Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4MuPairProductionModel.cc,v 1.21 2004/12/02 08:20:38 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-07-00-patch-01 $ 26 // 25 // 27 // ------------------------------------------- 26 // ------------------------------------------------------------------- 28 // 27 // 29 // GEANT4 Class file 28 // GEANT4 Class file 30 // 29 // 31 // 30 // 32 // File name: G4MuPairProductionModel 31 // File name: G4MuPairProductionModel 33 // 32 // 34 // Author: Vladimir Ivanchenko on base 33 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 34 // 36 // Creation date: 24.06.2002 35 // Creation date: 24.06.2002 37 // 36 // 38 // Modifications: 37 // Modifications: 39 // 38 // 40 // 04-12-02 Change G4DynamicParticle construct 39 // 04-12-02 Change G4DynamicParticle constructor in PostStep (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 40 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 24-01-03 Fix for compounds (V.Ivanchenko) 41 // 24-01-03 Fix for compounds (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanch 42 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add model (V.Ivanchenko) 43 // 13-02-03 Add model (V.Ivanchenko) 45 // 06-06-03 Fix in cross section calculation f 44 // 06-06-03 Fix in cross section calculation for high energy (V.Ivanchenko) 46 // 20-10-03 2*xi in ComputeDDMicroscopicCrossS 45 // 20-10-03 2*xi in ComputeDDMicroscopicCrossSection (R.Kokoulin) 47 // 8 integration points in ComputeDMi 46 // 8 integration points in ComputeDMicroscopicCrossSection 48 // 12-01-04 Take min cut of e- and e+ not its 47 // 12-01-04 Take min cut of e- and e+ not its sum (V.Ivanchenko) 49 // 10-02-04 Update parameterisation using R.Ko 48 // 10-02-04 Update parameterisation using R.Kokoulin model (V.Ivanchenko) 50 // 28-04-04 For complex materials repeat calcu 49 // 28-04-04 For complex materials repeat calculation of max energy for each 51 // material (V.Ivanchenko) 50 // material (V.Ivanchenko) 52 // 01-11-04 Fix bug inside ComputeDMicroscopic << 51 // 01-11-04 Fix bug in expression inside ComputeDMicroscopicCrossSection (R.Kokoulin) 53 // 08-04-05 Major optimisation of internal int << 54 // 03-08-05 Add SetParticle method (V.Ivantche << 55 // 23-10-05 Add protection in sampling of e+e- << 56 // low cuts (V.Ivantchenko) << 57 // 13-02-06 Add ComputeCrossSectionPerAtom (mm << 58 // 24-04-07 Add protection in SelectRandomAtom << 59 // 12-05-06 Updated sampling (use cut) in Sele << 60 // 11-10-07 Add ignoreCut flag (V.Ivanchenko) << 61 52 62 // 53 // 63 // Class Description: 54 // Class Description: 64 // 55 // 65 // 56 // 66 // ------------------------------------------- 57 // ------------------------------------------------------------------- 67 // 58 // 68 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 69 //....oooOO0OOooo........oooOO0OOooo........oo 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 70 61 71 #include "G4MuPairProductionModel.hh" 62 #include "G4MuPairProductionModel.hh" 72 #include "G4PhysicalConstants.hh" << 73 #include "G4SystemOfUnits.hh" << 74 #include "G4EmParameters.hh" << 75 #include "G4Electron.hh" 63 #include "G4Electron.hh" 76 #include "G4Positron.hh" 64 #include "G4Positron.hh" 77 #include "G4MuonMinus.hh" 65 #include "G4MuonMinus.hh" 78 #include "G4MuonPlus.hh" 66 #include "G4MuonPlus.hh" 79 #include "Randomize.hh" 67 #include "Randomize.hh" 80 #include "G4Material.hh" 68 #include "G4Material.hh" 81 #include "G4Element.hh" 69 #include "G4Element.hh" 82 #include "G4ElementVector.hh" 70 #include "G4ElementVector.hh" 83 #include "G4ElementDataRegistry.hh" << 84 #include "G4ProductionCutsTable.hh" 71 #include "G4ProductionCutsTable.hh" 85 #include "G4ParticleChangeForLoss.hh" << 86 #include "G4ModifiedMephi.hh" << 87 #include "G4Log.hh" << 88 #include "G4Exp.hh" << 89 #include "G4AutoLock.hh" << 90 << 91 #include <iostream> << 92 #include <fstream> << 93 72 94 //....oooOO0OOooo........oooOO0OOooo........oo 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 95 74 96 const G4int G4MuPairProductionModel::ZDATPAIR[ << 75 // static members >> 76 // >> 77 G4double G4MuPairProductionModel::zdat[]={1.,4.,13.,29.,92.}; >> 78 G4double G4MuPairProductionModel::adat[]={1.01,9.01,26.98,63.55,238.03}; >> 79 G4double G4MuPairProductionModel::tdat[]={1.e3,1.e4,1.e5,1.e6,1.e7,1.e8,1.e9,1.e10}; >> 80 G4double G4MuPairProductionModel::xgi[]={ 0.0199,0.1017,0.2372,0.4083,0.5917,0.7628,0.8983,0.9801 }; >> 81 G4double G4MuPairProductionModel::wgi[]={ 0.0506,0.1112,0.1569,0.1813,0.1813,0.1569,0.1112,0.0506 }; >> 82 >> 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 97 84 98 const G4double G4MuPairProductionModel::xgi[] << 85 using namespace std; 99 0.0198550717512320, 0.1016667612931865, 0. << 100 0.5917173212478250, 0.7627662049581645, 0. << 101 }; << 102 86 103 const G4double G4MuPairProductionModel::wgi[] << 87 G4MuPairProductionModel::G4MuPairProductionModel(const G4ParticleDefinition*, 104 0.0506142681451880, 0.1111905172266870, 0. << 88 const G4String& nam) 105 0.1813418916891810, 0.1568533229389435, 0. << 89 : G4VEmModel(nam), 106 }; << 90 minPairEnergy(4.*electron_mass_c2), >> 91 highKinEnergy(1000000.*TeV), >> 92 lowKinEnergy(minPairEnergy), >> 93 lowestKinEnergy(1.*GeV), >> 94 factorForCross(4.*fine_structure_const*fine_structure_const >> 95 *classic_electr_radius*classic_electr_radius/(3.*pi)), >> 96 sqrte(sqrt(exp(1.))), >> 97 particleMass(G4MuonPlus::MuonPlus()->GetPDGMass()), >> 98 currentZ(0), >> 99 particle(G4MuonPlus::MuonPlus()), >> 100 nzdat(5), >> 101 ntdat(8), >> 102 nbiny(1000), >> 103 nmaxElements(0), >> 104 ymin(-5.), >> 105 ymax(0.), >> 106 dy((ymax-ymin)/nbiny), >> 107 samplingTablesAreFilled(false) >> 108 {} 107 109 108 namespace << 110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 109 { << 110 G4Mutex theMuPairMutex = G4MUTEX_INITIALIZER << 111 111 112 const G4double ak1 = 6.9; << 112 G4MuPairProductionModel::~G4MuPairProductionModel() 113 const G4double ak2 = 1.0; << 113 {} 114 } << 115 114 116 //....oooOO0OOooo........oooOO0OOooo........oo 115 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 117 116 118 G4MuPairProductionModel::G4MuPairProductionMod << 117 G4double G4MuPairProductionModel::HighEnergyLimit(const G4ParticleDefinition*) 119 << 120 : G4VEmModel(nam), << 121 factorForCross(CLHEP::fine_structure_const*C << 122 CLHEP::classic_electr_radius*CLHEP::class << 123 4./(3.*CLHEP::pi)), << 124 sqrte(std::sqrt(G4Exp(1.))), << 125 minPairEnergy(4.*CLHEP::electron_mass_c2), << 126 lowestKinEnergy(0.85*CLHEP::GeV) << 127 { 118 { 128 nist = G4NistManager::Instance(); << 119 return highKinEnergy; 129 << 130 theElectron = G4Electron::Electron(); << 131 thePositron = G4Positron::Positron(); << 132 << 133 if(nullptr != p) { << 134 SetParticle(p); << 135 lowestKinEnergy = std::max(lowestKinEnergy << 136 } << 137 emin = lowestKinEnergy; << 138 emax = emin*10000.; << 139 SetAngularDistribution(new G4ModifiedMephi() << 140 } 120 } 141 121 142 //....oooOO0OOooo........oooOO0OOooo........oo 122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 143 123 144 G4double G4MuPairProductionModel::MinPrimaryEn << 124 G4double G4MuPairProductionModel::LowEnergyLimit(const G4ParticleDefinition*) 145 << 146 << 147 { 125 { 148 return std::max(lowestKinEnergy, cut); << 126 return lowKinEnergy; 149 } 127 } 150 128 151 //....oooOO0OOooo........oooOO0OOooo........oo 129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 152 130 153 void G4MuPairProductionModel::Initialise(const << 131 G4double G4MuPairProductionModel::MinEnergyCut(const G4ParticleDefinition*, 154 const << 132 const G4MaterialCutsCouple* ) 155 { << 133 { 156 SetParticle(p); << 134 return minPairEnergy; 157 << 135 } 158 if (nullptr == fParticleChange) { << 159 fParticleChange = GetParticleChangeForLoss << 160 << 161 // define scale of internal table for each << 162 if (0 == nbine) { << 163 emin = std::max(lowestKinEnergy, LowEner << 164 emax = std::max(HighEnergyLimit(), emin* << 165 nbine = std::size_t(nYBinPerDecade*std:: << 166 if(nbine < 3) { nbine = 3; } << 167 << 168 ymin = G4Log(minPairEnergy/emin); << 169 dy = -ymin/G4double(nbiny); << 170 } << 171 if (p == particle) { << 172 G4int pdg = std::abs(p->GetPDGEncoding() << 173 if (pdg == 2212) { << 174 dataName = "pEEPairProd"; << 175 } else if (pdg == 321) { << 176 dataName = "kaonEEPairProd"; << 177 } else if (pdg == 211) { << 178 dataName = "pionEEPairProd"; << 179 } else if (pdg == 11) { << 180 dataName = "eEEPairProd"; << 181 } else if (pdg == 13) { << 182 if (GetName() == "muToMuonPairProd") { << 183 dataName = "muMuMuPairProd"; << 184 } else { << 185 dataName = "muEEPairProd"; << 186 } << 187 } << 188 } << 189 } << 190 136 191 // for low-energy application this process s << 137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 192 if(lowestKinEnergy >= HighEnergyLimit()) { r << 193 138 194 if (p == particle) { << 139 G4bool G4MuPairProductionModel::IsInCharge(const G4ParticleDefinition* p) 195 fElementData = << 140 { 196 G4ElementDataRegistry::Instance()->GetEl << 141 return (p == G4MuonMinus::MuonMinus() || p == G4MuonPlus::MuonPlus()); 197 if (nullptr == fElementData) { << 198 G4AutoLock l(&theMuPairMutex); << 199 fElementData = << 200 G4ElementDataRegistry::Instance()->GetElemen << 201 if (nullptr == fElementData) { << 202 fElementData = new G4ElementData(NZDATPAIR); << 203 fElementData->SetName(dataName); << 204 } << 205 G4bool useDataFile = G4EmParameters::Ins << 206 if (useDataFile) { useDataFile = Retrie << 207 if (!useDataFile) { MakeSamplingTables() << 208 if (fTableToFile) { StoreTables(); } << 209 l.unlock(); << 210 } << 211 if (IsMaster()) { << 212 InitialiseElementSelectors(p, cuts); << 213 } << 214 } << 215 } 142 } 216 143 217 //....oooOO0OOooo........oooOO0OOooo........oo << 144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 218 145 219 void G4MuPairProductionModel::InitialiseLocal( << 146 void G4MuPairProductionModel::Initialise(const G4ParticleDefinition*, 220 << 147 const G4DataVector&) 221 { << 148 { 222 if(p == particle && lowestKinEnergy < HighEn << 149 if (!samplingTablesAreFilled) MakeSamplingTables(); 223 SetElementSelectors(masterModel->GetElemen << 224 } << 225 } 150 } 226 151 227 //....oooOO0OOooo........oooOO0OOooo........oo 152 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 228 153 229 G4double G4MuPairProductionModel::ComputeDEDXP << 154 G4double G4MuPairProductionModel::ComputeDEDX(const G4MaterialCutsCouple* couple, 230 << 231 155 const G4ParticleDefinition*, 232 156 G4double kineticEnergy, 233 157 G4double cutEnergy) 234 { 158 { 235 G4double dedx = 0.0; 159 G4double dedx = 0.0; 236 if (cutEnergy <= minPairEnergy || kineticEne << 160 if (cutEnergy <= minPairEnergy || kineticEnergy <= lowestKinEnergy) return dedx; 237 { return dedx; } << 238 161 >> 162 const G4Material* material = couple->GetMaterial(); 239 const G4ElementVector* theElementVector = ma 163 const G4ElementVector* theElementVector = material->GetElementVector(); 240 const G4double* theAtomicNumDensityVector = 164 const G4double* theAtomicNumDensityVector = 241 material->G 165 material->GetAtomicNumDensityVector(); 242 166 243 // loop for elements in the material 167 // loop for elements in the material 244 for (std::size_t i=0; i<material->GetNumberO << 168 for (size_t i=0; i<material->GetNumberOfElements(); i++) { 245 G4double Z = (*theElementVector)[i]->GetZ 169 G4double Z = (*theElementVector)[i]->GetZ(); 246 G4double tmax = MaxSecondaryEnergyForElem << 170 SetCurrentElement(Z); 247 G4double loss = ComputMuPairLoss(Z, kinet << 171 G4double tmax = MaxSecondaryEnergy(particle, kineticEnergy); >> 172 G4double cut = min(cutEnergy,tmax); >> 173 G4double loss = ComputMuPairLoss(Z, kineticEnergy, cut, tmax); 248 dedx += loss*theAtomicNumDensityVector[i] 174 dedx += loss*theAtomicNumDensityVector[i]; 249 } 175 } 250 dedx = std::max(dedx, 0.0); << 176 if (dedx < 0.) dedx = 0.; 251 return dedx; 177 return dedx; 252 } 178 } 253 179 254 //....oooOO0OOooo........oooOO0OOooo........oo 180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 255 181 256 G4double G4MuPairProductionModel::ComputMuPair << 182 G4double G4MuPairProductionModel::ComputMuPairLoss(G4double Z, 257 << 183 G4double tkin, G4double cutEnergy, 258 << 184 G4double tmax) 259 << 260 { 185 { >> 186 SetCurrentElement(Z); 261 G4double loss = 0.0; 187 G4double loss = 0.0; 262 188 263 G4double cut = std::min(cutEnergy, tmax); << 189 G4double cut = cutEnergy; 264 if(cut <= minPairEnergy) { return loss; } << 190 if(tmax <= cutEnergy || cut <= minPairEnergy) return loss; 265 191 266 // calculate the rectricted loss 192 // calculate the rectricted loss 267 // numerical integration in log(PairEnergy) 193 // numerical integration in log(PairEnergy) 268 G4double aaa = G4Log(minPairEnergy); << 194 G4double ak1=6.9; 269 G4double bbb = G4Log(cut); << 195 G4double ak2=1.0; 270 << 196 G4double aaa = log(minPairEnergy); 271 G4int kkk = std::min(std::max(G4lrint((bbb-a << 197 G4double bbb = log(cut); 272 G4double hhh = (bbb-aaa)/kkk; << 198 G4int kkk = (G4int)((bbb-aaa)/ak1+ak2); >> 199 if (kkk > 8) kkk = 8; >> 200 G4double hhh = (bbb-aaa)/(G4double)kkk; 273 G4double x = aaa; 201 G4double x = aaa; 274 202 275 for (G4int l=0 ; l<kkk; ++l) { << 203 for (G4int l=0 ; l<kkk; l++) 276 for (G4int ll=0; ll<NINTPAIR; ++ll) { << 204 { 277 G4double ep = G4Exp(x+xgi[ll]*hhh); << 205 >> 206 for (G4int ll=0; ll<8; ll++) >> 207 { >> 208 G4double ep = exp(x+xgi[ll]*hhh); 278 loss += wgi[ll]*ep*ep*ComputeDMicroscopi 209 loss += wgi[ll]*ep*ep*ComputeDMicroscopicCrossSection(tkin, Z, ep); 279 } 210 } 280 x += hhh; 211 x += hhh; 281 } 212 } 282 loss *= hhh; 213 loss *= hhh; 283 loss = std::max(loss, 0.0); << 214 if (loss < 0.) loss = 0.; 284 return loss; 215 return loss; 285 } 216 } 286 217 287 //....oooOO0OOooo........oooOO0OOooo........oo 218 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 288 219 289 G4double G4MuPairProductionModel::ComputeMicro 220 G4double G4MuPairProductionModel::ComputeMicroscopicCrossSection( 290 G4d 221 G4double tkin, 291 G4d 222 G4double Z, 292 G4d << 223 G4double cut) >> 224 293 { 225 { 294 G4double cross = 0.; << 226 G4double cross = 0. ; 295 G4double tmax = MaxSecondaryEnergyForElement << 227 296 G4double cut = std::max(cutEnergy, minPairE << 228 SetCurrentElement(Z); 297 if (tmax <= cut) { return cross; } << 229 G4double tmax = MaxSecondaryEnergy(particle, tkin); 298 << 299 G4double aaa = G4Log(cut); << 300 G4double bbb = G4Log(tmax); << 301 G4int kkk = std::min(std::max(G4lrint((bbb-a << 302 230 303 G4double hhh = (bbb-aaa)/(kkk); << 231 if (tmax <= cut) return cross; >> 232 >> 233 G4double ak1=6.9 ; >> 234 G4double ak2=1.0 ; >> 235 G4double aaa = log(cut); >> 236 G4double bbb = log(tmax); >> 237 G4int kkk = (G4int)((bbb-aaa)/ak1 + ak2); >> 238 if(kkk > 8) kkk = 8; >> 239 G4double hhh = (bbb-aaa)/float(kkk); 304 G4double x = aaa; 240 G4double x = aaa; 305 241 306 for (G4int l=0; l<kkk; ++l) { << 242 for(G4int l=0; l<kkk; l++) 307 for (G4int i=0; i<NINTPAIR; ++i) { << 243 { 308 G4double ep = G4Exp(x + xgi[i]*hhh); << 244 for(G4int i=0; i<8; i++) >> 245 { >> 246 G4double ep = exp(x + xgi[i]*hhh); 309 cross += ep*wgi[i]*ComputeDMicroscopicCr 247 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep); 310 } 248 } 311 x += hhh; 249 x += hhh; 312 } 250 } 313 251 314 cross *= hhh; << 252 cross *=hhh; 315 cross = std::max(cross, 0.0); << 253 if(cross < 0.0) cross = 0.0; 316 return cross; 254 return cross; 317 } 255 } 318 256 319 //....oooOO0OOooo........oooOO0OOooo........oo << 320 << 321 G4double G4MuPairProductionModel::ComputeDMicr 257 G4double G4MuPairProductionModel::ComputeDMicroscopicCrossSection( 322 G4d 258 G4double tkin, 323 G4d 259 G4double Z, 324 G4d 260 G4double pairEnergy) 325 // Calculates the differential (D) microscopi << 261 // Calculates the differential (D) microscopic cross section 326 // using the cross section formula of R.P. Kok << 262 // using the cross section formula of R.P. Kokoulin (18/01/98) 327 // Code modified by R.P. Kokoulin, V.N. Ivanch << 263 // Code modified by R.P. Kokoulin, V.N. Ivanchenko (27/01/04) 328 { << 264 { 329 static const G4double bbbtf= 183. ; << 265 G4double bbbtf= 183. ; 330 static const G4double bbbh = 202.4 ; << 266 G4double bbbh = 202.4 ; 331 static const G4double g1tf = 1.95e-5 ; << 267 G4double g1tf = 1.95e-5 ; 332 static const G4double g2tf = 5.3e-5 ; << 268 G4double g2tf = 5.3e-5 ; 333 static const G4double g1h = 4.4e-5 ; << 269 G4double g1h = 4.4e-5 ; 334 static const G4double g2h = 4.8e-5 ; << 270 G4double g2h = 4.8e-5 ; 335 << 336 if (pairEnergy <= minPairEnergy) << 337 return 0.0; << 338 271 339 G4double totalEnergy = tkin + particleMass; 272 G4double totalEnergy = tkin + particleMass; 340 G4double residEnergy = totalEnergy - pairEn 273 G4double residEnergy = totalEnergy - pairEnergy; >> 274 G4double massratio = particleMass/electron_mass_c2 ; >> 275 G4double massratio2 = massratio*massratio ; >> 276 G4double cross = 0.; 341 277 342 if (residEnergy <= 0.75*sqrte*z13*particleMa << 278 SetCurrentElement(Z); 343 return 0.0; << 344 279 345 G4double a0 = 1.0 / (totalEnergy * residEner << 280 G4double c3 = 0.75*sqrte*particleMass; 346 G4double alf = 4.0 * electron_mass_c2 / pair << 281 if (residEnergy <= c3*z13) return cross; 347 G4double rt = std::sqrt(1.0 - alf); << 282 348 G4double delta = 6.0 * particleMass * partic << 283 G4double c7 = 4.*electron_mass_c2; 349 G4double tmnexp = alf/(1.0 + rt) + delta*rt; << 284 G4double c8 = 6.*particleMass*particleMass; 350 << 285 G4double alf = c7/pairEnergy; 351 if(tmnexp >= 1.0) { return 0.0; } << 286 G4double a3 = 1. - alf; 352 << 287 if (a3 <= 0.) return cross; 353 G4double tmn = G4Log(tmnexp); << 354 << 355 G4double massratio = particleMass/CLHEP::ele << 356 G4double massratio2 = massratio*massratio; << 357 G4double inv_massratio2 = 1.0 / massratio2; << 358 288 359 // zeta calculation 289 // zeta calculation 360 G4double bbb,g1,g2; 290 G4double bbb,g1,g2; 361 if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = 291 if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = g2h ; } 362 else { bbb = bbbtf; g1 = g1tf; g2 = 292 else { bbb = bbbtf; g1 = g1tf; g2 = g2tf; } 363 293 364 G4double zeta = 0.0; << 294 G4double zeta = 0; 365 G4double z1exp = totalEnergy / (particleMass << 295 G4double zeta1 = 0.073 * log(totalEnergy/(particleMass+g1*z23*totalEnergy))-0.26 ; 366 << 296 if ( zeta1 > 0.) 367 // 35.221047195922 is the root of zeta1(x) = << 368 // condition below is the same as zeta1 > 0. << 369 if (z1exp > 35.221047195922) << 370 { 297 { 371 G4double z2exp = totalEnergy / (particleMa << 298 G4double zeta2 = 0.058*log(totalEnergy/(particleMass+g2*z13*totalEnergy))-0.14 ; 372 zeta = (0.073 * G4Log(z1exp) - 0.26) / (0. << 299 zeta = zeta1/zeta2 ; 373 } 300 } 374 301 375 G4double z2 = Z*(Z+zeta); 302 G4double z2 = Z*(Z+zeta); 376 G4double screen0 = 2.*electron_mass_c2*sqrte 303 G4double screen0 = 2.*electron_mass_c2*sqrte*bbb/(z13*pairEnergy); 377 G4double beta = 0.5*pairEnergy*pairEnergy*a0 << 304 G4double a0 = totalEnergy*residEnergy; 378 G4double xi0 = 0.5*massratio2*beta; << 305 G4double a1 = pairEnergy*pairEnergy/a0; >> 306 G4double bet = 0.5*a1; >> 307 G4double xi0 = 0.25*massratio2*a1; >> 308 G4double del = c8/a0; >> 309 >> 310 G4double rta3 = sqrt(a3); >> 311 G4double tmnexp = alf/(1. + rta3) + del*rta3; >> 312 if(tmnexp >= 1.0) return cross; 379 313 380 // Gaussian integration in ln(1-ro) ( with 8 << 314 G4double tmn = log(tmnexp); 381 G4double rho[NINTPAIR]; << 315 G4double sum = 0.; 382 G4double rho2[NINTPAIR]; << 383 G4double xi[NINTPAIR]; << 384 G4double xi1[NINTPAIR]; << 385 G4double xii[NINTPAIR]; << 386 316 387 for (G4int i = 0; i < NINTPAIR; ++i) << 317 // Gaussian integration in ln(1-ro) ( with 8 points) >> 318 for (G4int i=0; i<8; i++) 388 { 319 { 389 rho[i] = G4Exp(tmn*xgi[i]) - 1.0; // rho = << 320 G4double a4 = exp(tmn*xgi[i]); // a4 = (1.-asymmetry) 390 rho2[i] = rho[i] * rho[i]; << 321 G4double a5 = a4*(2.-a4) ; 391 xi[i] = xi0*(1.0-rho2[i]); << 322 G4double a6 = 1.-a5 ; 392 xi1[i] = 1.0 + xi[i]; << 323 G4double a7 = 1.+a6 ; 393 xii[i] = 1.0 / xi[i]; << 324 G4double a9 = 3.+a6 ; >> 325 G4double xi = xi0*a5 ; >> 326 G4double xii = 1./xi ; >> 327 G4double xi1 = 1.+xi ; >> 328 G4double screen = screen0*xi1/a5 ; >> 329 G4double yeu = 5.-a6+4.*bet*a7 ; >> 330 G4double yed = 2.*(1.+3.*bet)*log(3.+xii)-a6-a1*(2.-a6) ; >> 331 G4double ye1 = 1.+yeu/yed ; >> 332 G4double ale=log(bbb/z13*sqrt(xi1*ye1)/(1.+screen*ye1)) ; >> 333 G4double cre = 0.5*log(1.+2.25*z23*xi1*ye1/massratio2) ; >> 334 G4double be; >> 335 >> 336 if (xi <= 1.e3) be = ((2.+a6)*(1.+bet)+xi*a9)*log(1.+xii)+(a5-bet)/xi1-a9; >> 337 else be = (3.-a6+a1*a7)/(2.*xi); >> 338 >> 339 G4double fe = (ale-cre)*be; >> 340 if ( fe < 0.) fe = 0. ; >> 341 >> 342 G4double ymu = 4.+a6 +3.*bet*a7 ; >> 343 G4double ymd = a7*(1.5+a1)*log(3.+xi)+1.-1.5*a6 ; >> 344 G4double ym1 = 1.+ymu/ymd ; >> 345 G4double alm_crm = log(bbb*massratio/(1.5*z23*(1.+screen*ym1))); >> 346 G4double a10,bm; >> 347 if ( xi >= 1.e-3) >> 348 { >> 349 a10 = (1.+a1)*a5 ; >> 350 bm = (a7*(1.+1.5*bet)-a10*xii)*log(xi1)+xi*(a5-bet)/xi1+a10; >> 351 } else { >> 352 bm = (5.-a6+bet*a9)*(xi/2.); >> 353 } >> 354 >> 355 G4double fm = alm_crm*bm; >> 356 if ( fm < 0.) fm = 0. ; >> 357 >> 358 sum += wgi[i]*a4*(fe+fm/massratio2); 394 } 359 } 395 360 396 G4double ye1[NINTPAIR]; << 361 cross = -tmn*sum*factorForCross*z2*residEnergy/(totalEnergy*pairEnergy); 397 G4double ym1[NINTPAIR]; << 398 362 399 G4double b40 = 4.0 * beta; << 363 return cross; 400 G4double b62 = 6.0 * beta + 2.0; << 364 } 401 365 402 for (G4int i = 0; i < NINTPAIR; ++i) << 366 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 403 { << 404 G4double yeu = (b40 + 5.0) + (b40 - 1.0) * << 405 G4double yed = b62*G4Log(3.0 + xii[i]) + ( << 406 367 407 G4double ymu = b62 * (1.0 + rho2[i]) + 6.0 << 368 G4double G4MuPairProductionModel::CrossSection(const G4MaterialCutsCouple* couple, 408 G4double ymd = (b40 + 3.0)*(1.0 + rho2[i]) << 369 const G4ParticleDefinition*, 409 + 2.0 - 3.0 * rho2[i]; << 370 G4double kineticEnergy, >> 371 G4double cutEnergy, >> 372 G4double maxEnergy) >> 373 { >> 374 G4double cross = 0.0; >> 375 if (kineticEnergy <= lowestKinEnergy) return cross; 410 376 411 ye1[i] = 1.0 + yeu / yed; << 377 maxEnergy += particleMass; 412 ym1[i] = 1.0 + ymu / ymd; << 413 } << 414 378 415 G4double be[NINTPAIR]; << 379 const G4Material* material = couple->GetMaterial(); 416 G4double bm[NINTPAIR]; << 380 const G4ElementVector* theElementVector = material->GetElementVector(); >> 381 const G4double* theAtomNumDensityVector=material->GetAtomicNumDensityVector(); 417 382 418 for(G4int i = 0; i < NINTPAIR; ++i) { << 383 for (size_t i=0; i<material->GetNumberOfElements(); i++) { 419 if(xi[i] <= 1000.0) { << 384 G4double Z = (*theElementVector)[i]->GetZ(); 420 be[i] = ((2.0 + rho2[i])*(1.0 + beta) + << 385 SetCurrentElement(Z); 421 xi[i]*(3.0 + rho2[i]))*G4Log(1.0 + xi << 386 G4double tmax = min(maxEnergy,MaxSecondaryEnergy(particle, kineticEnergy)); 422 (1.0 - rho2[i] - beta)/xi1[i] - (3.0 + rho2[ << 387 G4double cut = max(minPairEnergy,cutEnergy); 423 } else { << 388 if(cut < tmax) { 424 be[i] = 0.5*(3.0 - rho2[i] + 2.0*beta*(1 << 389 G4double cr = ComputeMicroscopicCrossSection(kineticEnergy, Z, cut) 425 } << 390 - ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax); 426 391 427 if(xi[i] >= 0.001) { << 392 cross += theAtomNumDensityVector[i] * cr; 428 G4double a10 = (1.0 + 2.0 * beta) * (1.0 << 429 bm[i] = ((1.0 + rho2[i])*(1.0 + 1.5 * be << 430 xi[i] * (1.0 - rho2[i] - beta) << 431 } else { << 432 bm[i] = 0.5*(5.0 - rho2[i] + beta * (3.0 << 433 } 393 } 434 } 394 } >> 395 return cross; >> 396 } 435 397 436 G4double sum = 0.0; << 398 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 399 >> 400 void G4MuPairProductionModel::MakeSamplingTables() >> 401 { >> 402 for (G4int iz=0; iz<nzdat; iz++) >> 403 { >> 404 G4double Z = zdat[iz]; >> 405 SetCurrentElement(Z); 437 406 438 for (G4int i = 0; i < NINTPAIR; ++i) { << 407 for (G4int it=0; it<ntdat; it++) 439 G4double screen = screen0*xi1[i]/(1.0 - rh << 408 { 440 G4double ale = G4Log(bbb/z13*std::sqrt(xi1 << 409 G4double kineticEnergy = tdat[it]; 441 G4double cre = 0.5*G4Log(1. + 2.25*z23*xi1 << 410 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy); >> 411 >> 412 G4double CrossSection = 0.0 ; >> 413 >> 414 G4double y = ymin - 0.5*dy ; >> 415 G4double yy = ymin - dy ; >> 416 G4double x = exp(y); >> 417 G4double fac = exp(dy); >> 418 G4double dx = exp(yy)*(fac - 1.0); >> 419 >> 420 G4double c = log(maxPairEnergy/minPairEnergy); >> 421 >> 422 for (G4int i=0 ; i<nbiny; i++) >> 423 { >> 424 y += dy ; >> 425 if(c > 0.0) { >> 426 x *= fac; >> 427 dx*= fac; >> 428 G4double ep = minPairEnergy*exp(c*x) ; >> 429 CrossSection += ep*dx*ComputeDMicroscopicCrossSection( >> 430 kineticEnergy, Z, ep); >> 431 } >> 432 ya[i] = y; >> 433 proba[iz][it][i] = CrossSection; >> 434 } 442 435 443 G4double fe = (ale-cre)*be[i]; << 436 ya[nbiny]=ymax; 444 fe = std::max(fe, 0.0); << 445 437 446 G4double alm_crm = G4Log(bbb*massratio/(1. << 438 proba[iz][it][nbiny] = CrossSection; 447 G4double fm = std::max(alm_crm*bm[i], 0.0) << 448 439 449 sum += wgi[i]*(1.0 + rho[i])*(fe + fm); << 440 } 450 } 441 } 451 << 442 samplingTablesAreFilled = true; 452 return -tmn*sum*factorForCross*z2*residEnerg << 453 } 443 } 454 444 455 //....oooOO0OOooo........oooOO0OOooo........oo 445 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 456 446 457 G4double G4MuPairProductionModel::ComputeCross << 447 G4DynamicParticle* G4MuPairProductionModel::SampleSecondary( 458 con << 448 const G4MaterialCutsCouple*, 459 << 449 const G4DynamicParticle*, 460 << 450 G4double, 461 << 451 G4double) 462 << 463 { 452 { 464 G4double cross = 0.0; << 453 return 0; 465 if (kineticEnergy <= lowestKinEnergy) { retu << 466 << 467 G4double maxPairEnergy = MaxSecondaryEnergyF << 468 G4double tmax = std::min(maxEnergy, maxPairE << 469 G4double cut = std::max(cutEnergy, minPairE << 470 if (cut >= tmax) { return cross; } << 471 << 472 cross = ComputeMicroscopicCrossSection(kinet << 473 if(tmax < kineticEnergy) { << 474 cross -= ComputeMicroscopicCrossSection(ki << 475 } << 476 return cross; << 477 } 454 } 478 455 479 //....oooOO0OOooo........oooOO0OOooo........oo 456 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 480 457 481 void G4MuPairProductionModel::MakeSamplingTabl << 458 vector<G4DynamicParticle*>* G4MuPairProductionModel::SampleSecondaries( >> 459 const G4MaterialCutsCouple* couple, >> 460 const G4DynamicParticle* aDynamicParticle, >> 461 G4double cut, >> 462 G4double tmax) 482 { 463 { 483 G4double factore = G4Exp(G4Log(emax/emin)/G4 << 464 G4double kineticEnergy = aDynamicParticle->GetKineticEnergy(); >> 465 G4double totalEnergy = kineticEnergy + particleMass ; >> 466 G4ParticleMomentum ParticleDirection = aDynamicParticle->GetMomentumDirection(); 484 467 485 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 468 G4int it; >> 469 for(it=1; it<ntdat; it++) {if(kineticEnergy <= tdat[it]) break;} >> 470 if(it == ntdat) it--; >> 471 G4double dt = log(kineticEnergy/tdat[it-1])/log(tdat[it]/tdat[it-1]); 486 472 487 G4double Z = ZDATPAIR[iz]; << 473 // select randomly one element constituing the material 488 G4Physics2DVector* pv = new G4Physics2DVec << 474 G4int iymin = 0; 489 G4double kinEnergy = emin; << 475 G4int iymax = nbiny-1; 490 << 476 const G4Element* anElement = SelectRandomAtom(kineticEnergy, dt, it, couple); 491 for (std::size_t it=0; it<=nbine; ++it) { << 477 SetCurrentElement(anElement->GetZ()); 492 << 478 493 pv->PutY(it, G4Log(kinEnergy/CLHEP::MeV) << 479 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy); 494 G4double maxPairEnergy = MaxSecondaryEne << 480 G4double maxEnergy = min(tmax, maxPairEnergy); 495 /* << 481 G4double minEnergy = min(maxEnergy, cut); 496 G4cout << "it= " << it << " E= " << kinE << 497 << " " << particle->GetParticleN << 498 << " maxE= " << maxPairEnergy << << 499 << " ymin= " << ymin << G4endl; << 500 */ << 501 G4double coef = G4Log(minPairEnergy/kinE << 502 G4double ymax = G4Log(maxPairEnergy/kinE << 503 G4double fac = (ymax - ymin)/dy; << 504 std::size_t imax = (std::size_t)fac; << 505 fac -= (G4double)imax; << 506 << 507 G4double xSec = 0.0; << 508 G4double x = ymin; << 509 /* << 510 G4cout << "Z= " << currentZ << " z13= " << 511 << " mE= " << maxPairEnergy << " << 512 << " dy= " << dy << " c= " << co << 513 */ << 514 // start from zero << 515 pv->PutValue(0, it, 0.0); << 516 if(0 == it) { pv->PutX(nbiny, 0.0); } << 517 << 518 for (std::size_t i=0; i<nbiny; ++i) { << 519 << 520 if(0 == it) { pv->PutX(i, x); } << 521 << 522 if(i < imax) { << 523 G4double ep = kinEnergy*G4Exp(coef*( << 524 << 525 // not multiplied by interval, becau << 526 // will be used only for sampling << 527 //G4cout << "i= " << i << " x= " << << 528 // << " Egamma= " << ep << G << 529 xSec += ep*ComputeDMicroscopicCrossS << 530 << 531 // last bin before the kinematic lim << 532 } else if(i == imax) { << 533 G4double ep = kinEnergy*G4Exp(coef*( << 534 xSec += ep*fac*ComputeDMicroscopicCr << 535 } << 536 pv->PutValue(i + 1, it, xSec); << 537 x += dy; << 538 } << 539 kinEnergy *= factore; << 540 482 541 // to avoid precision lost << 483 if( minEnergy > minPairEnergy) 542 if(it+1 == nbine) { kinEnergy = emax; } << 484 { 543 } << 485 G4double xc = log(minEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy); 544 fElementData->InitialiseForElement(iz, pv) << 486 iymin = (G4int)((log(xc) - ymin)/dy); >> 487 if(iymin >= nbiny) iymin = nbiny-1; >> 488 xc = log(maxEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy); >> 489 iymax = (G4int)((log(xc) - ymin)/dy) + 1; >> 490 if(iymax >= nbiny) iymax = nbiny-1; 545 } 491 } 546 } << 547 492 548 //....oooOO0OOooo........oooOO0OOooo........oo << 493 // sample e-e+ energy, pair energy first >> 494 G4int iz, iy; 549 495 550 void G4MuPairProductionModel::SampleSecondarie << 496 for(iz=1; iz<nzdat; iz++) {if(currentZ <= zdat[iz]) break;} 551 std::vector<G4Dy << 497 if(iz == nzdat) iz--; 552 const G4Material << 553 const G4DynamicP << 554 G4double tmin, << 555 G4double tmax) << 556 { << 557 G4double kinEnergy = aDynamicParticle->GetKi << 558 //G4cout << "------- G4MuPairProductionModel << 559 // << kinEnergy << " " << 560 // << aDynamicParticle->GetDefinitio << 561 G4double totalEnergy = kinEnergy + particl << 562 G4double totalMomentum = << 563 std::sqrt(kinEnergy*(kinEnergy + 2.0*parti << 564 498 565 G4ThreeVector partDirection = aDynamicPartic << 499 G4double dz = log(currentZ/zdat[iz-1])/log(zdat[iz]/zdat[iz-1]); 566 500 567 // select randomly one element constituing t << 501 G4double pmin = InterpolatedIntegralCrossSection(dt, dz, iz, it, iymin, currentZ); 568 const G4Element* anElement = SelectRandomAto << 502 G4double pmax = InterpolatedIntegralCrossSection(dt, dz, iz, it, iymax, currentZ); 569 503 570 // define interval of energy transfer << 504 G4double p = pmin+G4UniformRand()*(pmax - pmin); 571 G4double maxPairEnergy = MaxSecondaryEnergyF << 572 << 573 G4double maxEnergy = std::min(tmax, maxPairE << 574 G4double minEnergy = std::max(tmin, minPairE << 575 << 576 if (minEnergy >= maxEnergy) { return; } << 577 //G4cout << "emin= " << minEnergy << " emax= << 578 // << " minPair= " << minPairEnergy << " max << 579 // << " ymin= " << ymin << " dy= " << dy << 580 << 581 G4double coeff = G4Log(minPairEnergy/kinEner << 582 << 583 // compute limits << 584 G4double yymin = G4Log(minEnergy/kinEnergy)/ << 585 G4double yymax = G4Log(maxEnergy/kinEnergy)/ << 586 << 587 //G4cout << "yymin= " << yymin << " yymax= << 588 505 589 // units should not be used, bacause table w << 506 // interpolate sampling vector; 590 G4double logTkin = G4Log(kinEnergy/CLHEP::Me << 507 G4double p1 = pmin; >> 508 G4double p2 = pmin; >> 509 for(iy=iymin+1; iy<=iymax; iy++) { >> 510 p1 = p2; >> 511 p2 = InterpolatedIntegralCrossSection(dt, dz, iz, it, iy, currentZ); >> 512 if(p <= p2) break; >> 513 } >> 514 G4double y = ya[iy-1] + dy*(p - p1)/(p2 - p1); 591 515 592 // sample e-e+ energy, pair energy first << 516 G4double PairEnergy = minPairEnergy*exp(exp(y)*log(maxPairEnergy/minPairEnergy)); >> 517 if(PairEnergy < minEnergy) PairEnergy = minEnergy; >> 518 if(PairEnergy > maxEnergy) PairEnergy = maxEnergy; 593 519 594 // select sample table via Z << 520 // sample r=(E+-E-)/PairEnergy ( uniformly .....) 595 G4int iz1(0), iz2(0); << 521 G4double rmax = 596 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 522 (1.-6.*particleMass*particleMass/(totalEnergy*(totalEnergy-PairEnergy))) 597 if(currentZ == ZDATPAIR[iz]) { << 523 *sqrt(1.-minPairEnergy/PairEnergy); 598 iz1 = iz2 = iz; << 599 break; << 600 } else if(currentZ < ZDATPAIR[iz]) { << 601 iz2 = iz; << 602 if(iz > 0) { iz1 = iz-1; } << 603 else { iz1 = iz2; } << 604 break; << 605 } << 606 } << 607 if (0 == iz1) { iz1 = iz2 = NZDATPAIR-1; } << 608 << 609 G4double pairEnergy = 0.0; << 610 G4int count = 0; << 611 //G4cout << "start loop Z1= " << iz1 << " Z2 << 612 do { << 613 ++count; << 614 // sampling using only one random number << 615 G4double rand = G4UniformRand(); << 616 << 617 G4double x = FindScaledEnergy(iz1, rand, l << 618 if(iz1 != iz2) { << 619 G4double x2 = FindScaledEnergy(iz2, rand << 620 G4double lz1= nist->GetLOGZ(ZDATPAIR[iz1 << 621 G4double lz2= nist->GetLOGZ(ZDATPAIR[iz2 << 622 //G4cout << count << ". x= " << x << " << 623 // << " Z1= " << iz1 << " Z2 << 624 x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1); << 625 } << 626 //G4cout << "x= " << x << " coeff= " << c << 627 pairEnergy = kinEnergy*G4Exp(x*coeff); << 628 << 629 // Loop checking, 03-Aug-2015, Vladimir Iv << 630 } while((pairEnergy < minEnergy || pairEnerg << 631 << 632 //G4cout << "## pairEnergy(GeV)= " << pairEn << 633 // << " Etot(GeV)= " << totalEnergy/ << 634 << 635 // sample r=(E+-E-)/pairEnergy ( uniformly << 636 G4double rmax = << 637 (1.-6.*particleMass*particleMass/(totalEne << 638 *std::sqrt(1.-minPairEnergy/pairEnergy); << 639 G4double r = rmax * (-1.+2.*G4UniformRand()) 524 G4double r = rmax * (-1.+2.*G4UniformRand()) ; 640 525 641 // compute energies from pairEnergy,r << 526 // compute energies from PairEnergy,r 642 G4double eEnergy = (1.-r)*pairEnergy*0.5; << 527 G4double ElectronEnergy = (1.-r)*PairEnergy*0.5; 643 G4double pEnergy = pairEnergy - eEnergy; << 528 G4double PositronEnergy = PairEnergy - ElectronEnergy; 644 << 529 645 // Sample angles << 530 // angles of the emitted particles ( Z - axis along the parent particle) 646 G4ThreeVector eDirection, pDirection; << 531 // (mean theta for the moment) 647 // << 532 G4double Teta = electron_mass_c2/totalEnergy ; 648 GetAngularDistribution()->SamplePairDirectio << 533 649 << 534 G4double Phi = twopi * G4UniformRand() ; 650 << 535 G4double dirx = sin(Teta)*cos(Phi); 651 // create G4DynamicParticle object for e+e- << 536 G4double diry = sin(Teta)*sin(Phi); 652 eEnergy = std::max(eEnergy - CLHEP::electron << 537 G4double dirz = cos(Teta) ; 653 pEnergy = std::max(pEnergy - CLHEP::electron << 538 654 auto aParticle1 = new G4DynamicParticle(theE << 539 //G4double finalPx,finalPy,finalPz ; 655 auto aParticle2 = new G4DynamicParticle(theP << 540 G4double ElectKineEnergy = ElectronEnergy - electron_mass_c2 ; 656 // Fill output vector << 541 >> 542 G4ThreeVector ElectDirection ( dirx, diry, dirz ); >> 543 ElectDirection.rotateUz(ParticleDirection); >> 544 >> 545 // create G4DynamicParticle object for the particle1 >> 546 G4DynamicParticle* aParticle1= new G4DynamicParticle(G4Electron::Electron(), >> 547 ElectDirection, >> 548 ElectKineEnergy); >> 549 >> 550 G4double PositKineEnergy = PositronEnergy - electron_mass_c2 ; >> 551 >> 552 G4ThreeVector PositDirection ( -dirx, -diry, dirz ); >> 553 PositDirection.rotateUz(ParticleDirection); >> 554 >> 555 // create G4DynamicParticle object for the particle2 >> 556 G4DynamicParticle* aParticle2= new G4DynamicParticle(G4Positron::Positron(), >> 557 PositDirection, >> 558 PositKineEnergy); >> 559 >> 560 >> 561 vector<G4DynamicParticle*>* vdp = new vector<G4DynamicParticle*>; 657 vdp->push_back(aParticle1); 562 vdp->push_back(aParticle1); 658 vdp->push_back(aParticle2); 563 vdp->push_back(aParticle2); 659 564 660 // primary change << 565 return vdp; 661 kinEnergy -= pairEnergy; << 662 partDirection *= totalMomentum; << 663 partDirection -= (aParticle1->GetMomentum() << 664 partDirection = partDirection.unit(); << 665 << 666 // if energy transfer is higher than thresho << 667 // then stop tracking the primary particle a << 668 if (pairEnergy > SecondaryThreshold()) { << 669 fParticleChange->ProposeTrackStatus(fStopA << 670 fParticleChange->SetProposedKineticEnergy( << 671 auto newdp = new G4DynamicParticle(particl << 672 vdp->push_back(newdp); << 673 } else { // continue tracking the primary e- << 674 fParticleChange->SetProposedMomentumDirect << 675 fParticleChange->SetProposedKineticEnergy( << 676 } << 677 //G4cout << "-- G4MuPairProductionModel::Sam << 678 } 566 } 679 567 680 //....oooOO0OOooo........oooOO0OOooo........oo 568 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 681 569 682 G4double << 570 const G4Element* G4MuPairProductionModel::SelectRandomAtom( 683 G4MuPairProductionModel::FindScaledEnergy(G4in << 571 G4double kinEnergy, G4double dt, G4int it, 684 G4double logTkin, << 572 const G4MaterialCutsCouple* couple) 685 G4double yymin, G4double yymax) << 686 { 573 { 687 G4double res = yymin; << 574 // select randomly 1 element within the material 688 G4Physics2DVector* pv = fElementData->GetEle << 575 689 if (nullptr != pv) { << 576 const G4Material* material = couple->GetMaterial(); 690 G4double pmin = pv->Value(yymin, logTkin); << 577 size_t nElements = material->GetNumberOfElements(); 691 G4double pmax = pv->Value(yymax, logTkin); << 578 const G4ElementVector* theElementVector = material->GetElementVector(); 692 G4double p0 = pv->Value(0.0, logTkin); << 579 if (nElements == 1) return (*theElementVector)[0]; 693 if(p0 <= 0.0) { DataCorrupted(ZDATPAIR[iz] << 580 694 else { res = pv->FindLinearX((pmin + rand* << 581 if(nElements > nmaxElements) { 695 } else { << 582 nmaxElements = nElements; 696 DataCorrupted(ZDATPAIR[iz], logTkin); << 583 partialSum.resize(nmaxElements); 697 } 584 } 698 return res; << 699 } << 700 585 701 //....oooOO0OOooo........oooOO0OOooo........oo << 586 const G4double* theAtomNumDensityVector=material->GetAtomicNumDensityVector(); 702 587 703 void G4MuPairProductionModel::DataCorrupted(G4 << 588 G4double sum = 0.0; 704 { << 705 G4ExceptionDescription ed; << 706 ed << "G4ElementData is not properly initial << 707 << " Ekin(MeV)= " << G4Exp(logTkin) << 708 << " IsMasterThread= " << IsMaster() << 709 << " Model " << GetName(); << 710 G4Exception("G4MuPairProductionModel::()", " << 711 } << 712 589 713 //....oooOO0OOooo........oooOO0OOooo........oo << 590 size_t i; >> 591 for (i=0; i<nElements; i++) { >> 592 G4double Z = ((*theElementVector)[i])->GetZ(); >> 593 SetCurrentElement(Z); >> 594 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kinEnergy); >> 595 >> 596 G4int iz; >> 597 for(iz=1; iz<nzdat; iz++) {if(Z <= zdat[iz]) break;} >> 598 if(iz == nzdat) iz--; >> 599 G4double dz = log(Z/zdat[iz-1])/log(zdat[iz]/zdat[iz-1]); >> 600 >> 601 G4double xc = log(kinEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy); >> 602 G4int iy = (G4int)((log(xc) - ymin)/dy); >> 603 if(iy >= nbiny) iy = nbiny-1; >> 604 >> 605 G4double sigtot = InterpolatedIntegralCrossSection(dt, dz, iz, it, nbiny, Z); >> 606 G4double sigcut = InterpolatedIntegralCrossSection(dt, dz, iz, it, iy, Z); >> 607 sum += (sigtot - sigcut)*theAtomNumDensityVector[i]; >> 608 partialSum[i] = sum; >> 609 } >> 610 >> 611 G4double rval = G4UniformRand()*sum; >> 612 for (i=0; i<nElements; i++) {if(rval<=partialSum[i]) break;} >> 613 return (*theElementVector)[i]; 714 614 715 void G4MuPairProductionModel::StoreTables() co << 716 { << 717 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 718 G4int Z = ZDATPAIR[iz]; << 719 G4Physics2DVector* pv = fElementData->GetE << 720 if(nullptr == pv) { << 721 DataCorrupted(Z, 1.0); << 722 return; << 723 } << 724 std::ostringstream ss; << 725 ss << "mupair/" << particle->GetParticleNa << 726 std::ofstream outfile(ss.str()); << 727 pv->Store(outfile); << 728 } << 729 } 615 } 730 616 731 //....oooOO0OOooo........oooOO0OOooo........oo 617 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 732 618 733 G4bool G4MuPairProductionModel::RetrieveTables << 734 { << 735 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 736 G4double Z = ZDATPAIR[iz]; << 737 G4Physics2DVector* pv = new G4Physics2DVec << 738 std::ostringstream ss; << 739 ss << G4EmParameters::Instance()->GetDirLE << 740 << particle->GetParticleName() << Z << << 741 std::ifstream infile(ss.str(), std::ios::i << 742 if(!pv->Retrieve(infile)) { << 743 delete pv; << 744 return false; << 745 } << 746 fElementData->InitialiseForElement(iz, pv) << 747 } << 748 return true; << 749 } << 750 619 751 //....oooOO0OOooo........oooOO0OOooo........oo << 752 620