285     G4DynamicParticle* newdp =                    
286       new G4DynamicParticle(particle, partDire    
287     vdp->push_back(newdp);                        
288   } else { // continue tracking the primary e-    
289     fParticleChange->SetProposedMomentumDirect    
290     fParticleChange->SetProposedKineticEnergy(    
291   }                                               
292   //G4cout << "--- G4MuonToMuonPairProductionM    
293 }                                                 
294                                                   
295 //....oooOO0OOooo........oooOO0OOooo........oo    
296                                                   
297 void G4MuonToMuonPairProductionModel::DataCorr    
298 {                                                 
299   G4ExceptionDescription ed;                      
300   ed << "G4ElementData is not properly initial    
301      << " Ekin(MeV)= " << G4Exp(logTkin)          
302      << " IsMasterThread= " << IsMaster()         
303      << " Model " << GetName();                   
304   G4Exception("G4MuonToMuonPairProductionModel    
305 }                                                 
306                                                   
307 //....oooOO0OOooo........oooOO0OOooo........oo    
308