Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/muons/src/G4MuPairProductionModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/muons/src/G4MuPairProductionModel.cc (Version 11.3.0) and /processes/electromagnetic/muons/src/G4MuPairProductionModel.cc (Version 9.1.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4MuPairProductionModel.cc,v 1.35 2007/10/11 13:52:04 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-01-patch-02 $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4MuPairProductionModel          34 // File name:     G4MuPairProductionModel
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko on base      36 // Author:        Vladimir Ivanchenko on base of Laszlo Urban code
 35 //                                                 37 //
 36 // Creation date: 24.06.2002                       38 // Creation date: 24.06.2002
 37 //                                                 39 //
 38 // Modifications:                                  40 // Modifications:
 39 //                                                 41 //
 40 // 04-12-02 Change G4DynamicParticle construct     42 // 04-12-02 Change G4DynamicParticle constructor in PostStep (V.Ivanchenko)
 41 // 23-12-02 Change interface in order to move      43 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
 42 // 24-01-03 Fix for compounds (V.Ivanchenko)       44 // 24-01-03 Fix for compounds (V.Ivanchenko)
 43 // 27-01-03 Make models region aware (V.Ivanch     45 // 27-01-03 Make models region aware (V.Ivanchenko)
 44 // 13-02-03 Add model (V.Ivanchenko)               46 // 13-02-03 Add model (V.Ivanchenko)
 45 // 06-06-03 Fix in cross section calculation f     47 // 06-06-03 Fix in cross section calculation for high energy (V.Ivanchenko)
 46 // 20-10-03 2*xi in ComputeDDMicroscopicCrossS     48 // 20-10-03 2*xi in ComputeDDMicroscopicCrossSection   (R.Kokoulin)
 47 //          8 integration points in ComputeDMi     49 //          8 integration points in ComputeDMicroscopicCrossSection
 48 // 12-01-04 Take min cut of e- and e+ not its      50 // 12-01-04 Take min cut of e- and e+ not its sum (V.Ivanchenko)
 49 // 10-02-04 Update parameterisation using R.Ko     51 // 10-02-04 Update parameterisation using R.Kokoulin model (V.Ivanchenko)
 50 // 28-04-04 For complex materials repeat calcu     52 // 28-04-04 For complex materials repeat calculation of max energy for each
 51 //          material (V.Ivanchenko)                53 //          material (V.Ivanchenko)
 52 // 01-11-04 Fix bug inside ComputeDMicroscopic     54 // 01-11-04 Fix bug inside ComputeDMicroscopicCrossSection (R.Kokoulin)
 53 // 08-04-05 Major optimisation of internal int     55 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko)
 54 // 03-08-05 Add SetParticle method (V.Ivantche     56 // 03-08-05 Add SetParticle method (V.Ivantchenko)
 55 // 23-10-05 Add protection in sampling of e+e-     57 // 23-10-05 Add protection in sampling of e+e- pair energy needed for 
 56 //          low cuts (V.Ivantchenko)               58 //          low cuts (V.Ivantchenko)
 57 // 13-02-06 Add ComputeCrossSectionPerAtom (mm     59 // 13-02-06 Add ComputeCrossSectionPerAtom (mma)
 58 // 24-04-07 Add protection in SelectRandomAtom     60 // 24-04-07 Add protection in SelectRandomAtom method (V.Ivantchenko)
 59 // 12-05-06 Updated sampling (use cut) in Sele     61 // 12-05-06 Updated sampling (use cut) in SelectRandomAtom (A.Bogdanov) 
 60 // 11-10-07 Add ignoreCut flag (V.Ivanchenko)      62 // 11-10-07 Add ignoreCut flag (V.Ivanchenko) 
 61                                                    63 
 62 //                                                 64 //
 63 // Class Description:                              65 // Class Description:
 64 //                                                 66 //
 65 //                                                 67 //
 66 // -------------------------------------------     68 // -------------------------------------------------------------------
 67 //                                                 69 //
 68 //....oooOO0OOooo........oooOO0OOooo........oo     70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 69 //....oooOO0OOooo........oooOO0OOooo........oo     71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 70                                                    72 
 71 #include "G4MuPairProductionModel.hh"              73 #include "G4MuPairProductionModel.hh"
 72 #include "G4PhysicalConstants.hh"              << 
 73 #include "G4SystemOfUnits.hh"                  << 
 74 #include "G4EmParameters.hh"                   << 
 75 #include "G4Electron.hh"                           74 #include "G4Electron.hh"
 76 #include "G4Positron.hh"                           75 #include "G4Positron.hh"
 77 #include "G4MuonMinus.hh"                          76 #include "G4MuonMinus.hh"
 78 #include "G4MuonPlus.hh"                           77 #include "G4MuonPlus.hh"
 79 #include "Randomize.hh"                            78 #include "Randomize.hh"
 80 #include "G4Material.hh"                           79 #include "G4Material.hh"
 81 #include "G4Element.hh"                            80 #include "G4Element.hh"
 82 #include "G4ElementVector.hh"                      81 #include "G4ElementVector.hh"
 83 #include "G4ElementDataRegistry.hh"            << 
 84 #include "G4ProductionCutsTable.hh"                82 #include "G4ProductionCutsTable.hh"
 85 #include "G4ParticleChangeForLoss.hh"              83 #include "G4ParticleChangeForLoss.hh"
 86 #include "G4ModifiedMephi.hh"                  <<  84 #include "G4ParticleChangeForGamma.hh"
 87 #include "G4Log.hh"                            << 
 88 #include "G4Exp.hh"                            << 
 89 #include "G4AutoLock.hh"                       << 
 90                                                << 
 91 #include <iostream>                            << 
 92 #include <fstream>                             << 
 93                                                    85 
 94 //....oooOO0OOooo........oooOO0OOooo........oo     86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 95                                                    87 
 96 const G4int G4MuPairProductionModel::ZDATPAIR[ <<  88 // static members
 97                                                <<  89 //
 98 const G4double G4MuPairProductionModel::xgi[]  <<  90 G4double G4MuPairProductionModel::zdat[]={1., 4., 13., 29., 92.};
 99     0.0198550717512320, 0.1016667612931865, 0. <<  91 G4double G4MuPairProductionModel::adat[]={1.01, 9.01, 26.98, 63.55, 238.03};
100     0.5917173212478250, 0.7627662049581645, 0. <<  92 G4double G4MuPairProductionModel::tdat[]={1.e3, 1.e4, 1.e5, 1.e6, 1.e7, 1.e8,
101   };                                           <<  93                                           1.e9, 1.e10};
102                                                <<  94 G4double G4MuPairProductionModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083,
103 const G4double G4MuPairProductionModel::wgi[]  <<  95                                           0.5917, 0.7628, 0.8983, 0.9801 };
104     0.0506142681451880, 0.1111905172266870, 0. <<  96 G4double G4MuPairProductionModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813,
105     0.1813418916891810, 0.1568533229389435, 0. <<  97                                           0.1813, 0.1569, 0.1112, 0.0506 };
106   };                                           <<  98  
107                                                << 
108 namespace                                      << 
109 {                                              << 
110   G4Mutex theMuPairMutex = G4MUTEX_INITIALIZER << 
111                                                << 
112   const G4double ak1 = 6.9;                    << 
113   const G4double ak2 = 1.0;                    << 
114 }                                              << 
115                                                << 
116 //....oooOO0OOooo........oooOO0OOooo........oo     99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
117                                                   100 
                                                   >> 101 using namespace std;
                                                   >> 102 
118 G4MuPairProductionModel::G4MuPairProductionMod    103 G4MuPairProductionModel::G4MuPairProductionModel(const G4ParticleDefinition* p,
119                                                   104                                                  const G4String& nam)
120   : G4VEmModel(nam),                              105   : G4VEmModel(nam),
121   factorForCross(CLHEP::fine_structure_const*C << 106   minPairEnergy(4.*electron_mass_c2),
122      CLHEP::classic_electr_radius*CLHEP::class << 107   lowestKinEnergy(1.*GeV),
123      4./(3.*CLHEP::pi)),                       << 108   factorForCross(4.*fine_structure_const*fine_structure_const
124   sqrte(std::sqrt(G4Exp(1.))),                 << 109                    *classic_electr_radius*classic_electr_radius/(3.*pi)),
125   minPairEnergy(4.*CLHEP::electron_mass_c2),   << 110     sqrte(sqrt(exp(1.))),
126   lowestKinEnergy(0.85*CLHEP::GeV)             << 111     currentZ(0),
                                                   >> 112     particle(0),
                                                   >> 113     nzdat(5),
                                                   >> 114     ntdat(8),
                                                   >> 115     nbiny(1000),
                                                   >> 116     nmaxElements(0),
                                                   >> 117     ymin(-5.),
                                                   >> 118     ymax(0.),
                                                   >> 119     dy((ymax-ymin)/nbiny),
                                                   >> 120     ignoreCut(false),
                                                   >> 121     samplingTablesAreFilled(false)
127 {                                                 122 {
128   nist = G4NistManager::Instance();            << 123   SetLowEnergyLimit(minPairEnergy);
129                                                   124 
130   theElectron = G4Electron::Electron();           125   theElectron = G4Electron::Electron();
131   thePositron = G4Positron::Positron();           126   thePositron = G4Positron::Positron();
132                                                   127 
133   if(nullptr != p) {                           << 128   if(p) SetParticle(p);
134     SetParticle(p);                            << 
135     lowestKinEnergy = std::max(lowestKinEnergy << 
136   }                                            << 
137   emin = lowestKinEnergy;                      << 
138   emax = emin*10000.;                          << 
139   SetAngularDistribution(new G4ModifiedMephi() << 
140 }                                                 129 }
141                                                   130 
142 //....oooOO0OOooo........oooOO0OOooo........oo    131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
143                                                   132 
144 G4double G4MuPairProductionModel::MinPrimaryEn << 133 G4MuPairProductionModel::~G4MuPairProductionModel()
145                                                << 134 {}
146                                                << 
147 {                                              << 
148   return std::max(lowestKinEnergy, cut);       << 
149 }                                              << 
150                                                   135 
151 //....oooOO0OOooo........oooOO0OOooo........oo    136 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
152                                                   137 
153 void G4MuPairProductionModel::Initialise(const << 138 G4double G4MuPairProductionModel::MinEnergyCut(const G4ParticleDefinition*,
154                                          const << 139                                                const G4MaterialCutsCouple* )
155 {                                              << 140 {
156   SetParticle(p);                              << 141   return minPairEnergy;
157                                                << 142 }
158   if (nullptr == fParticleChange) {            << 
159     fParticleChange = GetParticleChangeForLoss << 
160                                                << 
161     // define scale of internal table for each << 
162     if (0 == nbine) {                          << 
163       emin = std::max(lowestKinEnergy, LowEner << 
164       emax = std::max(HighEnergyLimit(), emin* << 
165       nbine = std::size_t(nYBinPerDecade*std:: << 
166       if(nbine < 3) { nbine = 3; }             << 
167                                                << 
168       ymin = G4Log(minPairEnergy/emin);        << 
169       dy = -ymin/G4double(nbiny);              << 
170     }                                          << 
171     if (p == particle) {                       << 
172       G4int pdg = std::abs(p->GetPDGEncoding() << 
173       if (pdg == 2212) {                       << 
174   dataName = "pEEPairProd";                    << 
175       } else if (pdg == 321) {                 << 
176   dataName = "kaonEEPairProd";                 << 
177       } else if (pdg == 211) {                 << 
178   dataName = "pionEEPairProd";                 << 
179       } else if (pdg == 11) {                  << 
180   dataName = "eEEPairProd";                    << 
181       } else if (pdg == 13) {                  << 
182         if (GetName() == "muToMuonPairProd") { << 
183           dataName = "muMuMuPairProd";         << 
184   } else {                                     << 
185     dataName = "muEEPairProd";                 << 
186   }                                            << 
187       }                                        << 
188     }                                          << 
189   }                                            << 
190                                                   143 
191   // for low-energy application this process s << 144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
192   if(lowestKinEnergy >= HighEnergyLimit()) { r << 
193                                                   145 
194   if (p == particle) {                         << 146 void G4MuPairProductionModel::SetParticle(const G4ParticleDefinition* p)
195     fElementData =                             << 147 {
196       G4ElementDataRegistry::Instance()->GetEl << 148   if(!particle) {
197     if (nullptr == fElementData) {             << 149     particle = p;
198       G4AutoLock l(&theMuPairMutex);           << 150     particleMass = particle->GetPDGMass();
199       fElementData =                           << 
200   G4ElementDataRegistry::Instance()->GetElemen << 
201       if (nullptr == fElementData) {           << 
202   fElementData = new G4ElementData(NZDATPAIR); << 
203   fElementData->SetName(dataName);             << 
204       }                                        << 
205       G4bool useDataFile = G4EmParameters::Ins << 
206       if (useDataFile)  { useDataFile = Retrie << 
207       if (!useDataFile) { MakeSamplingTables() << 
208       if (fTableToFile) { StoreTables(); }     << 
209       l.unlock();                              << 
210     }                                          << 
211     if (IsMaster()) {                          << 
212       InitialiseElementSelectors(p, cuts);     << 
213     }                                          << 
214   }                                               151   }
215 }                                                 152 }
216                                                   153 
217 //....oooOO0OOooo........oooOO0OOooo........oo << 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
218                                                   155 
219 void G4MuPairProductionModel::InitialiseLocal( << 156 void G4MuPairProductionModel::Initialise(const G4ParticleDefinition* p,
220                                                << 157                                          const G4DataVector&)
221 {                                              << 158 { 
222   if(p == particle && lowestKinEnergy < HighEn << 159   if (!samplingTablesAreFilled) {
223     SetElementSelectors(masterModel->GetElemen << 160     if(p) SetParticle(p);
                                                   >> 161     MakeSamplingTables();
                                                   >> 162   }
                                                   >> 163   if(pParticleChange) {
                                                   >> 164     if(ignoreCut) {
                                                   >> 165       gParticleChange = 
                                                   >> 166   reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
                                                   >> 167       fParticleChange = 0;
                                                   >> 168     } else {
                                                   >> 169       fParticleChange = 
                                                   >> 170   reinterpret_cast<G4ParticleChangeForLoss*>(pParticleChange);
                                                   >> 171       gParticleChange = 0;
                                                   >> 172     }
                                                   >> 173   } else {
                                                   >> 174     fParticleChange = new G4ParticleChangeForLoss();
                                                   >> 175     gParticleChange = 0;
224   }                                               176   }
225 }                                                 177 }
226                                                   178 
227 //....oooOO0OOooo........oooOO0OOooo........oo    179 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
228                                                   180 
229 G4double G4MuPairProductionModel::ComputeDEDXP    181 G4double G4MuPairProductionModel::ComputeDEDXPerVolume(
230                                                << 182                 const G4Material* material,
231                                                   183                                               const G4ParticleDefinition*,
232                                                   184                                                     G4double kineticEnergy,
233                                                   185                                                     G4double cutEnergy)
234 {                                                 186 {
235   G4double dedx = 0.0;                            187   G4double dedx = 0.0;
236   if (cutEnergy <= minPairEnergy || kineticEne << 188   if (cutEnergy <= minPairEnergy || kineticEnergy <= lowestKinEnergy 
237     { return dedx; }                           << 189       || ignoreCut)
                                                   >> 190     return dedx;
238                                                   191 
239   const G4ElementVector* theElementVector = ma    192   const G4ElementVector* theElementVector = material->GetElementVector();
240   const G4double* theAtomicNumDensityVector =     193   const G4double* theAtomicNumDensityVector =
241                                    material->G    194                                    material->GetAtomicNumDensityVector();
242                                                   195 
243   //  loop for elements in the material           196   //  loop for elements in the material
244   for (std::size_t i=0; i<material->GetNumberO << 197   for (size_t i=0; i<material->GetNumberOfElements(); i++) {
245      G4double Z = (*theElementVector)[i]->GetZ    198      G4double Z = (*theElementVector)[i]->GetZ();
246      G4double tmax = MaxSecondaryEnergyForElem << 199      SetCurrentElement(Z);
                                                   >> 200      G4double tmax = MaxSecondaryEnergy(particle, kineticEnergy);
247      G4double loss = ComputMuPairLoss(Z, kinet    201      G4double loss = ComputMuPairLoss(Z, kineticEnergy, cutEnergy, tmax);
248      dedx += loss*theAtomicNumDensityVector[i]    202      dedx += loss*theAtomicNumDensityVector[i];
249   }                                               203   }
250   dedx = std::max(dedx, 0.0);                  << 204   if (dedx < 0.) dedx = 0.;
251   return dedx;                                    205   return dedx;
252 }                                                 206 }
253                                                   207 
254 //....oooOO0OOooo........oooOO0OOooo........oo    208 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
255                                                   209 
256 G4double G4MuPairProductionModel::ComputMuPair    210 G4double G4MuPairProductionModel::ComputMuPairLoss(G4double Z, 
257                                                << 211                G4double tkin,
258                                                << 212                G4double cutEnergy, 
259                                                << 213                G4double tmax)
260 {                                                 214 {
                                                   >> 215   SetCurrentElement(Z);
261   G4double loss = 0.0;                            216   G4double loss = 0.0;
262                                                   217 
263   G4double cut = std::min(cutEnergy, tmax);    << 218   G4double cut  = min(cutEnergy,tmax);
264   if(cut <= minPairEnergy) { return loss; }    << 219   if(cut <= minPairEnergy) return loss;
265                                                   220 
266   // calculate the rectricted loss                221   // calculate the rectricted loss
267   // numerical integration in log(PairEnergy)     222   // numerical integration in log(PairEnergy)
268   G4double aaa = G4Log(minPairEnergy);         << 223   G4double ak1=6.9;
269   G4double bbb = G4Log(cut);                   << 224   G4double ak2=1.0;
270                                                << 225   G4double aaa = log(minPairEnergy);
271   G4int kkk = std::min(std::max(G4lrint((bbb-a << 226   G4double bbb = log(cut);
272   G4double hhh = (bbb-aaa)/kkk;                << 227   G4int    kkk = (G4int)((bbb-aaa)/ak1+ak2);
                                                   >> 228   if (kkk > 8) kkk = 8;
                                                   >> 229   G4double hhh = (bbb-aaa)/(G4double)kkk;
273   G4double x = aaa;                               230   G4double x = aaa;
274                                                   231 
275   for (G4int l=0 ; l<kkk; ++l) {               << 232   for (G4int l=0 ; l<kkk; l++)
276     for (G4int ll=0; ll<NINTPAIR; ++ll) {      << 233   {
277       G4double ep = G4Exp(x+xgi[ll]*hhh);      << 234 
                                                   >> 235     for (G4int ll=0; ll<8; ll++)
                                                   >> 236     {
                                                   >> 237       G4double ep = exp(x+xgi[ll]*hhh);
278       loss += wgi[ll]*ep*ep*ComputeDMicroscopi    238       loss += wgi[ll]*ep*ep*ComputeDMicroscopicCrossSection(tkin, Z, ep);
279     }                                             239     }
280     x += hhh;                                     240     x += hhh;
281   }                                               241   }
282   loss *= hhh;                                    242   loss *= hhh;
283   loss = std::max(loss, 0.0);                  << 243   if (loss < 0.) loss = 0.;
284   return loss;                                    244   return loss;
285 }                                                 245 }
286                                                   246 
287 //....oooOO0OOooo........oooOO0OOooo........oo    247 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
288                                                   248 
289 G4double G4MuPairProductionModel::ComputeMicro    249 G4double G4MuPairProductionModel::ComputeMicroscopicCrossSection(
290                                            G4d    250                                            G4double tkin,
291                                            G4d    251                                            G4double Z,
292                                            G4d << 252                                            G4double cut)
                                                   >> 253 
293 {                                                 254 {
294   G4double cross = 0.;                         << 255   G4double cross = 0. ;
295   G4double tmax = MaxSecondaryEnergyForElement << 256 
296   G4double cut  = std::max(cutEnergy, minPairE << 257   SetCurrentElement(Z);
297   if (tmax <= cut) { return cross; }           << 258   G4double tmax = MaxSecondaryEnergy(particle, tkin);
298                                                << 259 
299   G4double aaa = G4Log(cut);                   << 260   if (tmax <= cut) return cross;
300   G4double bbb = G4Log(tmax);                  << 
301   G4int kkk = std::min(std::max(G4lrint((bbb-a << 
302                                                   261 
303   G4double hhh = (bbb-aaa)/(kkk);              << 262   G4double ak1=6.9 ;
                                                   >> 263   G4double ak2=1.0 ;
                                                   >> 264   G4double aaa = log(cut);
                                                   >> 265   G4double bbb = log(tmax);
                                                   >> 266   G4int kkk = (G4int)((bbb-aaa)/ak1 + ak2);
                                                   >> 267   if(kkk > 8) kkk = 8;
                                                   >> 268   G4double hhh = (bbb-aaa)/float(kkk);
304   G4double x = aaa;                               269   G4double x = aaa;
305                                                   270 
306   for (G4int l=0; l<kkk; ++l) {                << 271   for(G4int l=0; l<kkk; l++)
307     for (G4int i=0; i<NINTPAIR; ++i) {         << 272   {
308       G4double ep = G4Exp(x + xgi[i]*hhh);     << 273     for(G4int i=0; i<8; i++)
                                                   >> 274     {
                                                   >> 275       G4double ep = exp(x + xgi[i]*hhh);
309       cross += ep*wgi[i]*ComputeDMicroscopicCr    276       cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep);
310     }                                             277     }
311     x += hhh;                                     278     x += hhh;
312   }                                               279   }
313                                                   280 
314   cross *= hhh;                                << 281   cross *=hhh;
315   cross = std::max(cross, 0.0);                << 282   if(cross < 0.0) cross = 0.0;
316   return cross;                                   283   return cross;
317 }                                                 284 }
318                                                   285 
319 //....oooOO0OOooo........oooOO0OOooo........oo << 
320                                                << 
321 G4double G4MuPairProductionModel::ComputeDMicr    286 G4double G4MuPairProductionModel::ComputeDMicroscopicCrossSection(
322                                            G4d    287                                            G4double tkin,
323                                            G4d    288                                            G4double Z,
324                                            G4d    289                                            G4double pairEnergy)
325 // Calculates the  differential (D) microscopi << 290  // Calculates the  differential (D) microscopic cross section
326 // using the cross section formula of R.P. Kok << 291  // using the cross section formula of R.P. Kokoulin (18/01/98)
327 // Code modified by R.P. Kokoulin, V.N. Ivanch << 292  // Code modified by R.P. Kokoulin, V.N. Ivanchenko (27/01/04)
328 {                                              << 293 {
329   static const G4double bbbtf= 183. ;          << 294   G4double bbbtf= 183. ;
330   static const G4double bbbh = 202.4 ;         << 295   G4double bbbh = 202.4 ;
331   static const G4double g1tf = 1.95e-5 ;       << 296   G4double g1tf = 1.95e-5 ;
332   static const G4double g2tf = 5.3e-5 ;        << 297   G4double g2tf = 5.3e-5 ;
333   static const G4double g1h  = 4.4e-5 ;        << 298   G4double g1h  = 4.4e-5 ;
334   static const G4double g2h  = 4.8e-5 ;        << 299   G4double g2h  = 4.8e-5 ;
335                                                << 
336   if (pairEnergy <= minPairEnergy)             << 
337     return 0.0;                                << 
338                                                   300 
339   G4double totalEnergy  = tkin + particleMass;    301   G4double totalEnergy  = tkin + particleMass;
340   G4double residEnergy  = totalEnergy - pairEn    302   G4double residEnergy  = totalEnergy - pairEnergy;
                                                   >> 303   G4double massratio    = particleMass/electron_mass_c2 ;
                                                   >> 304   G4double massratio2   = massratio*massratio ;
                                                   >> 305   G4double cross = 0.;
                                                   >> 306 
                                                   >> 307   SetCurrentElement(Z);
341                                                   308 
342   if (residEnergy <= 0.75*sqrte*z13*particleMa << 309   G4double c3 = 0.75*sqrte*particleMass;
343     return 0.0;                                << 310   if (residEnergy <= c3*z13) return cross;
344                                                   311 
345   G4double a0 = 1.0 / (totalEnergy * residEner << 312   G4double c7 = 4.*electron_mass_c2;
346   G4double alf = 4.0 * electron_mass_c2 / pair << 313   G4double c8 = 6.*particleMass*particleMass;
347   G4double rt = std::sqrt(1.0 - alf);          << 314   G4double alf = c7/pairEnergy;
348   G4double delta = 6.0 * particleMass * partic << 315   G4double a3 = 1. - alf;
349   G4double tmnexp = alf/(1.0 + rt) + delta*rt; << 316   if (a3 <= 0.) return cross;
350                                                << 
351   if(tmnexp >= 1.0) { return 0.0; }            << 
352                                                << 
353   G4double tmn = G4Log(tmnexp);                << 
354                                                << 
355   G4double massratio = particleMass/CLHEP::ele << 
356   G4double massratio2 = massratio*massratio;   << 
357   G4double inv_massratio2 = 1.0 / massratio2;  << 
358                                                   317 
359   // zeta calculation                             318   // zeta calculation
360   G4double bbb,g1,g2;                             319   G4double bbb,g1,g2;
361   if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 =    320   if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = g2h ; }
362   else          { bbb = bbbtf; g1 = g1tf; g2 =    321   else          { bbb = bbbtf; g1 = g1tf; g2 = g2tf; }
363                                                   322 
364   G4double zeta = 0.0;                         << 323   G4double zeta = 0;
365   G4double z1exp = totalEnergy / (particleMass << 324   G4double zeta1 = 0.073*log(totalEnergy/(particleMass+g1*z23*totalEnergy))-0.26;
366                                                << 325   if ( zeta1 > 0.)
367   // 35.221047195922 is the root of zeta1(x) = << 
368   // condition below is the same as zeta1 > 0. << 
369   if (z1exp > 35.221047195922)                 << 
370   {                                               326   {
371     G4double z2exp = totalEnergy / (particleMa << 327     G4double zeta2 = 0.058*log(totalEnergy/(particleMass+g2*z13*totalEnergy))-0.14;
372     zeta = (0.073 * G4Log(z1exp) - 0.26) / (0. << 328     zeta  = zeta1/zeta2 ;
373   }                                               329   }
374                                                   330 
375   G4double z2 = Z*(Z+zeta);                       331   G4double z2 = Z*(Z+zeta);
376   G4double screen0 = 2.*electron_mass_c2*sqrte    332   G4double screen0 = 2.*electron_mass_c2*sqrte*bbb/(z13*pairEnergy);
377   G4double beta = 0.5*pairEnergy*pairEnergy*a0 << 333   G4double a0 = totalEnergy*residEnergy;
378   G4double xi0 = 0.5*massratio2*beta;          << 334   G4double a1 = pairEnergy*pairEnergy/a0;
379                                                << 335   G4double bet = 0.5*a1;
380   // Gaussian integration in ln(1-ro) ( with 8 << 336   G4double xi0 = 0.25*massratio2*a1;
381   G4double rho[NINTPAIR];                      << 337   G4double del = c8/a0;
382   G4double rho2[NINTPAIR];                     << 338 
383   G4double xi[NINTPAIR];                       << 339   G4double rta3 = sqrt(a3);
384   G4double xi1[NINTPAIR];                      << 340   G4double tmnexp = alf/(1. + rta3) + del*rta3;
385   G4double xii[NINTPAIR];                      << 341   if(tmnexp >= 1.0) return cross;
386                                                << 
387   for (G4int i = 0; i < NINTPAIR; ++i)         << 
388   {                                            << 
389     rho[i] = G4Exp(tmn*xgi[i]) - 1.0; // rho = << 
390     rho2[i] = rho[i] * rho[i];                 << 
391     xi[i] = xi0*(1.0-rho2[i]);                 << 
392     xi1[i] = 1.0 + xi[i];                      << 
393     xii[i] = 1.0 / xi[i];                      << 
394   }                                            << 
395                                                   342 
396   G4double ye1[NINTPAIR];                      << 343   G4double tmn = log(tmnexp);
397   G4double ym1[NINTPAIR];                      << 344   G4double sum = 0.;
398                                                   345 
399   G4double b40 = 4.0 * beta;                   << 346   // Gaussian integration in ln(1-ro) ( with 8 points)
400   G4double b62 = 6.0 * beta + 2.0;             << 347   for (G4int i=0; i<8; i++)
401                                                << 
402   for (G4int i = 0; i < NINTPAIR; ++i)         << 
403   {                                               348   {
404     G4double yeu = (b40 + 5.0) + (b40 - 1.0) * << 349     G4double a4 = exp(tmn*xgi[i]);     // a4 = (1.-asymmetry)
405     G4double yed = b62*G4Log(3.0 + xii[i]) + ( << 350     G4double a5 = a4*(2.-a4) ;
406                                                << 351     G4double a6 = 1.-a5 ;
407     G4double ymu = b62 * (1.0 + rho2[i]) + 6.0 << 352     G4double a7 = 1.+a6 ;
408     G4double ymd = (b40 + 3.0)*(1.0 + rho2[i]) << 353     G4double a9 = 3.+a6 ;
409       + 2.0 - 3.0 * rho2[i];                   << 354     G4double xi = xi0*a5 ;
410                                                << 355     G4double xii = 1./xi ;
411     ye1[i] = 1.0 + yeu / yed;                  << 356     G4double xi1 = 1.+xi ;
412     ym1[i] = 1.0 + ymu / ymd;                  << 357     G4double screen = screen0*xi1/a5 ;
413   }                                            << 358     G4double yeu = 5.-a6+4.*bet*a7 ;
414                                                << 359     G4double yed = 2.*(1.+3.*bet)*log(3.+xii)-a6-a1*(2.-a6) ;
415   G4double be[NINTPAIR];                       << 360     G4double ye1 = 1.+yeu/yed ;
416   G4double bm[NINTPAIR];                       << 361     G4double ale=log(bbb/z13*sqrt(xi1*ye1)/(1.+screen*ye1)) ;
417                                                << 362     G4double cre = 0.5*log(1.+2.25*z23*xi1*ye1/massratio2) ;
418   for(G4int i = 0; i < NINTPAIR; ++i) {        << 363     G4double be;
419     if(xi[i] <= 1000.0) {                      << 364 
420       be[i] = ((2.0 + rho2[i])*(1.0 + beta) +  << 365     if (xi <= 1.e3) be = ((2.+a6)*(1.+bet)+xi*a9)*log(1.+xii)+(a5-bet)/xi1-a9;
421          xi[i]*(3.0 + rho2[i]))*G4Log(1.0 + xi << 366     else            be = (3.-a6+a1*a7)/(2.*xi);
422   (1.0 - rho2[i] - beta)/xi1[i] - (3.0 + rho2[ << 367 
                                                   >> 368     G4double fe = (ale-cre)*be;
                                                   >> 369     if ( fe < 0.) fe = 0. ;
                                                   >> 370 
                                                   >> 371     G4double ymu = 4.+a6 +3.*bet*a7 ;
                                                   >> 372     G4double ymd = a7*(1.5+a1)*log(3.+xi)+1.-1.5*a6 ;
                                                   >> 373     G4double ym1 = 1.+ymu/ymd ;
                                                   >> 374     G4double alm_crm = log(bbb*massratio/(1.5*z23*(1.+screen*ym1)));
                                                   >> 375     G4double a10,bm;
                                                   >> 376     if ( xi >= 1.e-3)
                                                   >> 377     {
                                                   >> 378       a10 = (1.+a1)*a5 ;
                                                   >> 379       bm  = (a7*(1.+1.5*bet)-a10*xii)*log(xi1)+xi*(a5-bet)/xi1+a10;
423     } else {                                      380     } else {
424       be[i] = 0.5*(3.0 - rho2[i] + 2.0*beta*(1 << 381       bm = (5.-a6+bet*a9)*(xi/2.);
425     }                                             382     }
426                                                   383 
427     if(xi[i] >= 0.001) {                       << 384     G4double fm = alm_crm*bm;
428       G4double a10 = (1.0 + 2.0 * beta) * (1.0 << 385     if ( fm < 0.) fm = 0. ;
429       bm[i] = ((1.0 + rho2[i])*(1.0 + 1.5 * be << 
430                 xi[i] * (1.0 - rho2[i] - beta) << 
431     } else {                                   << 
432       bm[i] = 0.5*(5.0 - rho2[i] + beta * (3.0 << 
433     }                                          << 
434   }                                            << 
435                                                << 
436   G4double sum = 0.0;                          << 
437                                                << 
438   for (G4int i = 0; i < NINTPAIR; ++i) {       << 
439     G4double screen = screen0*xi1[i]/(1.0 - rh << 
440     G4double ale = G4Log(bbb/z13*std::sqrt(xi1 << 
441     G4double cre = 0.5*G4Log(1. + 2.25*z23*xi1 << 
442                                                << 
443     G4double fe = (ale-cre)*be[i];             << 
444     fe = std::max(fe, 0.0);                    << 
445                                                << 
446     G4double alm_crm = G4Log(bbb*massratio/(1. << 
447     G4double fm = std::max(alm_crm*bm[i], 0.0) << 
448                                                   386 
449     sum += wgi[i]*(1.0 + rho[i])*(fe + fm);    << 387     sum += wgi[i]*a4*(fe+fm/massratio2);
450   }                                               388   }
451                                                   389 
452   return -tmn*sum*factorForCross*z2*residEnerg << 390   cross = -tmn*sum*factorForCross*z2*residEnergy/(totalEnergy*pairEnergy);
                                                   >> 391 
                                                   >> 392   return cross;
453 }                                                 393 }
454                                                   394 
455 //....oooOO0OOooo........oooOO0OOooo........oo    395 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
456                                                   396 
457 G4double G4MuPairProductionModel::ComputeCross    397 G4double G4MuPairProductionModel::ComputeCrossSectionPerAtom(
458                                            con    398                                            const G4ParticleDefinition*,
459                                                   399                                                  G4double kineticEnergy,
460                                                << 400              G4double Z, G4double,
461                                                   401                                                  G4double cutEnergy,
462                                                << 402                                                  G4double)
                                                   >> 403 {
                                                   >> 404   G4double cut  = max(minPairEnergy,cutEnergy);
                                                   >> 405   if(ignoreCut) cut = minPairEnergy;
                                                   >> 406   G4double cross = ComputeMicroscopicCrossSection (kineticEnergy, Z, cut);
                                                   >> 407   return cross;
                                                   >> 408 }
                                                   >> 409 
                                                   >> 410 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 411 
                                                   >> 412 G4double G4MuPairProductionModel::CrossSectionPerVolume(
                                                   >> 413                  const G4Material* material,
                                                   >> 414                                                const G4ParticleDefinition*,
                                                   >> 415                                                      G4double kineticEnergy,
                                                   >> 416                                                      G4double cutEnergy,
                                                   >> 417                  G4double maxEnergy)
463 {                                                 418 {
464   G4double cross = 0.0;                           419   G4double cross = 0.0;
465   if (kineticEnergy <= lowestKinEnergy) { retu << 420   if (kineticEnergy <= lowestKinEnergy) return cross;
466                                                   421 
467   G4double maxPairEnergy = MaxSecondaryEnergyF << 422   maxEnergy += particleMass;
468   G4double tmax = std::min(maxEnergy, maxPairE << 423 
469   G4double cut  = std::max(cutEnergy, minPairE << 424   const G4ElementVector* theElementVector = material->GetElementVector();
470   if (cut >= tmax) { return cross; }           << 425   const G4double* theAtomNumDensityVector = material->
471                                                << 426                                                     GetAtomicNumDensityVector();
472   cross = ComputeMicroscopicCrossSection(kinet << 427 
473   if(tmax < kineticEnergy) {                   << 428   for (size_t i=0; i<material->GetNumberOfElements(); i++) {
474     cross -= ComputeMicroscopicCrossSection(ki << 429     G4double Z = (*theElementVector)[i]->GetZ();
                                                   >> 430     SetCurrentElement(Z);
                                                   >> 431     G4double tmax = min(maxEnergy,MaxSecondaryEnergy(particle, kineticEnergy));
                                                   >> 432     G4double cut  = max(minPairEnergy,cutEnergy);
                                                   >> 433     if(ignoreCut) cut = minPairEnergy;
                                                   >> 434     if(cut < tmax) {
                                                   >> 435       G4double cr = ComputeMicroscopicCrossSection(kineticEnergy, Z, cut)
                                                   >> 436                   - ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax);
                                                   >> 437 
                                                   >> 438       cross += theAtomNumDensityVector[i] * cr;
                                                   >> 439     }
475   }                                               440   }
476   return cross;                                   441   return cross;
477 }                                                 442 }
478                                                   443 
479 //....oooOO0OOooo........oooOO0OOooo........oo    444 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
480                                                   445 
481 void G4MuPairProductionModel::MakeSamplingTabl    446 void G4MuPairProductionModel::MakeSamplingTables()
482 {                                                 447 {
483   G4double factore = G4Exp(G4Log(emax/emin)/G4 << 448   for (G4int iz=0; iz<nzdat; iz++)
484                                                << 449   {
485   for (G4int iz=0; iz<NZDATPAIR; ++iz) {       << 450     G4double Z = zdat[iz];
                                                   >> 451     SetCurrentElement(Z);
486                                                   452 
487     G4double Z = ZDATPAIR[iz];                 << 453     for (G4int it=0; it<ntdat; it++)
488     G4Physics2DVector* pv = new G4Physics2DVec << 454     {
489     G4double kinEnergy = emin;                 << 455       G4double kineticEnergy = tdat[it];
490                                                << 456       G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy);
491     for (std::size_t it=0; it<=nbine; ++it) {  << 457 
492                                                << 458       G4double CrossSection = 0.0 ;
493       pv->PutY(it, G4Log(kinEnergy/CLHEP::MeV) << 459 
494       G4double maxPairEnergy = MaxSecondaryEne << 460       G4double y = ymin - 0.5*dy ;
495       /*                                       << 461       G4double yy = ymin - dy ;
496       G4cout << "it= " << it << " E= " << kinE << 462       G4double x = exp(y);
497              << "  " << particle->GetParticleN << 463       G4double fac = exp(dy);
498              << " maxE= " << maxPairEnergy <<  << 464       G4double dx = exp(yy)*(fac - 1.0);
499              << " ymin= " << ymin << G4endl;   << 465 
500       */                                       << 466       G4double c = log(maxPairEnergy/minPairEnergy);
501       G4double coef = G4Log(minPairEnergy/kinE << 467 
502       G4double ymax = G4Log(maxPairEnergy/kinE << 468       for (G4int i=0 ; i<nbiny; i++)
503       G4double fac  = (ymax - ymin)/dy;        << 469       {
504       std::size_t imax   = (std::size_t)fac;   << 470         y += dy ;
505       fac -= (G4double)imax;                   << 471         if(c > 0.0) {
506                                                << 472     x *= fac;
507       G4double xSec = 0.0;                     << 473           dx*= fac;
508       G4double x = ymin;                       << 474           G4double ep = minPairEnergy*exp(c*x) ;
509       /*                                       << 475           CrossSection += ep*dx*ComputeDMicroscopicCrossSection(
510       G4cout << "Z= " << currentZ << " z13= "  << 476                                       kineticEnergy, Z, ep);
511              << " mE= " << maxPairEnergy << "  << 
512              << " dy= " << dy << "  c= " << co << 
513       */                                       << 
514       // start from zero                       << 
515       pv->PutValue(0, it, 0.0);                << 
516       if(0 == it) { pv->PutX(nbiny, 0.0); }    << 
517                                                << 
518       for (std::size_t i=0; i<nbiny; ++i) {    << 
519                                                << 
520         if(0 == it) { pv->PutX(i, x); }        << 
521                                                << 
522         if(i < imax) {                         << 
523           G4double ep = kinEnergy*G4Exp(coef*( << 
524                                                << 
525           // not multiplied by interval, becau << 
526           // will be used only for sampling    << 
527           //G4cout << "i= " << i << " x= " <<  << 
528           //         << " Egamma= " << ep << G << 
529           xSec += ep*ComputeDMicroscopicCrossS << 
530                                                << 
531           // last bin before the kinematic lim << 
532         } else if(i == imax) {                 << 
533           G4double ep = kinEnergy*G4Exp(coef*( << 
534           xSec += ep*fac*ComputeDMicroscopicCr << 
535         }                                         477         }
536         pv->PutValue(i + 1, it, xSec);         << 478         ya[i] = y;
537         x += dy;                               << 479         proba[iz][it][i] = CrossSection;
538       }                                        << 480       }
539       kinEnergy *= factore;                    << 481 
                                                   >> 482       ya[nbiny]=ymax;
                                                   >> 483 
                                                   >> 484       proba[iz][it][nbiny] = CrossSection;
540                                                   485 
541       // to avoid precision lost               << 
542       if(it+1 == nbine) { kinEnergy = emax; }  << 
543     }                                             486     }
544     fElementData->InitialiseForElement(iz, pv) << 
545   }                                               487   }
                                                   >> 488   samplingTablesAreFilled = true;
546 }                                                 489 }
547                                                   490 
548 //....oooOO0OOooo........oooOO0OOooo........oo    491 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
549                                                   492 
550 void G4MuPairProductionModel::SampleSecondarie << 493 void G4MuPairProductionModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 
551                               std::vector<G4Dy << 494             const G4MaterialCutsCouple* couple,
552                               const G4Material << 495             const G4DynamicParticle* aDynamicParticle,
553                               const G4DynamicP << 496             G4double tmin,
554                               G4double tmin,   << 497             G4double tmax)
555                               G4double tmax)   << 
556 {                                                 498 {
557   G4double kinEnergy = aDynamicParticle->GetKi << 499   G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
558   //G4cout << "------- G4MuPairProductionModel << 500   G4double totalEnergy   = kineticEnergy + particleMass ;
559   //         << kinEnergy << "  "              << 501   G4ParticleMomentum ParticleDirection = 
560   //         << aDynamicParticle->GetDefinitio << 502     aDynamicParticle->GetMomentumDirection();
561   G4double totalEnergy   = kinEnergy + particl << 
562   G4double totalMomentum =                     << 
563     std::sqrt(kinEnergy*(kinEnergy + 2.0*parti << 
564                                                   503 
565   G4ThreeVector partDirection = aDynamicPartic << 504   G4int it;
                                                   >> 505   for(it=1; it<ntdat; it++) {if(kineticEnergy <= tdat[it]) break;}
                                                   >> 506   if(it == ntdat) it--;
                                                   >> 507   G4double dt = log(kineticEnergy/tdat[it-1])/log(tdat[it]/tdat[it-1]);
566                                                   508 
567   // select randomly one element constituing t    509   // select randomly one element constituing the material
568   const G4Element* anElement = SelectRandomAto << 510   const G4Element* anElement = SelectRandomAtom(kineticEnergy, dt, it, couple, tmin);
                                                   >> 511   SetCurrentElement(anElement->GetZ());
569                                                   512 
570   // define interval of energy transfer        << 513   // define interval of enegry transfer
571   G4double maxPairEnergy = MaxSecondaryEnergyF << 514   G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy);
572                                                << 515   G4double maxEnergy     = std::min(tmax, maxPairEnergy);
573   G4double maxEnergy = std::min(tmax, maxPairE << 516   G4double minEnergy     = std::max(tmin, minPairEnergy);
574   G4double minEnergy = std::max(tmin, minPairE << 517   if(ignoreCut)minEnergy = minPairEnergy;
575                                                << 518   if(minEnergy >= maxEnergy) return;
576   if (minEnergy >= maxEnergy) { return; }      << 
577   //G4cout << "emin= " << minEnergy << " emax=    519   //G4cout << "emin= " << minEnergy << " emax= " << maxEnergy 
578   // << " minPair= " << minPairEnergy << " max << 520   //   << " minPair= " << minPairEnergy << " maxpair= " << maxPairEnergy 
579   //    << " ymin= " << ymin << " dy= " << dy  << 521   //       << " ymin= " << ymin << " dy= " << dy << G4endl;
580                                                   522 
581   G4double coeff = G4Log(minPairEnergy/kinEner << 523   // select bins
                                                   >> 524   G4int iymin = 0;
                                                   >> 525   G4int iymax = nbiny-1;
                                                   >> 526   if( minEnergy > minPairEnergy)
                                                   >> 527   {
                                                   >> 528     G4double xc = log(minEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy);
                                                   >> 529     iymin = (G4int)((log(xc) - ymin)/dy);
                                                   >> 530     if(iymin >= nbiny) iymin = nbiny-1;
                                                   >> 531     else if(iymin < 0) iymin = 0;
                                                   >> 532     xc = log(maxEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy);
                                                   >> 533     iymax = (G4int)((log(xc) - ymin)/dy) + 1;
                                                   >> 534     if(iymax >= nbiny) iymax = nbiny-1;
                                                   >> 535     else if(iymax < 0) iymax = 0;
                                                   >> 536   }
582                                                   537 
583   // compute limits                            << 538   // sample e-e+ energy, pair energy first
584   G4double yymin = G4Log(minEnergy/kinEnergy)/ << 539   G4int iz, iy;
585   G4double yymax = G4Log(maxEnergy/kinEnergy)/ << 
586                                                << 
587   //G4cout << "yymin= " << yymin << "  yymax=  << 
588                                                   540 
589   // units should not be used, bacause table w << 541   for(iz=1; iz<nzdat; iz++) {if(currentZ <= zdat[iz]) break;}
590   G4double logTkin = G4Log(kinEnergy/CLHEP::Me << 542   if(iz == nzdat) iz--;
591                                                   543 
592   // sample e-e+ energy, pair energy first     << 544   G4double dz = log(currentZ/zdat[iz-1])/log(zdat[iz]/zdat[iz-1]);
593                                                   545 
594   // select sample table via Z                 << 546   G4double pmin = InterpolatedIntegralCrossSection(dt,dz,iz,it,iymin,currentZ);
595   G4int iz1(0), iz2(0);                        << 547   G4double pmax = InterpolatedIntegralCrossSection(dt,dz,iz,it,iymax,currentZ);
596   for (G4int iz=0; iz<NZDATPAIR; ++iz) {       << 548 
597     if(currentZ == ZDATPAIR[iz]) {             << 549   G4double p = pmin+G4UniformRand()*(pmax - pmin);
598       iz1 = iz2 = iz;                          << 550 
599       break;                                   << 551   // interpolate sampling vector;
600     } else if(currentZ < ZDATPAIR[iz]) {       << 552   G4double p1 = pmin;
601       iz2 = iz;                                << 553   G4double p2 = pmin;
602       if(iz > 0) { iz1 = iz-1; }               << 554   for(iy=iymin+1; iy<=iymax; iy++) {
603       else { iz1 = iz2; }                      << 555     p1 = p2;
604       break;                                   << 556     p2 = InterpolatedIntegralCrossSection(dt, dz, iz, it, iy, currentZ);
605     }                                          << 557     if(p <= p2) break;
606   }                                            << 558   }
607   if (0 == iz1) { iz1 = iz2 = NZDATPAIR-1; }   << 559   // G4cout << "iy= " << iy << " iymin= " << iymin << " iymax= " 
608                                                << 560   //        << iymax << " Z= " << currentZ << G4endl;
609   G4double pairEnergy = 0.0;                   << 561   G4double y = ya[iy-1] + dy*(p - p1)/(p2 - p1);
610   G4int count = 0;                             << 
611   //G4cout << "start loop Z1= " << iz1 << " Z2 << 
612   do {                                         << 
613     ++count;                                   << 
614     // sampling using only one random number   << 
615     G4double rand = G4UniformRand();           << 
616                                                << 
617     G4double x = FindScaledEnergy(iz1, rand, l << 
618     if(iz1 != iz2) {                           << 
619       G4double x2 = FindScaledEnergy(iz2, rand << 
620       G4double lz1= nist->GetLOGZ(ZDATPAIR[iz1 << 
621       G4double lz2= nist->GetLOGZ(ZDATPAIR[iz2 << 
622       //G4cout << count << ".  x= " << x << "  << 
623       //             << " Z1= " << iz1 << " Z2 << 
624       x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1);   << 
625     }                                          << 
626     //G4cout << "x= " << x << "  coeff= " << c << 
627     pairEnergy = kinEnergy*G4Exp(x*coeff);     << 
628                                                << 
629     // Loop checking, 03-Aug-2015, Vladimir Iv << 
630   } while((pairEnergy < minEnergy || pairEnerg << 
631                                                   562 
632   //G4cout << "## pairEnergy(GeV)= " << pairEn << 563   G4double PairEnergy = minPairEnergy*exp(exp(y)
633   //         << " Etot(GeV)= " << totalEnergy/ << 564                        *log(maxPairEnergy/minPairEnergy));
                                                   >> 565            
                                                   >> 566   if(PairEnergy < minEnergy) PairEnergy = minEnergy;
                                                   >> 567   if(PairEnergy > maxEnergy) PairEnergy = maxEnergy;
634                                                   568 
635   // sample r=(E+-E-)/pairEnergy  ( uniformly  << 569   // sample r=(E+-E-)/PairEnergy  ( uniformly .....)
636   G4double rmax =                                 570   G4double rmax =
637     (1.-6.*particleMass*particleMass/(totalEne << 571     (1.-6.*particleMass*particleMass/(totalEnergy*(totalEnergy-PairEnergy)))
638     *std::sqrt(1.-minPairEnergy/pairEnergy);   << 572                                        *sqrt(1.-minPairEnergy/PairEnergy);
639   G4double r = rmax * (-1.+2.*G4UniformRand())    573   G4double r = rmax * (-1.+2.*G4UniformRand()) ;
640                                                   574 
641   // compute energies from pairEnergy,r        << 575   // compute energies from PairEnergy,r
642   G4double eEnergy = (1.-r)*pairEnergy*0.5;    << 576   G4double ElectronEnergy = (1.-r)*PairEnergy*0.5;
643   G4double pEnergy = pairEnergy - eEnergy;     << 577   G4double PositronEnergy = PairEnergy - ElectronEnergy;
                                                   >> 578 
                                                   >> 579   //  angles of the emitted particles ( Z - axis along the parent particle)
                                                   >> 580   //      (mean theta for the moment)
644                                                   581 
645   // Sample angles                             << 
646   G4ThreeVector eDirection, pDirection;        << 
647   //                                              582   //
648   GetAngularDistribution()->SamplePairDirectio << 583   // scattered electron (positron) angles. ( Z - axis along the parent photon)
649                                                << 584   //
650                                                << 585   //  universal distribution suggested by L. Urban
651   // create G4DynamicParticle object for e+e-  << 586   // (Geant3 manual (1993) Phys211),
652   eEnergy = std::max(eEnergy - CLHEP::electron << 587   //  derived from Tsai distribution (Rev Mod Phys 49,421(1977))
653   pEnergy = std::max(pEnergy - CLHEP::electron << 588   //  G4cout << "Ee= " << ElectronEnergy << " Ep= " << PositronEnergy << G4endl;
654   auto aParticle1 = new G4DynamicParticle(theE << 589   G4double u;
655   auto aParticle2 = new G4DynamicParticle(theP << 590   const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ;
656   // Fill output vector                        << 591 
657   vdp->push_back(aParticle1);                  << 592   if (9./(9.+d) >G4UniformRand()) u= - log(G4UniformRand()*G4UniformRand())/a1;
658   vdp->push_back(aParticle2);                  << 593   else                            u= - log(G4UniformRand()*G4UniformRand())/a2;
                                                   >> 594 
                                                   >> 595   G4double TetEl = u*electron_mass_c2/ElectronEnergy;
                                                   >> 596   G4double TetPo = u*electron_mass_c2/PositronEnergy;
                                                   >> 597   G4double Phi  = twopi * G4UniformRand();
                                                   >> 598   G4double dxEl= sin(TetEl)*cos(Phi),dyEl= sin(TetEl)*sin(Phi),dzEl=cos(TetEl);
                                                   >> 599   G4double dxPo=-sin(TetPo)*cos(Phi),dyPo=-sin(TetPo)*sin(Phi),dzPo=cos(TetPo);
                                                   >> 600 
                                                   >> 601   G4ThreeVector ElectDirection (dxEl, dyEl, dzEl);
                                                   >> 602   ElectDirection.rotateUz(ParticleDirection);
                                                   >> 603 
                                                   >> 604   // create G4DynamicParticle object for the particle1
                                                   >> 605   G4DynamicParticle* aParticle1= new G4DynamicParticle(theElectron,
                                                   >> 606                                                        ElectDirection,
                                                   >> 607                      ElectronEnergy - electron_mass_c2);
                                                   >> 608 
                                                   >> 609   G4ThreeVector PositDirection (dxPo, dyPo, dzPo);
                                                   >> 610   PositDirection.rotateUz(ParticleDirection);
                                                   >> 611 
                                                   >> 612   // create G4DynamicParticle object for the particle2
                                                   >> 613   G4DynamicParticle* aParticle2 = 
                                                   >> 614     new G4DynamicParticle(thePositron,
                                                   >> 615         PositDirection,
                                                   >> 616         PositronEnergy - electron_mass_c2);
659                                                   617 
660   // primary change                               618   // primary change
661   kinEnergy -= pairEnergy;                     << 619   kineticEnergy -= (ElectronEnergy + PositronEnergy);
662   partDirection *= totalMomentum;              << 620   if(fParticleChange)
663   partDirection -= (aParticle1->GetMomentum()  << 621     fParticleChange->SetProposedKineticEnergy(kineticEnergy);
664   partDirection = partDirection.unit();        << 622   else 
665                                                << 623     gParticleChange->SetProposedKineticEnergy(kineticEnergy);
666   // if energy transfer is higher than thresho << 
667   // then stop tracking the primary particle a << 
668   if (pairEnergy > SecondaryThreshold()) {     << 
669     fParticleChange->ProposeTrackStatus(fStopA << 
670     fParticleChange->SetProposedKineticEnergy( << 
671     auto newdp = new G4DynamicParticle(particl << 
672     vdp->push_back(newdp);                     << 
673   } else { // continue tracking the primary e- << 
674     fParticleChange->SetProposedMomentumDirect << 
675     fParticleChange->SetProposedKineticEnergy( << 
676   }                                            << 
677   //G4cout << "-- G4MuPairProductionModel::Sam << 
678 }                                              << 
679                                                << 
680 //....oooOO0OOooo........oooOO0OOooo........oo << 
681                                                   624 
682 G4double                                       << 625   vdp->push_back(aParticle1);
683 G4MuPairProductionModel::FindScaledEnergy(G4in << 626   vdp->push_back(aParticle2);
684             G4double logTkin,                  << 
685             G4double yymin, G4double yymax)    << 
686 {                                              << 
687   G4double res = yymin;                        << 
688   G4Physics2DVector* pv = fElementData->GetEle << 
689   if (nullptr != pv) {                         << 
690     G4double pmin = pv->Value(yymin, logTkin); << 
691     G4double pmax = pv->Value(yymax, logTkin); << 
692     G4double p0   = pv->Value(0.0, logTkin);   << 
693     if(p0 <= 0.0) { DataCorrupted(ZDATPAIR[iz] << 
694     else { res = pv->FindLinearX((pmin + rand* << 
695   } else {                                     << 
696     DataCorrupted(ZDATPAIR[iz], logTkin);      << 
697   }                                            << 
698   return res;                                  << 
699 }                                                 627 }
700                                                   628 
701 //....oooOO0OOooo........oooOO0OOooo........oo    629 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
702                                                   630 
703 void G4MuPairProductionModel::DataCorrupted(G4 << 631 const G4Element* G4MuPairProductionModel::SelectRandomAtom(
                                                   >> 632                  G4double kinEnergy, G4double dt, G4int it,
                                                   >> 633            const G4MaterialCutsCouple* couple, G4double tmin)
704 {                                                 634 {
705   G4ExceptionDescription ed;                   << 635   // select randomly 1 element within the material
706   ed << "G4ElementData is not properly initial << 
707      << " Ekin(MeV)= " << G4Exp(logTkin)       << 
708      << " IsMasterThread= " << IsMaster()      << 
709      << " Model " << GetName();                << 
710   G4Exception("G4MuPairProductionModel::()", " << 
711 }                                              << 
712                                                   636 
713 //....oooOO0OOooo........oooOO0OOooo........oo << 637   const G4Material* material = couple->GetMaterial();
                                                   >> 638   size_t nElements = material->GetNumberOfElements();
                                                   >> 639   const G4ElementVector* theElementVector = material->GetElementVector();
                                                   >> 640   if (nElements == 1) return (*theElementVector)[0];
714                                                   641 
715 void G4MuPairProductionModel::StoreTables() co << 642   if(nElements > nmaxElements) {
716 {                                              << 643     nmaxElements = nElements;
717   for (G4int iz=0; iz<NZDATPAIR; ++iz) {       << 644     partialSum.resize(nmaxElements);
718     G4int Z = ZDATPAIR[iz];                    << 
719     G4Physics2DVector* pv = fElementData->GetE << 
720     if(nullptr == pv) {                        << 
721       DataCorrupted(Z, 1.0);                   << 
722       return;                                  << 
723     }                                          << 
724     std::ostringstream ss;                     << 
725     ss << "mupair/" << particle->GetParticleNa << 
726     std::ofstream outfile(ss.str());           << 
727     pv->Store(outfile);                        << 
728   }                                               645   }
729 }                                              << 
730                                                   646 
731 //....oooOO0OOooo........oooOO0OOooo........oo << 647   const G4double* theAtomNumDensityVector=material->GetAtomicNumDensityVector();
732                                                   648 
733 G4bool G4MuPairProductionModel::RetrieveTables << 649   G4double sum = 0.0;
734 {                                              << 650 
735   for (G4int iz=0; iz<NZDATPAIR; ++iz) {       << 651   size_t i;
736     G4double Z = ZDATPAIR[iz];                 << 652   for (i=0; i<nElements; i++) {
737     G4Physics2DVector* pv = new G4Physics2DVec << 653     G4double Z = ((*theElementVector)[i])->GetZ();
738     std::ostringstream ss;                     << 654     SetCurrentElement(Z);
739     ss << G4EmParameters::Instance()->GetDirLE << 655     G4double maxPairEnergy = MaxSecondaryEnergy(particle,kinEnergy);
740        << particle->GetParticleName() << Z <<  << 656     G4double minEnergy     = std::max(tmin, minPairEnergy);
741     std::ifstream infile(ss.str(), std::ios::i << 657     if(ignoreCut)minEnergy = minPairEnergy;
742     if(!pv->Retrieve(infile)) {                << 658 
743       delete pv;                               << 659     G4int iz;
744       return false;                            << 660     for(iz=1; iz<nzdat; iz++) {if(Z <= zdat[iz]) break;}
745     }                                          << 661     if(iz == nzdat) iz--;
746     fElementData->InitialiseForElement(iz, pv) << 662     G4double dz = log(Z/zdat[iz-1])/log(zdat[iz]/zdat[iz-1]);
                                                   >> 663 
                                                   >> 664     G4double sigcut;
                                                   >> 665     if(minEnergy <= minPairEnergy)
                                                   >> 666       sigcut = 0.;
                                                   >> 667     else
                                                   >> 668     {
                                                   >> 669       G4double xc = log(minEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy);
                                                   >> 670       G4int iy = (G4int)((log(xc) - ymin)/dy);
                                                   >> 671       if(iy < 0) iy = 0;
                                                   >> 672       if(iy >= nbiny) iy = nbiny-1;
                                                   >> 673       sigcut = InterpolatedIntegralCrossSection(dt,dz,iz,it,iy,   Z);
                                                   >> 674     }
                                                   >> 675 
                                                   >> 676     G4double sigtot = InterpolatedIntegralCrossSection(dt,dz,iz,it,nbiny,Z);
                                                   >> 677     G4double dl = (sigtot - sigcut)*theAtomNumDensityVector[i];
                                                   >> 678 
                                                   >> 679     // protection
                                                   >> 680     if(dl < 0.0) dl = 0.0;
                                                   >> 681     sum += dl;
                                                   >> 682     partialSum[i] = sum;
                                                   >> 683   }
                                                   >> 684 
                                                   >> 685   G4double rval = G4UniformRand()*sum;
                                                   >> 686   for (i=0; i<nElements; i++) {
                                                   >> 687     if(rval<=partialSum[i]) return (*theElementVector)[i];
747   }                                               688   }
748   return true;                                 << 689 
                                                   >> 690   return (*theElementVector)[nElements - 1];
                                                   >> 691 
749 }                                                 692 }
750                                                   693 
751 //....oooOO0OOooo........oooOO0OOooo........oo    694 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 695 
                                                   >> 696 
752                                                   697