Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4MuPairProductionModel.cc,v 1.44 2009/08/11 16:50:07 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03-patch-02 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class file 31 // GEANT4 Class file 30 // 32 // 31 // 33 // 32 // File name: G4MuPairProductionModel 34 // File name: G4MuPairProductionModel 33 // 35 // 34 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 37 // 36 // Creation date: 24.06.2002 38 // Creation date: 24.06.2002 37 // 39 // 38 // Modifications: 40 // Modifications: 39 // 41 // 40 // 04-12-02 Change G4DynamicParticle construct 42 // 04-12-02 Change G4DynamicParticle constructor in PostStep (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 43 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 24-01-03 Fix for compounds (V.Ivanchenko) 44 // 24-01-03 Fix for compounds (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanch 45 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add model (V.Ivanchenko) 46 // 13-02-03 Add model (V.Ivanchenko) 45 // 06-06-03 Fix in cross section calculation f 47 // 06-06-03 Fix in cross section calculation for high energy (V.Ivanchenko) 46 // 20-10-03 2*xi in ComputeDDMicroscopicCrossS 48 // 20-10-03 2*xi in ComputeDDMicroscopicCrossSection (R.Kokoulin) 47 // 8 integration points in ComputeDMi 49 // 8 integration points in ComputeDMicroscopicCrossSection 48 // 12-01-04 Take min cut of e- and e+ not its 50 // 12-01-04 Take min cut of e- and e+ not its sum (V.Ivanchenko) 49 // 10-02-04 Update parameterisation using R.Ko 51 // 10-02-04 Update parameterisation using R.Kokoulin model (V.Ivanchenko) 50 // 28-04-04 For complex materials repeat calcu 52 // 28-04-04 For complex materials repeat calculation of max energy for each 51 // material (V.Ivanchenko) 53 // material (V.Ivanchenko) 52 // 01-11-04 Fix bug inside ComputeDMicroscopic 54 // 01-11-04 Fix bug inside ComputeDMicroscopicCrossSection (R.Kokoulin) 53 // 08-04-05 Major optimisation of internal int 55 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 54 // 03-08-05 Add SetParticle method (V.Ivantche 56 // 03-08-05 Add SetParticle method (V.Ivantchenko) 55 // 23-10-05 Add protection in sampling of e+e- 57 // 23-10-05 Add protection in sampling of e+e- pair energy needed for 56 // low cuts (V.Ivantchenko) 58 // low cuts (V.Ivantchenko) 57 // 13-02-06 Add ComputeCrossSectionPerAtom (mm 59 // 13-02-06 Add ComputeCrossSectionPerAtom (mma) 58 // 24-04-07 Add protection in SelectRandomAtom 60 // 24-04-07 Add protection in SelectRandomAtom method (V.Ivantchenko) 59 // 12-05-06 Updated sampling (use cut) in Sele 61 // 12-05-06 Updated sampling (use cut) in SelectRandomAtom (A.Bogdanov) 60 // 11-10-07 Add ignoreCut flag (V.Ivanchenko) 62 // 11-10-07 Add ignoreCut flag (V.Ivanchenko) 61 63 62 // 64 // 63 // Class Description: 65 // Class Description: 64 // 66 // 65 // 67 // 66 // ------------------------------------------- 68 // ------------------------------------------------------------------- 67 // 69 // 68 //....oooOO0OOooo........oooOO0OOooo........oo 70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 69 //....oooOO0OOooo........oooOO0OOooo........oo 71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 70 72 71 #include "G4MuPairProductionModel.hh" 73 #include "G4MuPairProductionModel.hh" 72 #include "G4PhysicalConstants.hh" << 73 #include "G4SystemOfUnits.hh" << 74 #include "G4EmParameters.hh" << 75 #include "G4Electron.hh" 74 #include "G4Electron.hh" 76 #include "G4Positron.hh" 75 #include "G4Positron.hh" 77 #include "G4MuonMinus.hh" 76 #include "G4MuonMinus.hh" 78 #include "G4MuonPlus.hh" 77 #include "G4MuonPlus.hh" 79 #include "Randomize.hh" 78 #include "Randomize.hh" 80 #include "G4Material.hh" 79 #include "G4Material.hh" 81 #include "G4Element.hh" 80 #include "G4Element.hh" 82 #include "G4ElementVector.hh" 81 #include "G4ElementVector.hh" 83 #include "G4ElementDataRegistry.hh" << 84 #include "G4ProductionCutsTable.hh" 82 #include "G4ProductionCutsTable.hh" 85 #include "G4ParticleChangeForLoss.hh" 83 #include "G4ParticleChangeForLoss.hh" 86 #include "G4ModifiedMephi.hh" << 84 #include "G4ParticleChangeForGamma.hh" 87 #include "G4Log.hh" << 88 #include "G4Exp.hh" << 89 #include "G4AutoLock.hh" << 90 << 91 #include <iostream> << 92 #include <fstream> << 93 85 94 //....oooOO0OOooo........oooOO0OOooo........oo 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 95 87 96 const G4int G4MuPairProductionModel::ZDATPAIR[ << 88 // static members 97 << 89 // 98 const G4double G4MuPairProductionModel::xgi[] << 90 G4double G4MuPairProductionModel::zdat[]={1., 4., 13., 29., 92.}; 99 0.0198550717512320, 0.1016667612931865, 0. << 91 G4double G4MuPairProductionModel::adat[]={1.01, 9.01, 26.98, 63.55, 238.03}; 100 0.5917173212478250, 0.7627662049581645, 0. << 92 G4double G4MuPairProductionModel::tdat[]={1.e3, 1.e4, 1.e5, 1.e6, 1.e7, 1.e8, 101 }; << 93 1.e9, 1.e10}; 102 << 94 G4double G4MuPairProductionModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083, 103 const G4double G4MuPairProductionModel::wgi[] << 95 0.5917, 0.7628, 0.8983, 0.9801 }; 104 0.0506142681451880, 0.1111905172266870, 0. << 96 G4double G4MuPairProductionModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813, 105 0.1813418916891810, 0.1568533229389435, 0. << 97 0.1813, 0.1569, 0.1112, 0.0506 }; 106 }; << 98 107 << 108 namespace << 109 { << 110 G4Mutex theMuPairMutex = G4MUTEX_INITIALIZER << 111 << 112 const G4double ak1 = 6.9; << 113 const G4double ak2 = 1.0; << 114 } << 115 << 116 //....oooOO0OOooo........oooOO0OOooo........oo 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 117 100 >> 101 using namespace std; >> 102 118 G4MuPairProductionModel::G4MuPairProductionMod 103 G4MuPairProductionModel::G4MuPairProductionModel(const G4ParticleDefinition* p, 119 104 const G4String& nam) 120 : G4VEmModel(nam), 105 : G4VEmModel(nam), 121 factorForCross(CLHEP::fine_structure_const*C << 106 particle(0), 122 CLHEP::classic_electr_radius*CLHEP::class << 107 factorForCross(4.*fine_structure_const*fine_structure_const 123 4./(3.*CLHEP::pi)), << 108 *classic_electr_radius*classic_electr_radius/(3.*pi)), 124 sqrte(std::sqrt(G4Exp(1.))), << 109 sqrte(sqrt(exp(1.))), 125 minPairEnergy(4.*CLHEP::electron_mass_c2), << 110 currentZ(0), 126 lowestKinEnergy(0.85*CLHEP::GeV) << 111 fParticleChange(0), >> 112 minPairEnergy(4.*electron_mass_c2), >> 113 lowestKinEnergy(1.*GeV), >> 114 nzdat(5), >> 115 ntdat(8), >> 116 nbiny(1000), >> 117 nmaxElements(0), >> 118 ymin(-5.), >> 119 ymax(0.), >> 120 dy((ymax-ymin)/nbiny), >> 121 samplingTablesAreFilled(false) 127 { 122 { >> 123 SetLowEnergyLimit(minPairEnergy); 128 nist = G4NistManager::Instance(); 124 nist = G4NistManager::Instance(); 129 125 130 theElectron = G4Electron::Electron(); 126 theElectron = G4Electron::Electron(); 131 thePositron = G4Positron::Positron(); 127 thePositron = G4Positron::Positron(); 132 128 133 if(nullptr != p) { << 129 if(p) SetParticle(p); 134 SetParticle(p); << 135 lowestKinEnergy = std::max(lowestKinEnergy << 136 } << 137 emin = lowestKinEnergy; << 138 emax = emin*10000.; << 139 SetAngularDistribution(new G4ModifiedMephi() << 140 } 130 } 141 131 142 //....oooOO0OOooo........oooOO0OOooo........oo 132 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 143 133 144 G4double G4MuPairProductionModel::MinPrimaryEn << 134 G4MuPairProductionModel::~G4MuPairProductionModel() 145 << 135 {} 146 << 147 { << 148 return std::max(lowestKinEnergy, cut); << 149 } << 150 136 151 //....oooOO0OOooo........oooOO0OOooo........oo 137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 152 138 153 void G4MuPairProductionModel::Initialise(const << 139 G4double G4MuPairProductionModel::MinEnergyCut(const G4ParticleDefinition*, 154 const << 140 const G4MaterialCutsCouple* ) 155 { << 141 { 156 SetParticle(p); << 142 return minPairEnergy; 157 << 143 } 158 if (nullptr == fParticleChange) { << 159 fParticleChange = GetParticleChangeForLoss << 160 << 161 // define scale of internal table for each << 162 if (0 == nbine) { << 163 emin = std::max(lowestKinEnergy, LowEner << 164 emax = std::max(HighEnergyLimit(), emin* << 165 nbine = std::size_t(nYBinPerDecade*std:: << 166 if(nbine < 3) { nbine = 3; } << 167 << 168 ymin = G4Log(minPairEnergy/emin); << 169 dy = -ymin/G4double(nbiny); << 170 } << 171 if (p == particle) { << 172 G4int pdg = std::abs(p->GetPDGEncoding() << 173 if (pdg == 2212) { << 174 dataName = "pEEPairProd"; << 175 } else if (pdg == 321) { << 176 dataName = "kaonEEPairProd"; << 177 } else if (pdg == 211) { << 178 dataName = "pionEEPairProd"; << 179 } else if (pdg == 11) { << 180 dataName = "eEEPairProd"; << 181 } else if (pdg == 13) { << 182 if (GetName() == "muToMuonPairProd") { << 183 dataName = "muMuMuPairProd"; << 184 } else { << 185 dataName = "muEEPairProd"; << 186 } << 187 } << 188 } << 189 } << 190 144 191 // for low-energy application this process s << 145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 192 if(lowestKinEnergy >= HighEnergyLimit()) { r << 193 146 194 if (p == particle) { << 147 G4double G4MuPairProductionModel::MaxSecondaryEnergy(const G4ParticleDefinition*, 195 fElementData = << 148 G4double kineticEnergy) 196 G4ElementDataRegistry::Instance()->GetEl << 149 { 197 if (nullptr == fElementData) { << 150 G4double maxPairEnergy = kineticEnergy + particleMass*(1.0 - 0.75*sqrte*z13); 198 G4AutoLock l(&theMuPairMutex); << 151 return maxPairEnergy; 199 fElementData = << 200 G4ElementDataRegistry::Instance()->GetElemen << 201 if (nullptr == fElementData) { << 202 fElementData = new G4ElementData(NZDATPAIR); << 203 fElementData->SetName(dataName); << 204 } << 205 G4bool useDataFile = G4EmParameters::Ins << 206 if (useDataFile) { useDataFile = Retrie << 207 if (!useDataFile) { MakeSamplingTables() << 208 if (fTableToFile) { StoreTables(); } << 209 l.unlock(); << 210 } << 211 if (IsMaster()) { << 212 InitialiseElementSelectors(p, cuts); << 213 } << 214 } << 215 } 152 } 216 153 217 //....oooOO0OOooo........oooOO0OOooo........oo << 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 218 155 219 void G4MuPairProductionModel::InitialiseLocal( << 156 void G4MuPairProductionModel::Initialise(const G4ParticleDefinition* p, 220 << 157 const G4DataVector&) 221 { << 158 { 222 if(p == particle && lowestKinEnergy < HighEn << 159 if (!samplingTablesAreFilled) { 223 SetElementSelectors(masterModel->GetElemen << 160 if(p) SetParticle(p); >> 161 MakeSamplingTables(); 224 } 162 } >> 163 if(!fParticleChange) fParticleChange = GetParticleChangeForLoss(); 225 } 164 } 226 165 227 //....oooOO0OOooo........oooOO0OOooo........oo 166 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 228 167 229 G4double G4MuPairProductionModel::ComputeDEDXP 168 G4double G4MuPairProductionModel::ComputeDEDXPerVolume( 230 << 169 const G4Material* material, 231 170 const G4ParticleDefinition*, 232 171 G4double kineticEnergy, 233 172 G4double cutEnergy) 234 { 173 { 235 G4double dedx = 0.0; 174 G4double dedx = 0.0; 236 if (cutEnergy <= minPairEnergy || kineticEne 175 if (cutEnergy <= minPairEnergy || kineticEnergy <= lowestKinEnergy) 237 { return dedx; } << 176 return dedx; 238 177 239 const G4ElementVector* theElementVector = ma 178 const G4ElementVector* theElementVector = material->GetElementVector(); 240 const G4double* theAtomicNumDensityVector = 179 const G4double* theAtomicNumDensityVector = 241 material->G 180 material->GetAtomicNumDensityVector(); 242 181 243 // loop for elements in the material 182 // loop for elements in the material 244 for (std::size_t i=0; i<material->GetNumberO << 183 for (size_t i=0; i<material->GetNumberOfElements(); i++) { 245 G4double Z = (*theElementVector)[i]->GetZ 184 G4double Z = (*theElementVector)[i]->GetZ(); 246 G4double tmax = MaxSecondaryEnergyForElem << 185 SetCurrentElement(Z); >> 186 G4double tmax = MaxSecondaryEnergy(particle, kineticEnergy); 247 G4double loss = ComputMuPairLoss(Z, kinet 187 G4double loss = ComputMuPairLoss(Z, kineticEnergy, cutEnergy, tmax); 248 dedx += loss*theAtomicNumDensityVector[i] 188 dedx += loss*theAtomicNumDensityVector[i]; 249 } 189 } 250 dedx = std::max(dedx, 0.0); << 190 if (dedx < 0.) dedx = 0.; 251 return dedx; 191 return dedx; 252 } 192 } 253 193 254 //....oooOO0OOooo........oooOO0OOooo........oo 194 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 255 195 256 G4double G4MuPairProductionModel::ComputMuPair 196 G4double G4MuPairProductionModel::ComputMuPairLoss(G4double Z, 257 << 197 G4double tkin, 258 << 198 G4double cutEnergy, 259 << 199 G4double tmax) 260 { 200 { >> 201 SetCurrentElement(Z); 261 G4double loss = 0.0; 202 G4double loss = 0.0; 262 203 263 G4double cut = std::min(cutEnergy, tmax); << 204 G4double cut = std::min(cutEnergy,tmax); 264 if(cut <= minPairEnergy) { return loss; } << 205 if(cut <= minPairEnergy) return loss; 265 206 266 // calculate the rectricted loss 207 // calculate the rectricted loss 267 // numerical integration in log(PairEnergy) 208 // numerical integration in log(PairEnergy) 268 G4double aaa = G4Log(minPairEnergy); << 209 G4double ak1=6.9; 269 G4double bbb = G4Log(cut); << 210 G4double ak2=1.0; 270 << 211 G4double aaa = log(minPairEnergy); 271 G4int kkk = std::min(std::max(G4lrint((bbb-a << 212 G4double bbb = log(cut); 272 G4double hhh = (bbb-aaa)/kkk; << 213 G4int kkk = (G4int)((bbb-aaa)/ak1+ak2); >> 214 if (kkk > 8) kkk = 8; >> 215 G4double hhh = (bbb-aaa)/(G4double)kkk; 273 G4double x = aaa; 216 G4double x = aaa; 274 217 275 for (G4int l=0 ; l<kkk; ++l) { << 218 for (G4int l=0 ; l<kkk; l++) 276 for (G4int ll=0; ll<NINTPAIR; ++ll) { << 219 { 277 G4double ep = G4Exp(x+xgi[ll]*hhh); << 220 >> 221 for (G4int ll=0; ll<8; ll++) >> 222 { >> 223 G4double ep = exp(x+xgi[ll]*hhh); 278 loss += wgi[ll]*ep*ep*ComputeDMicroscopi 224 loss += wgi[ll]*ep*ep*ComputeDMicroscopicCrossSection(tkin, Z, ep); 279 } 225 } 280 x += hhh; 226 x += hhh; 281 } 227 } 282 loss *= hhh; 228 loss *= hhh; 283 loss = std::max(loss, 0.0); << 229 if (loss < 0.) loss = 0.; 284 return loss; 230 return loss; 285 } 231 } 286 232 287 //....oooOO0OOooo........oooOO0OOooo........oo 233 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 288 234 289 G4double G4MuPairProductionModel::ComputeMicro 235 G4double G4MuPairProductionModel::ComputeMicroscopicCrossSection( 290 G4d 236 G4double tkin, 291 G4d 237 G4double Z, 292 G4d << 238 G4double cut) 293 { 239 { 294 G4double cross = 0.; 240 G4double cross = 0.; 295 G4double tmax = MaxSecondaryEnergyForElement << 241 SetCurrentElement(Z); 296 G4double cut = std::max(cutEnergy, minPairE << 242 G4double tmax = MaxSecondaryEnergy(particle, tkin); 297 if (tmax <= cut) { return cross; } << 243 if (tmax <= cut) return cross; 298 << 244 299 G4double aaa = G4Log(cut); << 245 G4double ak1=6.9 ; 300 G4double bbb = G4Log(tmax); << 246 G4double ak2=1.0 ; 301 G4int kkk = std::min(std::max(G4lrint((bbb-a << 247 G4double aaa = log(cut); 302 << 248 G4double bbb = log(tmax); 303 G4double hhh = (bbb-aaa)/(kkk); << 249 G4int kkk = (G4int)((bbb-aaa)/ak1 + ak2); >> 250 if(kkk > 8) kkk = 8; >> 251 G4double hhh = (bbb-aaa)/float(kkk); 304 G4double x = aaa; 252 G4double x = aaa; 305 253 306 for (G4int l=0; l<kkk; ++l) { << 254 for(G4int l=0; l<kkk; l++) 307 for (G4int i=0; i<NINTPAIR; ++i) { << 255 { 308 G4double ep = G4Exp(x + xgi[i]*hhh); << 256 for(G4int i=0; i<8; i++) >> 257 { >> 258 G4double ep = exp(x + xgi[i]*hhh); 309 cross += ep*wgi[i]*ComputeDMicroscopicCr 259 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep); 310 } 260 } 311 x += hhh; 261 x += hhh; 312 } 262 } 313 263 314 cross *= hhh; << 264 cross *=hhh; 315 cross = std::max(cross, 0.0); << 265 if(cross < 0.0) cross = 0.0; 316 return cross; 266 return cross; 317 } 267 } 318 268 319 //....oooOO0OOooo........oooOO0OOooo........oo << 320 << 321 G4double G4MuPairProductionModel::ComputeDMicr 269 G4double G4MuPairProductionModel::ComputeDMicroscopicCrossSection( 322 G4d 270 G4double tkin, 323 G4d 271 G4double Z, 324 G4d 272 G4double pairEnergy) 325 // Calculates the differential (D) microscopi << 273 // Calculates the differential (D) microscopic cross section 326 // using the cross section formula of R.P. Kok << 274 // using the cross section formula of R.P. Kokoulin (18/01/98) 327 // Code modified by R.P. Kokoulin, V.N. Ivanch << 275 // Code modified by R.P. Kokoulin, V.N. Ivanchenko (27/01/04) 328 { << 276 { 329 static const G4double bbbtf= 183. ; << 277 G4double bbbtf= 183. ; 330 static const G4double bbbh = 202.4 ; << 278 G4double bbbh = 202.4 ; 331 static const G4double g1tf = 1.95e-5 ; << 279 G4double g1tf = 1.95e-5 ; 332 static const G4double g2tf = 5.3e-5 ; << 280 G4double g2tf = 5.3e-5 ; 333 static const G4double g1h = 4.4e-5 ; << 281 G4double g1h = 4.4e-5 ; 334 static const G4double g2h = 4.8e-5 ; << 282 G4double g2h = 4.8e-5 ; 335 << 336 if (pairEnergy <= minPairEnergy) << 337 return 0.0; << 338 283 339 G4double totalEnergy = tkin + particleMass; 284 G4double totalEnergy = tkin + particleMass; 340 G4double residEnergy = totalEnergy - pairEn 285 G4double residEnergy = totalEnergy - pairEnergy; >> 286 G4double massratio = particleMass/electron_mass_c2 ; >> 287 G4double massratio2 = massratio*massratio ; >> 288 G4double cross = 0.; 341 289 342 if (residEnergy <= 0.75*sqrte*z13*particleMa << 290 SetCurrentElement(Z); 343 return 0.0; << 344 291 345 G4double a0 = 1.0 / (totalEnergy * residEner << 292 G4double c3 = 0.75*sqrte*particleMass; 346 G4double alf = 4.0 * electron_mass_c2 / pair << 293 if (residEnergy <= c3*z13) return cross; 347 G4double rt = std::sqrt(1.0 - alf); << 294 348 G4double delta = 6.0 * particleMass * partic << 295 G4double c7 = 4.*electron_mass_c2; 349 G4double tmnexp = alf/(1.0 + rt) + delta*rt; << 296 G4double c8 = 6.*particleMass*particleMass; 350 << 297 G4double alf = c7/pairEnergy; 351 if(tmnexp >= 1.0) { return 0.0; } << 298 G4double a3 = 1. - alf; 352 << 299 if (a3 <= 0.) return cross; 353 G4double tmn = G4Log(tmnexp); << 354 << 355 G4double massratio = particleMass/CLHEP::ele << 356 G4double massratio2 = massratio*massratio; << 357 G4double inv_massratio2 = 1.0 / massratio2; << 358 300 359 // zeta calculation 301 // zeta calculation 360 G4double bbb,g1,g2; 302 G4double bbb,g1,g2; 361 if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = 303 if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = g2h ; } 362 else { bbb = bbbtf; g1 = g1tf; g2 = 304 else { bbb = bbbtf; g1 = g1tf; g2 = g2tf; } 363 305 364 G4double zeta = 0.0; << 306 G4double zeta = 0; 365 G4double z1exp = totalEnergy / (particleMass << 307 G4double zeta1 = 0.073*log(totalEnergy/(particleMass+g1*z23*totalEnergy))-0.26; 366 << 308 if ( zeta1 > 0.) 367 // 35.221047195922 is the root of zeta1(x) = << 368 // condition below is the same as zeta1 > 0. << 369 if (z1exp > 35.221047195922) << 370 { 309 { 371 G4double z2exp = totalEnergy / (particleMa << 310 G4double zeta2 = 0.058*log(totalEnergy/(particleMass+g2*z13*totalEnergy))-0.14; 372 zeta = (0.073 * G4Log(z1exp) - 0.26) / (0. << 311 zeta = zeta1/zeta2 ; 373 } 312 } 374 313 375 G4double z2 = Z*(Z+zeta); 314 G4double z2 = Z*(Z+zeta); 376 G4double screen0 = 2.*electron_mass_c2*sqrte 315 G4double screen0 = 2.*electron_mass_c2*sqrte*bbb/(z13*pairEnergy); 377 G4double beta = 0.5*pairEnergy*pairEnergy*a0 << 316 G4double a0 = totalEnergy*residEnergy; 378 G4double xi0 = 0.5*massratio2*beta; << 317 G4double a1 = pairEnergy*pairEnergy/a0; 379 << 318 G4double bet = 0.5*a1; 380 // Gaussian integration in ln(1-ro) ( with 8 << 319 G4double xi0 = 0.25*massratio2*a1; 381 G4double rho[NINTPAIR]; << 320 G4double del = c8/a0; 382 G4double rho2[NINTPAIR]; << 321 383 G4double xi[NINTPAIR]; << 322 G4double rta3 = sqrt(a3); 384 G4double xi1[NINTPAIR]; << 323 G4double tmnexp = alf/(1. + rta3) + del*rta3; 385 G4double xii[NINTPAIR]; << 324 if(tmnexp >= 1.0) return cross; 386 << 387 for (G4int i = 0; i < NINTPAIR; ++i) << 388 { << 389 rho[i] = G4Exp(tmn*xgi[i]) - 1.0; // rho = << 390 rho2[i] = rho[i] * rho[i]; << 391 xi[i] = xi0*(1.0-rho2[i]); << 392 xi1[i] = 1.0 + xi[i]; << 393 xii[i] = 1.0 / xi[i]; << 394 } << 395 325 396 G4double ye1[NINTPAIR]; << 326 G4double tmn = log(tmnexp); 397 G4double ym1[NINTPAIR]; << 327 G4double sum = 0.; 398 328 399 G4double b40 = 4.0 * beta; << 329 // Gaussian integration in ln(1-ro) ( with 8 points) 400 G4double b62 = 6.0 * beta + 2.0; << 330 for (G4int i=0; i<8; i++) 401 << 402 for (G4int i = 0; i < NINTPAIR; ++i) << 403 { 331 { 404 G4double yeu = (b40 + 5.0) + (b40 - 1.0) * << 332 G4double a4 = exp(tmn*xgi[i]); // a4 = (1.-asymmetry) 405 G4double yed = b62*G4Log(3.0 + xii[i]) + ( << 333 G4double a5 = a4*(2.-a4) ; 406 << 334 G4double a6 = 1.-a5 ; 407 G4double ymu = b62 * (1.0 + rho2[i]) + 6.0 << 335 G4double a7 = 1.+a6 ; 408 G4double ymd = (b40 + 3.0)*(1.0 + rho2[i]) << 336 G4double a9 = 3.+a6 ; 409 + 2.0 - 3.0 * rho2[i]; << 337 G4double xi = xi0*a5 ; 410 << 338 G4double xii = 1./xi ; 411 ye1[i] = 1.0 + yeu / yed; << 339 G4double xi1 = 1.+xi ; 412 ym1[i] = 1.0 + ymu / ymd; << 340 G4double screen = screen0*xi1/a5 ; 413 } << 341 G4double yeu = 5.-a6+4.*bet*a7 ; 414 << 342 G4double yed = 2.*(1.+3.*bet)*log(3.+xii)-a6-a1*(2.-a6) ; 415 G4double be[NINTPAIR]; << 343 G4double ye1 = 1.+yeu/yed ; 416 G4double bm[NINTPAIR]; << 344 G4double ale=log(bbb/z13*sqrt(xi1*ye1)/(1.+screen*ye1)) ; 417 << 345 G4double cre = 0.5*log(1.+2.25*z23*xi1*ye1/massratio2) ; 418 for(G4int i = 0; i < NINTPAIR; ++i) { << 346 G4double be; 419 if(xi[i] <= 1000.0) { << 347 420 be[i] = ((2.0 + rho2[i])*(1.0 + beta) + << 348 if (xi <= 1.e3) be = ((2.+a6)*(1.+bet)+xi*a9)*log(1.+xii)+(a5-bet)/xi1-a9; 421 xi[i]*(3.0 + rho2[i]))*G4Log(1.0 + xi << 349 else be = (3.-a6+a1*a7)/(2.*xi); 422 (1.0 - rho2[i] - beta)/xi1[i] - (3.0 + rho2[ << 350 423 } else { << 351 G4double fe = (ale-cre)*be; 424 be[i] = 0.5*(3.0 - rho2[i] + 2.0*beta*(1 << 352 if ( fe < 0.) fe = 0. ; 425 } << 353 426 << 354 G4double ymu = 4.+a6 +3.*bet*a7 ; 427 if(xi[i] >= 0.001) { << 355 G4double ymd = a7*(1.5+a1)*log(3.+xi)+1.-1.5*a6 ; 428 G4double a10 = (1.0 + 2.0 * beta) * (1.0 << 356 G4double ym1 = 1.+ymu/ymd ; 429 bm[i] = ((1.0 + rho2[i])*(1.0 + 1.5 * be << 357 G4double alm_crm = log(bbb*massratio/(1.5*z23*(1.+screen*ym1))); 430 xi[i] * (1.0 - rho2[i] - beta) << 358 G4double a10,bm; >> 359 if ( xi >= 1.e-3) >> 360 { >> 361 a10 = (1.+a1)*a5 ; >> 362 bm = (a7*(1.+1.5*bet)-a10*xii)*log(xi1)+xi*(a5-bet)/xi1+a10; 431 } else { 363 } else { 432 bm[i] = 0.5*(5.0 - rho2[i] + beta * (3.0 << 364 bm = (5.-a6+bet*a9)*(xi/2.); 433 } 365 } 434 } << 435 << 436 G4double sum = 0.0; << 437 << 438 for (G4int i = 0; i < NINTPAIR; ++i) { << 439 G4double screen = screen0*xi1[i]/(1.0 - rh << 440 G4double ale = G4Log(bbb/z13*std::sqrt(xi1 << 441 G4double cre = 0.5*G4Log(1. + 2.25*z23*xi1 << 442 366 443 G4double fe = (ale-cre)*be[i]; << 367 G4double fm = alm_crm*bm; 444 fe = std::max(fe, 0.0); << 368 if ( fm < 0.) fm = 0. ; 445 369 446 G4double alm_crm = G4Log(bbb*massratio/(1. << 370 sum += wgi[i]*a4*(fe+fm/massratio2); 447 G4double fm = std::max(alm_crm*bm[i], 0.0) << 448 << 449 sum += wgi[i]*(1.0 + rho[i])*(fe + fm); << 450 } 371 } 451 372 452 return -tmn*sum*factorForCross*z2*residEnerg << 373 cross = -tmn*sum*factorForCross*z2*residEnergy/(totalEnergy*pairEnergy); >> 374 >> 375 return cross; 453 } 376 } 454 377 455 //....oooOO0OOooo........oooOO0OOooo........oo 378 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 456 379 457 G4double G4MuPairProductionModel::ComputeCross 380 G4double G4MuPairProductionModel::ComputeCrossSectionPerAtom( 458 con 381 const G4ParticleDefinition*, 459 382 G4double kineticEnergy, 460 << 383 G4double Z, G4double, 461 384 G4double cutEnergy, 462 385 G4double maxEnergy) 463 { 386 { 464 G4double cross = 0.0; 387 G4double cross = 0.0; 465 if (kineticEnergy <= lowestKinEnergy) { retu << 388 if (kineticEnergy <= lowestKinEnergy) return cross; 466 389 467 G4double maxPairEnergy = MaxSecondaryEnergyF << 390 SetCurrentElement(Z); >> 391 >> 392 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy); 468 G4double tmax = std::min(maxEnergy, maxPairE 393 G4double tmax = std::min(maxEnergy, maxPairEnergy); 469 G4double cut = std::max(cutEnergy, minPairE 394 G4double cut = std::max(cutEnergy, minPairEnergy); 470 if (cut >= tmax) { return cross; } << 395 if (cut >= tmax) return cross; 471 396 472 cross = ComputeMicroscopicCrossSection(kinet << 397 cross = ComputeMicroscopicCrossSection (kineticEnergy, Z, cut); 473 if(tmax < kineticEnergy) { 398 if(tmax < kineticEnergy) { 474 cross -= ComputeMicroscopicCrossSection(ki 399 cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax); 475 } 400 } 476 return cross; 401 return cross; 477 } 402 } 478 403 479 //....oooOO0OOooo........oooOO0OOooo........oo 404 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 480 405 481 void G4MuPairProductionModel::MakeSamplingTabl 406 void G4MuPairProductionModel::MakeSamplingTables() 482 { 407 { 483 G4double factore = G4Exp(G4Log(emax/emin)/G4 << 408 for (G4int iz=0; iz<nzdat; iz++) >> 409 { >> 410 G4double Z = zdat[iz]; >> 411 SetCurrentElement(Z); 484 412 485 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 413 for (G4int it=0; it<ntdat; it++) { 486 414 487 G4double Z = ZDATPAIR[iz]; << 415 G4double kineticEnergy = tdat[it]; 488 G4Physics2DVector* pv = new G4Physics2DVec << 416 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy); 489 G4double kinEnergy = emin; << 417 // G4cout << "Z= " << currentZ << " z13= " << z13 490 << 418 //<< " mE= " << maxPairEnergy << G4endl; 491 for (std::size_t it=0; it<=nbine; ++it) { << 419 G4double CrossSection = 0.0 ; 492 << 420 493 pv->PutY(it, G4Log(kinEnergy/CLHEP::MeV) << 421 if(maxPairEnergy > minPairEnergy) { 494 G4double maxPairEnergy = MaxSecondaryEne << 422 495 /* << 423 G4double y = ymin - 0.5*dy ; 496 G4cout << "it= " << it << " E= " << kinE << 424 G4double yy = ymin - dy ; 497 << " " << particle->GetParticleN << 425 G4double x = exp(y); 498 << " maxE= " << maxPairEnergy << << 426 G4double fac = exp(dy); 499 << " ymin= " << ymin << G4endl; << 427 G4double dx = exp(yy)*(fac - 1.0); 500 */ << 428 501 G4double coef = G4Log(minPairEnergy/kinE << 429 G4double c = log(maxPairEnergy/minPairEnergy); 502 G4double ymax = G4Log(maxPairEnergy/kinE << 430 503 G4double fac = (ymax - ymin)/dy; << 431 for (G4int i=0 ; i<nbiny; i++) { 504 std::size_t imax = (std::size_t)fac; << 432 y += dy ; 505 fac -= (G4double)imax; << 433 if(c > 0.0) { 506 << 434 x *= fac; 507 G4double xSec = 0.0; << 435 dx*= fac; 508 G4double x = ymin; << 436 G4double ep = minPairEnergy*exp(c*x) ; 509 /* << 437 CrossSection += 510 G4cout << "Z= " << currentZ << " z13= " << 438 ep*dx*ComputeDMicroscopicCrossSection(kineticEnergy, Z, ep); 511 << " mE= " << maxPairEnergy << " << 439 } 512 << " dy= " << dy << " c= " << co << 440 ya[i] = y; 513 */ << 441 proba[iz][it][i] = CrossSection; 514 // start from zero << 442 } 515 pv->PutValue(0, it, 0.0); << 443 516 if(0 == it) { pv->PutX(nbiny, 0.0); } << 444 } else { 517 << 445 for (G4int i=0 ; i<nbiny; i++) { 518 for (std::size_t i=0; i<nbiny; ++i) { << 446 proba[iz][it][i] = CrossSection; 519 << 447 } 520 if(0 == it) { pv->PutX(i, x); } << 448 } 521 << 449 522 if(i < imax) { << 450 ya[nbiny]=ymax; 523 G4double ep = kinEnergy*G4Exp(coef*( << 451 proba[iz][it][nbiny] = CrossSection; 524 << 525 // not multiplied by interval, becau << 526 // will be used only for sampling << 527 //G4cout << "i= " << i << " x= " << << 528 // << " Egamma= " << ep << G << 529 xSec += ep*ComputeDMicroscopicCrossS << 530 << 531 // last bin before the kinematic lim << 532 } else if(i == imax) { << 533 G4double ep = kinEnergy*G4Exp(coef*( << 534 xSec += ep*fac*ComputeDMicroscopicCr << 535 } << 536 pv->PutValue(i + 1, it, xSec); << 537 x += dy; << 538 } << 539 kinEnergy *= factore; << 540 452 541 // to avoid precision lost << 542 if(it+1 == nbine) { kinEnergy = emax; } << 543 } 453 } 544 fElementData->InitialiseForElement(iz, pv) << 545 } 454 } >> 455 samplingTablesAreFilled = true; 546 } 456 } 547 457 548 //....oooOO0OOooo........oooOO0OOooo........oo 458 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 549 459 550 void G4MuPairProductionModel::SampleSecondarie << 460 void 551 std::vector<G4Dy << 461 G4MuPairProductionModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 552 const G4Material << 462 const G4MaterialCutsCouple* couple, 553 const G4DynamicP << 463 const G4DynamicParticle* aDynamicParticle, 554 G4double tmin, << 464 G4double tmin, 555 G4double tmax) << 465 G4double tmax) 556 { 466 { 557 G4double kinEnergy = aDynamicParticle->GetKi << 467 G4double kineticEnergy = aDynamicParticle->GetKineticEnergy(); 558 //G4cout << "------- G4MuPairProductionModel << 468 G4double totalEnergy = kineticEnergy + particleMass ; 559 // << kinEnergy << " " << 469 G4ParticleMomentum ParticleDirection = 560 // << aDynamicParticle->GetDefinitio << 470 aDynamicParticle->GetMomentumDirection(); 561 G4double totalEnergy = kinEnergy + particl << 562 G4double totalMomentum = << 563 std::sqrt(kinEnergy*(kinEnergy + 2.0*parti << 564 471 565 G4ThreeVector partDirection = aDynamicPartic << 472 G4int it; >> 473 for(it=1; it<ntdat; it++) {if(kineticEnergy <= tdat[it]) break;} >> 474 if(it == ntdat) it--; >> 475 G4double dt = log(kineticEnergy/tdat[it-1])/log(tdat[it]/tdat[it-1]); 566 476 567 // select randomly one element constituing t 477 // select randomly one element constituing the material 568 const G4Element* anElement = SelectRandomAto << 478 const G4Element* anElement = SelectRandomAtom(kineticEnergy, dt, it, couple, tmin); >> 479 SetCurrentElement(anElement->GetZ()); 569 480 570 // define interval of energy transfer << 481 // define interval of enegry transfer 571 G4double maxPairEnergy = MaxSecondaryEnergyF << 482 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy); 572 << 483 G4double maxEnergy = std::min(tmax, maxPairEnergy); 573 G4double maxEnergy = std::min(tmax, maxPairE << 484 G4double minEnergy = std::max(tmin, minPairEnergy); 574 G4double minEnergy = std::max(tmin, minPairE << 575 485 576 if (minEnergy >= maxEnergy) { return; } << 486 if(minEnergy >= maxEnergy) return; 577 //G4cout << "emin= " << minEnergy << " emax= 487 //G4cout << "emin= " << minEnergy << " emax= " << maxEnergy 578 // << " minPair= " << minPairEnergy << " max << 488 // << " minPair= " << minPairEnergy << " maxpair= " << maxPairEnergy 579 // << " ymin= " << ymin << " dy= " << dy << 489 // << " ymin= " << ymin << " dy= " << dy << G4endl; >> 490 >> 491 // select bins >> 492 G4int iymin = 0; >> 493 G4int iymax = nbiny-1; >> 494 if( minEnergy > minPairEnergy) >> 495 { >> 496 G4double xc = log(minEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy); >> 497 iymin = (G4int)((log(xc) - ymin)/dy); >> 498 if(iymin >= nbiny) iymin = nbiny-1; >> 499 else if(iymin < 0) iymin = 0; >> 500 xc = log(maxEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy); >> 501 iymax = (G4int)((log(xc) - ymin)/dy) + 1; >> 502 if(iymax >= nbiny) iymax = nbiny-1; >> 503 else if(iymax < 0) iymax = 0; >> 504 } 580 505 581 G4double coeff = G4Log(minPairEnergy/kinEner << 506 // sample e-e+ energy, pair energy first >> 507 G4int iz, iy; 582 508 583 // compute limits << 509 for(iz=1; iz<nzdat; iz++) {if(currentZ <= zdat[iz]) break;} 584 G4double yymin = G4Log(minEnergy/kinEnergy)/ << 510 if(iz == nzdat) iz--; 585 G4double yymax = G4Log(maxEnergy/kinEnergy)/ << 586 << 587 //G4cout << "yymin= " << yymin << " yymax= << 588 511 589 // units should not be used, bacause table w << 512 G4double dz = log(currentZ/zdat[iz-1])/log(zdat[iz]/zdat[iz-1]); 590 G4double logTkin = G4Log(kinEnergy/CLHEP::Me << 591 513 592 // sample e-e+ energy, pair energy first << 514 G4double pmin = InterpolatedIntegralCrossSection(dt,dz,iz,it,iymin,currentZ); >> 515 G4double pmax = InterpolatedIntegralCrossSection(dt,dz,iz,it,iymax,currentZ); 593 516 594 // select sample table via Z << 517 G4double p = pmin+G4UniformRand()*(pmax - pmin); 595 G4int iz1(0), iz2(0); << 518 596 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 519 // interpolate sampling vector; 597 if(currentZ == ZDATPAIR[iz]) { << 520 G4double p1 = pmin; 598 iz1 = iz2 = iz; << 521 G4double p2 = pmin; 599 break; << 522 for(iy=iymin+1; iy<=iymax; iy++) { 600 } else if(currentZ < ZDATPAIR[iz]) { << 523 p1 = p2; 601 iz2 = iz; << 524 p2 = InterpolatedIntegralCrossSection(dt, dz, iz, it, iy, currentZ); 602 if(iz > 0) { iz1 = iz-1; } << 525 if(p <= p2) break; 603 else { iz1 = iz2; } << 526 } 604 break; << 527 // G4cout << "iy= " << iy << " iymin= " << iymin << " iymax= " 605 } << 528 // << iymax << " Z= " << currentZ << G4endl; 606 } << 529 G4double y = ya[iy-1] + dy*(p - p1)/(p2 - p1); 607 if (0 == iz1) { iz1 = iz2 = NZDATPAIR-1; } << 608 << 609 G4double pairEnergy = 0.0; << 610 G4int count = 0; << 611 //G4cout << "start loop Z1= " << iz1 << " Z2 << 612 do { << 613 ++count; << 614 // sampling using only one random number << 615 G4double rand = G4UniformRand(); << 616 << 617 G4double x = FindScaledEnergy(iz1, rand, l << 618 if(iz1 != iz2) { << 619 G4double x2 = FindScaledEnergy(iz2, rand << 620 G4double lz1= nist->GetLOGZ(ZDATPAIR[iz1 << 621 G4double lz2= nist->GetLOGZ(ZDATPAIR[iz2 << 622 //G4cout << count << ". x= " << x << " << 623 // << " Z1= " << iz1 << " Z2 << 624 x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1); << 625 } << 626 //G4cout << "x= " << x << " coeff= " << c << 627 pairEnergy = kinEnergy*G4Exp(x*coeff); << 628 << 629 // Loop checking, 03-Aug-2015, Vladimir Iv << 630 } while((pairEnergy < minEnergy || pairEnerg << 631 530 632 //G4cout << "## pairEnergy(GeV)= " << pairEn << 531 G4double PairEnergy = minPairEnergy*exp(exp(y) 633 // << " Etot(GeV)= " << totalEnergy/ << 532 *log(maxPairEnergy/minPairEnergy)); >> 533 >> 534 if(PairEnergy < minEnergy) PairEnergy = minEnergy; >> 535 if(PairEnergy > maxEnergy) PairEnergy = maxEnergy; 634 536 635 // sample r=(E+-E-)/pairEnergy ( uniformly << 537 // sample r=(E+-E-)/PairEnergy ( uniformly .....) 636 G4double rmax = 538 G4double rmax = 637 (1.-6.*particleMass*particleMass/(totalEne << 539 (1.-6.*particleMass*particleMass/(totalEnergy*(totalEnergy-PairEnergy))) 638 *std::sqrt(1.-minPairEnergy/pairEnergy); << 540 *sqrt(1.-minPairEnergy/PairEnergy); 639 G4double r = rmax * (-1.+2.*G4UniformRand()) 541 G4double r = rmax * (-1.+2.*G4UniformRand()) ; 640 542 641 // compute energies from pairEnergy,r << 543 // compute energies from PairEnergy,r 642 G4double eEnergy = (1.-r)*pairEnergy*0.5; << 544 G4double ElectronEnergy = (1.-r)*PairEnergy*0.5; 643 G4double pEnergy = pairEnergy - eEnergy; << 545 G4double PositronEnergy = PairEnergy - ElectronEnergy; >> 546 >> 547 // angles of the emitted particles ( Z - axis along the parent particle) >> 548 // (mean theta for the moment) 644 549 645 // Sample angles << 646 G4ThreeVector eDirection, pDirection; << 647 // 550 // 648 GetAngularDistribution()->SamplePairDirectio << 551 // scattered electron (positron) angles. ( Z - axis along the parent photon) 649 << 552 // 650 << 553 // universal distribution suggested by L. Urban 651 // create G4DynamicParticle object for e+e- << 554 // (Geant3 manual (1993) Phys211), 652 eEnergy = std::max(eEnergy - CLHEP::electron << 555 // derived from Tsai distribution (Rev Mod Phys 49,421(1977)) 653 pEnergy = std::max(pEnergy - CLHEP::electron << 556 // G4cout << "Ee= " << ElectronEnergy << " Ep= " << PositronEnergy << G4endl; 654 auto aParticle1 = new G4DynamicParticle(theE << 557 G4double u; 655 auto aParticle2 = new G4DynamicParticle(theP << 558 const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ; 656 // Fill output vector << 559 657 vdp->push_back(aParticle1); << 560 if (9./(9.+d) >G4UniformRand()) u= - log(G4UniformRand()*G4UniformRand())/a1; 658 vdp->push_back(aParticle2); << 561 else u= - log(G4UniformRand()*G4UniformRand())/a2; >> 562 >> 563 G4double TetEl = u*electron_mass_c2/ElectronEnergy; >> 564 G4double TetPo = u*electron_mass_c2/PositronEnergy; >> 565 G4double Phi = twopi * G4UniformRand(); >> 566 G4double dxEl= sin(TetEl)*cos(Phi),dyEl= sin(TetEl)*sin(Phi),dzEl=cos(TetEl); >> 567 G4double dxPo=-sin(TetPo)*cos(Phi),dyPo=-sin(TetPo)*sin(Phi),dzPo=cos(TetPo); >> 568 >> 569 G4ThreeVector ElectDirection (dxEl, dyEl, dzEl); >> 570 ElectDirection.rotateUz(ParticleDirection); >> 571 >> 572 // create G4DynamicParticle object for the particle1 >> 573 G4DynamicParticle* aParticle1= new G4DynamicParticle(theElectron, >> 574 ElectDirection, >> 575 ElectronEnergy - electron_mass_c2); >> 576 >> 577 G4ThreeVector PositDirection (dxPo, dyPo, dzPo); >> 578 PositDirection.rotateUz(ParticleDirection); >> 579 >> 580 // create G4DynamicParticle object for the particle2 >> 581 G4DynamicParticle* aParticle2 = >> 582 new G4DynamicParticle(thePositron, >> 583 PositDirection, >> 584 PositronEnergy - electron_mass_c2); 659 585 660 // primary change 586 // primary change 661 kinEnergy -= pairEnergy; << 587 kineticEnergy -= (ElectronEnergy + PositronEnergy); 662 partDirection *= totalMomentum; << 588 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 663 partDirection -= (aParticle1->GetMomentum() << 664 partDirection = partDirection.unit(); << 665 589 666 // if energy transfer is higher than thresho << 590 vdp->push_back(aParticle1); 667 // then stop tracking the primary particle a << 591 vdp->push_back(aParticle2); 668 if (pairEnergy > SecondaryThreshold()) { << 669 fParticleChange->ProposeTrackStatus(fStopA << 670 fParticleChange->SetProposedKineticEnergy( << 671 auto newdp = new G4DynamicParticle(particl << 672 vdp->push_back(newdp); << 673 } else { // continue tracking the primary e- << 674 fParticleChange->SetProposedMomentumDirect << 675 fParticleChange->SetProposedKineticEnergy( << 676 } << 677 //G4cout << "-- G4MuPairProductionModel::Sam << 678 } 592 } 679 593 680 //....oooOO0OOooo........oooOO0OOooo........oo 594 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 681 595 682 G4double << 596 const G4Element* G4MuPairProductionModel::SelectRandomAtom( 683 G4MuPairProductionModel::FindScaledEnergy(G4in << 597 G4double kinEnergy, G4double dt, G4int it, 684 G4double logTkin, << 598 const G4MaterialCutsCouple* couple, G4double tmin) 685 G4double yymin, G4double yymax) << 686 { 599 { 687 G4double res = yymin; << 600 // select randomly 1 element within the material 688 G4Physics2DVector* pv = fElementData->GetEle << 601 689 if (nullptr != pv) { << 602 const G4Material* material = couple->GetMaterial(); 690 G4double pmin = pv->Value(yymin, logTkin); << 603 size_t nElements = material->GetNumberOfElements(); 691 G4double pmax = pv->Value(yymax, logTkin); << 604 const G4ElementVector* theElementVector = material->GetElementVector(); 692 G4double p0 = pv->Value(0.0, logTkin); << 605 if (nElements == 1) return (*theElementVector)[0]; 693 if(p0 <= 0.0) { DataCorrupted(ZDATPAIR[iz] << 606 694 else { res = pv->FindLinearX((pmin + rand* << 607 if(nElements > nmaxElements) { 695 } else { << 608 nmaxElements = nElements; 696 DataCorrupted(ZDATPAIR[iz], logTkin); << 609 partialSum.resize(nmaxElements); 697 } 610 } 698 return res; << 699 } << 700 611 701 //....oooOO0OOooo........oooOO0OOooo........oo << 612 const G4double* theAtomNumDensityVector=material->GetAtomicNumDensityVector(); 702 613 703 void G4MuPairProductionModel::DataCorrupted(G4 << 614 G4double sum = 0.0; 704 { << 615 G4double dl; 705 G4ExceptionDescription ed; << 706 ed << "G4ElementData is not properly initial << 707 << " Ekin(MeV)= " << G4Exp(logTkin) << 708 << " IsMasterThread= " << IsMaster() << 709 << " Model " << GetName(); << 710 G4Exception("G4MuPairProductionModel::()", " << 711 } << 712 616 713 //....oooOO0OOooo........oooOO0OOooo........oo << 617 size_t i; >> 618 for (i=0; i<nElements; i++) { >> 619 G4double Z = ((*theElementVector)[i])->GetZ(); >> 620 SetCurrentElement(Z); >> 621 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kinEnergy); >> 622 G4double minEnergy = std::max(tmin, minPairEnergy); >> 623 dl = 0.0; >> 624 if(minEnergy < maxPairEnergy) { >> 625 >> 626 G4int iz; >> 627 for(iz=1; iz<nzdat; iz++) {if(Z <= zdat[iz]) break;} >> 628 if(iz == nzdat) iz--; >> 629 G4double dz = log(Z/zdat[iz-1])/log(zdat[iz]/zdat[iz-1]); >> 630 >> 631 G4double sigcut; >> 632 if(minEnergy <= minPairEnergy) >> 633 sigcut = 0.; >> 634 else >> 635 { >> 636 G4double xc = log(minEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy); >> 637 G4int iy = (G4int)((log(xc) - ymin)/dy); >> 638 if(iy < 0) iy = 0; >> 639 if(iy >= nbiny) iy = nbiny-1; >> 640 sigcut = InterpolatedIntegralCrossSection(dt,dz,iz,it,iy, Z); >> 641 } 714 642 715 void G4MuPairProductionModel::StoreTables() co << 643 G4double sigtot = InterpolatedIntegralCrossSection(dt,dz,iz,it,nbiny,Z); 716 { << 644 dl = (sigtot - sigcut)*theAtomNumDensityVector[i]; 717 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 718 G4int Z = ZDATPAIR[iz]; << 719 G4Physics2DVector* pv = fElementData->GetE << 720 if(nullptr == pv) { << 721 DataCorrupted(Z, 1.0); << 722 return; << 723 } 645 } 724 std::ostringstream ss; << 646 // protection 725 ss << "mupair/" << particle->GetParticleNa << 647 if(dl < 0.0) dl = 0.0; 726 std::ofstream outfile(ss.str()); << 648 sum += dl; 727 pv->Store(outfile); << 649 partialSum[i] = sum; 728 } 650 } 729 } << 730 << 731 //....oooOO0OOooo........oooOO0OOooo........oo << 732 651 733 G4bool G4MuPairProductionModel::RetrieveTables << 652 G4double rval = G4UniformRand()*sum; 734 { << 653 for (i=0; i<nElements; i++) { 735 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 654 if(rval<=partialSum[i]) return (*theElementVector)[i]; 736 G4double Z = ZDATPAIR[iz]; << 737 G4Physics2DVector* pv = new G4Physics2DVec << 738 std::ostringstream ss; << 739 ss << G4EmParameters::Instance()->GetDirLE << 740 << particle->GetParticleName() << Z << << 741 std::ifstream infile(ss.str(), std::ios::i << 742 if(!pv->Retrieve(infile)) { << 743 delete pv; << 744 return false; << 745 } << 746 fElementData->InitialiseForElement(iz, pv) << 747 } 655 } 748 return true; << 656 >> 657 return (*theElementVector)[nElements - 1]; >> 658 749 } 659 } 750 660 751 //....oooOO0OOooo........oooOO0OOooo........oo 661 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 662 >> 663 752 664