Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4MuPairProductionModel.cc,v 1.13 2003/10/21 13:30:05 maire Exp $ >> 24 // GEANT4 tag $Name: geant4-06-00 $ 26 // 25 // 27 // ------------------------------------------- 26 // ------------------------------------------------------------------- 28 // 27 // 29 // GEANT4 Class file 28 // GEANT4 Class file 30 // 29 // 31 // 30 // 32 // File name: G4MuPairProductionModel 31 // File name: G4MuPairProductionModel 33 // 32 // 34 // Author: Vladimir Ivanchenko on base 33 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 34 // 36 // Creation date: 24.06.2002 35 // Creation date: 24.06.2002 37 // 36 // 38 // Modifications: 37 // Modifications: 39 // 38 // 40 // 04-12-02 Change G4DynamicParticle construct 39 // 04-12-02 Change G4DynamicParticle constructor in PostStep (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 40 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 24-01-03 Fix for compounds (V.Ivanchenko) 41 // 24-01-03 Fix for compounds (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanch 42 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add model (V.Ivanchenko) 43 // 13-02-03 Add model (V.Ivanchenko) 45 // 06-06-03 Fix in cross section calculation f 44 // 06-06-03 Fix in cross section calculation for high energy (V.Ivanchenko) 46 // 20-10-03 2*xi in ComputeDDMicroscopicCrossS 45 // 20-10-03 2*xi in ComputeDDMicroscopicCrossSection (R.Kokoulin) 47 // 8 integration points in ComputeDMi << 46 // 8 integration points in ComputeDMicroscopicCrossSection 48 // 12-01-04 Take min cut of e- and e+ not its << 49 // 10-02-04 Update parameterisation using R.Ko << 50 // 28-04-04 For complex materials repeat calcu << 51 // material (V.Ivanchenko) << 52 // 01-11-04 Fix bug inside ComputeDMicroscopic << 53 // 08-04-05 Major optimisation of internal int << 54 // 03-08-05 Add SetParticle method (V.Ivantche << 55 // 23-10-05 Add protection in sampling of e+e- << 56 // low cuts (V.Ivantchenko) << 57 // 13-02-06 Add ComputeCrossSectionPerAtom (mm << 58 // 24-04-07 Add protection in SelectRandomAtom << 59 // 12-05-06 Updated sampling (use cut) in Sele << 60 // 11-10-07 Add ignoreCut flag (V.Ivanchenko) << 61 47 62 // 48 // 63 // Class Description: 49 // Class Description: 64 // 50 // 65 // 51 // 66 // ------------------------------------------- 52 // ------------------------------------------------------------------- 67 // 53 // 68 //....oooOO0OOooo........oooOO0OOooo........oo 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 69 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 70 56 71 #include "G4MuPairProductionModel.hh" 57 #include "G4MuPairProductionModel.hh" 72 #include "G4PhysicalConstants.hh" << 73 #include "G4SystemOfUnits.hh" << 74 #include "G4EmParameters.hh" << 75 #include "G4Electron.hh" 58 #include "G4Electron.hh" 76 #include "G4Positron.hh" 59 #include "G4Positron.hh" 77 #include "G4MuonMinus.hh" 60 #include "G4MuonMinus.hh" 78 #include "G4MuonPlus.hh" 61 #include "G4MuonPlus.hh" 79 #include "Randomize.hh" 62 #include "Randomize.hh" 80 #include "G4Material.hh" 63 #include "G4Material.hh" 81 #include "G4Element.hh" 64 #include "G4Element.hh" 82 #include "G4ElementVector.hh" 65 #include "G4ElementVector.hh" 83 #include "G4ElementDataRegistry.hh" << 84 #include "G4ProductionCutsTable.hh" 66 #include "G4ProductionCutsTable.hh" 85 #include "G4ParticleChangeForLoss.hh" << 86 #include "G4ModifiedMephi.hh" << 87 #include "G4Log.hh" << 88 #include "G4Exp.hh" << 89 #include "G4AutoLock.hh" << 90 << 91 #include <iostream> << 92 #include <fstream> << 93 67 94 //....oooOO0OOooo........oooOO0OOooo........oo 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 95 69 96 const G4int G4MuPairProductionModel::ZDATPAIR[ << 70 // static members >> 71 // >> 72 G4double G4MuPairProductionModel::zdat[]={1.,4.,13.,29.,92.}; >> 73 G4double G4MuPairProductionModel::adat[]={1.01,9.01,26.98,63.55,238.03}; >> 74 G4double G4MuPairProductionModel::tdat[]={1.e3,1.e4,1.e5,1.e6,1.e7,1.e8, >> 75 1.e9,1.e10}; 97 76 98 const G4double G4MuPairProductionModel::xgi[] << 77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 99 0.0198550717512320, 0.1016667612931865, 0. << 100 0.5917173212478250, 0.7627662049581645, 0. << 101 }; << 102 78 103 const G4double G4MuPairProductionModel::wgi[] << 79 G4MuPairProductionModel::G4MuPairProductionModel(const G4ParticleDefinition*, 104 0.0506142681451880, 0.1111905172266870, 0. << 80 const G4String& nam) 105 0.1813418916891810, 0.1568533229389435, 0. << 81 : G4VEmModel(nam), 106 }; << 82 minPairEnergy(4.*electron_mass_c2), >> 83 highKinEnergy(1000000.*TeV), >> 84 lowKinEnergy(minPairEnergy), >> 85 nzdat(5), >> 86 ntdat(8), >> 87 NBIN(1000), >> 88 samplingTablesAreFilled(false) >> 89 { } 107 90 108 namespace << 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 109 { << 110 G4Mutex theMuPairMutex = G4MUTEX_INITIALIZER << 111 92 112 const G4double ak1 = 6.9; << 93 G4MuPairProductionModel::~G4MuPairProductionModel() 113 const G4double ak2 = 1.0; << 94 { >> 95 size_t n = partialSumSigma.size(); >> 96 if(n > 0) { >> 97 for(size_t i=0; i<n; i++) { >> 98 delete partialSumSigma[i]; >> 99 } >> 100 } 114 } 101 } 115 102 116 //....oooOO0OOooo........oooOO0OOooo........oo 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 117 104 118 G4MuPairProductionModel::G4MuPairProductionMod << 105 G4double G4MuPairProductionModel::HighEnergyLimit(const G4ParticleDefinition*) 119 << 120 : G4VEmModel(nam), << 121 factorForCross(CLHEP::fine_structure_const*C << 122 CLHEP::classic_electr_radius*CLHEP::class << 123 4./(3.*CLHEP::pi)), << 124 sqrte(std::sqrt(G4Exp(1.))), << 125 minPairEnergy(4.*CLHEP::electron_mass_c2), << 126 lowestKinEnergy(0.85*CLHEP::GeV) << 127 { 106 { 128 nist = G4NistManager::Instance(); << 107 return highKinEnergy; 129 << 130 theElectron = G4Electron::Electron(); << 131 thePositron = G4Positron::Positron(); << 132 << 133 if(nullptr != p) { << 134 SetParticle(p); << 135 lowestKinEnergy = std::max(lowestKinEnergy << 136 } << 137 emin = lowestKinEnergy; << 138 emax = emin*10000.; << 139 SetAngularDistribution(new G4ModifiedMephi() << 140 } 108 } 141 109 142 //....oooOO0OOooo........oooOO0OOooo........oo 110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 143 111 144 G4double G4MuPairProductionModel::MinPrimaryEn << 112 G4double G4MuPairProductionModel::LowEnergyLimit(const G4ParticleDefinition*) 145 << 146 << 147 { 113 { 148 return std::max(lowestKinEnergy, cut); << 114 return lowKinEnergy; 149 } 115 } 150 116 151 //....oooOO0OOooo........oooOO0OOooo........oo 117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 152 118 153 void G4MuPairProductionModel::Initialise(const << 119 G4double G4MuPairProductionModel::MinEnergyCut(const G4ParticleDefinition*, 154 const << 120 const G4MaterialCutsCouple* couple) 155 { << 121 { 156 SetParticle(p); << 157 122 158 if (nullptr == fParticleChange) { << 123 size_t index = couple->GetIndex(); 159 fParticleChange = GetParticleChangeForLoss << 124 const G4ProductionCutsTable* theCoupleTable = >> 125 G4ProductionCutsTable::GetProductionCutsTable(); 160 126 161 // define scale of internal table for each << 127 G4double eCut = (*(theCoupleTable->GetEnergyCutsVector(1)))[index]; 162 if (0 == nbine) { << 128 G4double pCut = (*(theCoupleTable->GetEnergyCutsVector(2)))[index]; 163 emin = std::max(lowestKinEnergy, LowEner << 129 G4double x = 2*electron_mass_c2 + eCut + pCut; 164 emax = std::max(HighEnergyLimit(), emin* << 130 if(x < minPairEnergy) x = minPairEnergy; 165 nbine = std::size_t(nYBinPerDecade*std:: << 166 if(nbine < 3) { nbine = 3; } << 167 131 168 ymin = G4Log(minPairEnergy/emin); << 132 //// if (eCut < highKinEnergy && pCut < highKinEnergy) { 169 dy = -ymin/G4double(nbiny); << 133 //// x += eCut + pCut; 170 } << 134 //// } else { 171 if (p == particle) { << 135 //// x = 0.5*highKinEnergy; 172 G4int pdg = std::abs(p->GetPDGEncoding() << 136 //// } 173 if (pdg == 2212) { << 137 174 dataName = "pEEPairProd"; << 138 return x; 175 } else if (pdg == 321) { << 139 } 176 dataName = "kaonEEPairProd"; << 177 } else if (pdg == 211) { << 178 dataName = "pionEEPairProd"; << 179 } else if (pdg == 11) { << 180 dataName = "eEEPairProd"; << 181 } else if (pdg == 13) { << 182 if (GetName() == "muToMuonPairProd") { << 183 dataName = "muMuMuPairProd"; << 184 } else { << 185 dataName = "muEEPairProd"; << 186 } << 187 } << 188 } << 189 } << 190 140 191 // for low-energy application this process s << 141 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 192 if(lowestKinEnergy >= HighEnergyLimit()) { r << 193 142 194 if (p == particle) { << 143 G4bool G4MuPairProductionModel::IsInCharge(const G4ParticleDefinition* p) 195 fElementData = << 144 { 196 G4ElementDataRegistry::Instance()->GetEl << 145 return (p == G4MuonMinus::MuonMinus() || p == G4MuonPlus::MuonPlus()); 197 if (nullptr == fElementData) { << 198 G4AutoLock l(&theMuPairMutex); << 199 fElementData = << 200 G4ElementDataRegistry::Instance()->GetElemen << 201 if (nullptr == fElementData) { << 202 fElementData = new G4ElementData(NZDATPAIR); << 203 fElementData->SetName(dataName); << 204 } << 205 G4bool useDataFile = G4EmParameters::Ins << 206 if (useDataFile) { useDataFile = Retrie << 207 if (!useDataFile) { MakeSamplingTables() << 208 if (fTableToFile) { StoreTables(); } << 209 l.unlock(); << 210 } << 211 if (IsMaster()) { << 212 InitialiseElementSelectors(p, cuts); << 213 } << 214 } << 215 } 146 } 216 147 217 //....oooOO0OOooo........oooOO0OOooo........oo << 148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 218 149 219 void G4MuPairProductionModel::InitialiseLocal( << 150 void G4MuPairProductionModel::Initialise(const G4ParticleDefinition*, 220 << 151 const G4DataVector& cuts) 221 { 152 { 222 if(p == particle && lowestKinEnergy < HighEn << 153 const G4ProductionCutsTable* theCoupleTable = 223 SetElementSelectors(masterModel->GetElemen << 154 G4ProductionCutsTable::GetProductionCutsTable(); >> 155 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 156 G4double fixedEnergy = sqrt(lowKinEnergy*highKinEnergy); >> 157 >> 158 for (size_t ii=0; ii<partialSumSigma.size(); ii++) { >> 159 G4DataVector* a=partialSumSigma[ii]; >> 160 if ( a ) delete a; >> 161 } >> 162 partialSumSigma.clear(); >> 163 for (size_t i=0; i<numOfCouples; i++) { >> 164 const G4MaterialCutsCouple* couple=theCoupleTable->GetMaterialCutsCouple(i); >> 165 const G4Material* material = couple->GetMaterial(); >> 166 G4DataVector* dv = ComputePartialSumSigma(material, fixedEnergy, >> 167 std::min(cuts[i], 0.25*highKinEnergy)); >> 168 partialSumSigma.push_back(dv); 224 } 169 } >> 170 if (!samplingTablesAreFilled) MakeSamplingTables(); 225 } 171 } 226 172 227 //....oooOO0OOooo........oooOO0OOooo........oo 173 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 228 174 229 G4double G4MuPairProductionModel::ComputeDEDXP << 175 G4double 230 << 176 G4MuPairProductionModel::ComputeDEDX(const G4MaterialCutsCouple* couple, 231 << 177 const G4ParticleDefinition*, 232 << 178 G4double kineticEnergy, G4double cutEnergy) 233 << 234 { 179 { 235 G4double dedx = 0.0; 180 G4double dedx = 0.0; 236 if (cutEnergy <= minPairEnergy || kineticEne << 181 if (minPairEnergy >= cutEnergy) return dedx; 237 { return dedx; } << 182 G4double cut = cutEnergy; >> 183 if (kineticEnergy <= cutEnergy) cut = kineticEnergy; 238 184 >> 185 const G4Material* material = couple->GetMaterial(); 239 const G4ElementVector* theElementVector = ma 186 const G4ElementVector* theElementVector = material->GetElementVector(); 240 const G4double* theAtomicNumDensityVector = << 187 const G4double* theAtomicNumDensityVector = 241 material->G 188 material->GetAtomicNumDensityVector(); 242 189 243 // loop for elements in the material 190 // loop for elements in the material 244 for (std::size_t i=0; i<material->GetNumberO << 191 for (size_t i=0; i<material->GetNumberOfElements(); i++) { 245 G4double Z = (*theElementVector)[i]->GetZ 192 G4double Z = (*theElementVector)[i]->GetZ(); 246 G4double tmax = MaxSecondaryEnergyForElem << 193 G4double loss = ComputMuPairLoss(Z, kineticEnergy, cut); 247 G4double loss = ComputMuPairLoss(Z, kinet << 248 dedx += loss*theAtomicNumDensityVector[i] 194 dedx += loss*theAtomicNumDensityVector[i]; 249 } 195 } 250 dedx = std::max(dedx, 0.0); << 196 if (dedx < 0.) dedx = 0.; 251 return dedx; 197 return dedx; 252 } 198 } 253 199 254 //....oooOO0OOooo........oooOO0OOooo........oo 200 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 255 201 256 G4double G4MuPairProductionModel::ComputMuPair << 202 G4double 257 << 203 G4MuPairProductionModel::ComputMuPairLoss(G4double Z, 258 << 204 G4double tkin, G4double cutEnergy) 259 << 260 { 205 { >> 206 static const >> 207 G4double xgi[] ={ 0.0199,0.1017,0.2372,0.4083,0.5917,0.7628,0.8983,0.9801}; >> 208 static const >> 209 G4double wgi[] ={ 0.0506,0.1112,0.1569,0.1813,0.1813,0.1569,0.1112,0.0506}; >> 210 static const G4double ak1=6.9; >> 211 static const G4double ak2=1.0; >> 212 static const G4double sqrte = sqrt(exp(1.)); >> 213 static const G4double aaa = log(minPairEnergy); >> 214 G4double z13 = pow(Z,0.333333333); >> 215 261 G4double loss = 0.0; 216 G4double loss = 0.0; 262 217 263 G4double cut = std::min(cutEnergy, tmax); << 218 G4double particleMass = (G4MuonPlus::MuonPlus())->GetPDGMass(); 264 if(cut <= minPairEnergy) { return loss; } << 219 G4double tmax = tkin + particleMass*(1.-0.75*sqrte*z13); >> 220 >> 221 G4double cut = cutEnergy; >> 222 if(tmax <= cutEnergy) cut = tmax; >> 223 if(cut <= minPairEnergy) return loss; 265 224 266 // calculate the rectricted loss 225 // calculate the rectricted loss 267 // numerical integration in log(PairEnergy) 226 // numerical integration in log(PairEnergy) 268 G4double aaa = G4Log(minPairEnergy); << 227 G4double bbb = log(cut); 269 G4double bbb = G4Log(cut); << 228 G4int kkk = (G4int)((bbb-aaa)/ak1+ak2); 270 << 229 if (kkk > 8) kkk = 8; 271 G4int kkk = std::min(std::max(G4lrint((bbb-a << 230 G4double hhh = (bbb-aaa)/(G4double)kkk; 272 G4double hhh = (bbb-aaa)/kkk; << 273 G4double x = aaa; 231 G4double x = aaa; 274 232 275 for (G4int l=0 ; l<kkk; ++l) { << 233 for (G4int l=0 ; l<kkk; l++) 276 for (G4int ll=0; ll<NINTPAIR; ++ll) { << 234 { 277 G4double ep = G4Exp(x+xgi[ll]*hhh); << 235 >> 236 for (G4int ll=0; ll<8; ll++) >> 237 { >> 238 G4double ep = exp(x+xgi[ll]*hhh); 278 loss += wgi[ll]*ep*ep*ComputeDMicroscopi 239 loss += wgi[ll]*ep*ep*ComputeDMicroscopicCrossSection(tkin, Z, ep); 279 } 240 } 280 x += hhh; 241 x += hhh; 281 } 242 } 282 loss *= hhh; 243 loss *= hhh; 283 loss = std::max(loss, 0.0); << 244 if (loss < 0.) loss = 0.; 284 return loss; 245 return loss; 285 } 246 } 286 247 287 //....oooOO0OOooo........oooOO0OOooo........oo 248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 288 249 289 G4double G4MuPairProductionModel::ComputeMicro 250 G4double G4MuPairProductionModel::ComputeMicroscopicCrossSection( 290 G4d 251 G4double tkin, 291 G4d 252 G4double Z, 292 G4d << 253 G4double cut) 293 { << 294 G4double cross = 0.; << 295 G4double tmax = MaxSecondaryEnergyForElement << 296 G4double cut = std::max(cutEnergy, minPairE << 297 if (tmax <= cut) { return cross; } << 298 << 299 G4double aaa = G4Log(cut); << 300 G4double bbb = G4Log(tmax); << 301 G4int kkk = std::min(std::max(G4lrint((bbb-a << 302 254 303 G4double hhh = (bbb-aaa)/(kkk); << 255 { >> 256 static const G4double ak1=6.9 ; >> 257 static const G4double ak2=1.0 ; >> 258 static const G4double sqrte = sqrt(exp(1.)); >> 259 static const G4double >> 260 xgi[]={ 0.0199,0.1017,0.2372,0.4083,0.5917,0.7628,0.8983,0.9801 }; >> 261 static const G4double >> 262 wgi[]={ 0.0506,0.1112,0.1569,0.1813,0.1813,0.1569,0.1112,0.0506 }; >> 263 G4double z13 = pow(Z,0.333333333); >> 264 >> 265 G4double cross = 0. ; >> 266 >> 267 G4double particleMass = (G4MuonPlus::MuonPlus())->GetPDGMass(); >> 268 G4double tmax = tkin + particleMass*(1.-0.75*sqrte*z13); >> 269 >> 270 if (tmax <= cut) return cross; >> 271 >> 272 G4double aaa = log(cut); >> 273 G4double bbb = log(tmax); >> 274 G4int kkk = (G4int)((bbb-aaa)/ak1 + ak2); >> 275 if(kkk > 8) kkk = 8; >> 276 G4double hhh = (bbb-aaa)/float(kkk); 304 G4double x = aaa; 277 G4double x = aaa; 305 278 306 for (G4int l=0; l<kkk; ++l) { << 279 for(G4int l=0; l<kkk; l++) 307 for (G4int i=0; i<NINTPAIR; ++i) { << 280 { 308 G4double ep = G4Exp(x + xgi[i]*hhh); << 281 for(G4int i=0; i<8; i++) >> 282 { >> 283 G4double ep = exp(x + xgi[i]*hhh); 309 cross += ep*wgi[i]*ComputeDMicroscopicCr 284 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep); 310 } 285 } 311 x += hhh; 286 x += hhh; 312 } 287 } 313 288 314 cross *= hhh; << 289 cross *=hhh; 315 cross = std::max(cross, 0.0); << 290 if(cross < 0.0) cross = 0.0; 316 return cross; 291 return cross; 317 } 292 } 318 293 319 //....oooOO0OOooo........oooOO0OOooo........oo 294 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 320 295 321 G4double G4MuPairProductionModel::ComputeDMicr 296 G4double G4MuPairProductionModel::ComputeDMicroscopicCrossSection( 322 G4d 297 G4double tkin, 323 G4d 298 G4double Z, 324 G4d 299 G4double pairEnergy) 325 // Calculates the differential (D) microscopi << 300 // Calculates the differential (D) microscopic cross section 326 // using the cross section formula of R.P. Kok << 301 // using the cross section formula of R.P. Kokoulin (18/01/98) 327 // Code modified by R.P. Kokoulin, V.N. Ivanch << 302 { 328 { << 303 static const G4double 329 static const G4double bbbtf= 183. ; << 304 xgi[] ={ 0.0199,0.1017,0.2372,0.4083,0.5917,0.7628,0.8983,0.9801 }; 330 static const G4double bbbh = 202.4 ; << 331 static const G4double g1tf = 1.95e-5 ; << 332 static const G4double g2tf = 5.3e-5 ; << 333 static const G4double g1h = 4.4e-5 ; << 334 static const G4double g2h = 4.8e-5 ; << 335 305 336 if (pairEnergy <= minPairEnergy) << 306 static const G4double 337 return 0.0; << 307 wgi[] ={ 0.0506,0.1112,0.1569,0.1813,0.1813,0.1569,0.1112,0.0506 }; 338 308 339 G4double totalEnergy = tkin + particleMass; << 309 G4double cross = 0.; 340 G4double residEnergy = totalEnergy - pairEn << 341 310 342 if (residEnergy <= 0.75*sqrte*z13*particleMa << 311 G4double particleMass = (G4MuonPlus::MuonPlus())->GetPDGMass(); 343 return 0.0; << 312 G4double totalEnergy = tkin + particleMass; >> 313 G4double energyLoss = totalEnergy - pairEnergy; >> 314 G4double a = 6.*particleMass*particleMass/(totalEnergy*energyLoss) ; >> 315 G4double b = 4.*electron_mass_c2/pairEnergy; >> 316 >> 317 G4double tmn = (b+2.*a*(1.-b))/(1.+(1.-a)*sqrt(1.-b)); >> 318 if(tmn <= 0.) return cross; >> 319 tmn = log(tmn); 344 320 345 G4double a0 = 1.0 / (totalEnergy * residEner << 321 // Gaussian integration in ln(1-ro) ( with 8 points) 346 G4double alf = 4.0 * electron_mass_c2 / pair << 322 for (G4int i=0; i<8; i++) 347 G4double rt = std::sqrt(1.0 - alf); << 323 { 348 G4double delta = 6.0 * particleMass * partic << 324 G4double ro = 1.-exp(tmn*xgi[i]); 349 G4double tmnexp = alf/(1.0 + rt) + delta*rt; << 325 cross += wgi[i]*(1.-ro)*ComputeDDMicroscopicCrossSection( >> 326 tkin,Z,pairEnergy,ro); >> 327 } >> 328 cross *= -tmn; >> 329 return cross; >> 330 } 350 331 351 if(tmnexp >= 1.0) { return 0.0; } << 332 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 352 333 353 G4double tmn = G4Log(tmnexp); << 334 G4double G4MuPairProductionModel::ComputeDDMicroscopicCrossSection( >> 335 G4double tkin, >> 336 G4double Z, >> 337 G4double pairEnergy, >> 338 G4double asymmetry) >> 339 // Calculates the differential (D) microscopic cross section >> 340 // using the cross section formula of R.P. Kokoulin (18/01/98) >> 341 { >> 342 static const G4double sqrte = sqrt(exp(1.)) ; >> 343 >> 344 G4double bbbtf= 183. ; >> 345 G4double bbbh = 202.4 ; >> 346 G4double g1tf = 1.95e-5 ; >> 347 G4double g2tf = 5.3e-5 ; >> 348 G4double g1h = 4.4e-5 ; >> 349 G4double g2h = 4.8e-5 ; 354 350 355 G4double massratio = particleMass/CLHEP::ele << 351 G4double particleMass = (G4MuonPlus::MuonPlus())->GetPDGMass(); 356 G4double massratio2 = massratio*massratio; << 352 G4double totalEnergy = tkin + particleMass; 357 G4double inv_massratio2 = 1.0 / massratio2; << 353 G4double energyLoss = totalEnergy - pairEnergy; >> 354 G4double massratio = particleMass/electron_mass_c2 ; >> 355 G4double massratio2 = massratio*massratio ; >> 356 >> 357 G4double z13 = pow(Z,0.333333333); >> 358 G4double z23 = z13*z13 ; >> 359 >> 360 G4double c3 = 3.*sqrte*particleMass/4. ; >> 361 >> 362 G4double DDCrossSection = 0. ; >> 363 if (energyLoss <= c3*z13) return DDCrossSection; >> 364 >> 365 G4double c7 = 4.*electron_mass_c2; >> 366 G4double c8 = 6.*particleMass*particleMass; >> 367 G4double alf = c7/pairEnergy; >> 368 G4double a3 = 1. - alf; >> 369 if (a3 <= 0.) return DDCrossSection; 358 370 359 // zeta calculation << 371 // zeta calculation 360 G4double bbb,g1,g2; << 372 G4double bbb,g1,g2,zeta1,zeta2,zeta,z2; 361 if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = 373 if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = g2h ; } 362 else { bbb = bbbtf; g1 = g1tf; g2 = 374 else { bbb = bbbtf; g1 = g1tf; g2 = g2tf; } 363 << 375 zeta1 = 0.073 * log(totalEnergy/(particleMass+g1*z23*totalEnergy))-0.26 ; 364 G4double zeta = 0.0; << 376 if ( zeta1 > 0.) 365 G4double z1exp = totalEnergy / (particleMass << 366 << 367 // 35.221047195922 is the root of zeta1(x) = << 368 // condition below is the same as zeta1 > 0. << 369 if (z1exp > 35.221047195922) << 370 { 377 { 371 G4double z2exp = totalEnergy / (particleMa << 378 zeta2 = 0.058*log(totalEnergy/(particleMass+g2*z13*totalEnergy))-0.14 ; 372 zeta = (0.073 * G4Log(z1exp) - 0.26) / (0. << 379 zeta = zeta1/zeta2 ; >> 380 } >> 381 else >> 382 { >> 383 zeta = 0. ; 373 } 384 } 374 385 375 G4double z2 = Z*(Z+zeta); << 386 z2 = Z*(Z+zeta); 376 G4double screen0 = 2.*electron_mass_c2*sqrte << 377 G4double beta = 0.5*pairEnergy*pairEnergy*a0 << 378 G4double xi0 = 0.5*massratio2*beta; << 379 << 380 // Gaussian integration in ln(1-ro) ( with 8 << 381 G4double rho[NINTPAIR]; << 382 G4double rho2[NINTPAIR]; << 383 G4double xi[NINTPAIR]; << 384 G4double xi1[NINTPAIR]; << 385 G4double xii[NINTPAIR]; << 386 387 387 for (G4int i = 0; i < NINTPAIR; ++i) << 388 G4double screen0 = 2.*electron_mass_c2*sqrte*bbb/(z13*pairEnergy); >> 389 G4double a0 = totalEnergy*energyLoss; >> 390 G4double a1 = pairEnergy*pairEnergy/a0; >> 391 G4double bet = 0.5*a1; >> 392 G4double xi0 = 0.25*massratio2*a1; >> 393 G4double del = c8/a0; >> 394 >> 395 G4double romin = 0. ; >> 396 G4double romax = (1.-del)*sqrt(1.-c7/pairEnergy); >> 397 >> 398 if((asymmetry < romin) || (asymmetry > romax)) return DDCrossSection; >> 399 >> 400 G4double a4 = 1.-asymmetry ; >> 401 G4double a5 = a4*(2.-a4) ; >> 402 G4double a6 = 1.-a5 ; >> 403 G4double a7 = 1.+a6 ; >> 404 G4double a9 = 3.+a6 ; >> 405 G4double xi = xi0*a5 ; >> 406 G4double xii = 1./xi ; >> 407 G4double xi1 = 1.+xi ; >> 408 G4double screen = screen0*xi1/a5 ; >> 409 >> 410 G4double yeu = 5.-a6+4.*bet*a7 ; >> 411 G4double yed = 2.*(1.+3.*bet)*log(3.+xii)-a6-a1*(2.-a6) ; >> 412 G4double yel = 1.+yeu/yed ; >> 413 G4double ale=log(bbb/z13*sqrt(xi1*yel)/(1.+screen*yel)) ; >> 414 G4double cre = 0.5*log(1.+2.25/(massratio2*z23)*xi1*yel) ; >> 415 G4double be; >> 416 if (xi <= 1.e3) be = ((2.+a6)*(1.+bet)+xi*a9)*log(1.+xii)+(a5-bet)/xi1-a9; >> 417 else be = (3.-a6+a1*a7)/(2*xi); >> 418 G4double fe = (ale-cre)*be; >> 419 if ( fe < 0.) fe = 0. ; >> 420 >> 421 G4double ymu = 4.+a6 +3.*bet*a7 ; >> 422 G4double ymd = a7*(1.5+a1)*log(3.+xi)+1.-1.5*a6 ; >> 423 G4double ym1 = 1.+ymu/ymd ; >> 424 G4double alm_crm = log(bbb*massratio/(1.5*z23*(1.+screen*ym1))); >> 425 G4double a10,bm; >> 426 if ( xi >= 1.e-3) 388 { 427 { 389 rho[i] = G4Exp(tmn*xgi[i]) - 1.0; // rho = << 428 a10 = (1.+a1)*a5 ; 390 rho2[i] = rho[i] * rho[i]; << 429 bm = (a7*(1.+1.5*bet)-a10*xii)*log(xi1)+xi*(a5-bet)/xi1+a10; 391 xi[i] = xi0*(1.0-rho2[i]); << 392 xi1[i] = 1.0 + xi[i]; << 393 xii[i] = 1.0 / xi[i]; << 394 } 430 } >> 431 else >> 432 bm = (5.-a6+bet*a9)*(xi/2.); >> 433 >> 434 G4double fm = alm_crm*bm; >> 435 if ( fm < 0.) fm = 0. ; 395 436 396 G4double ye1[NINTPAIR]; << 437 DDCrossSection = (fe+fm/massratio2); 397 G4double ym1[NINTPAIR]; << 398 438 399 G4double b40 = 4.0 * beta; << 439 DDCrossSection *= 4.*fine_structure_const*fine_structure_const 400 G4double b62 = 6.0 * beta + 2.0; << 440 *classic_electr_radius*classic_electr_radius/(3.*pi); 401 441 402 for (G4int i = 0; i < NINTPAIR; ++i) << 442 DDCrossSection *= z2*energyLoss/(totalEnergy*pairEnergy); 403 { << 404 G4double yeu = (b40 + 5.0) + (b40 - 1.0) * << 405 G4double yed = b62*G4Log(3.0 + xii[i]) + ( << 406 443 407 G4double ymu = b62 * (1.0 + rho2[i]) + 6.0 << 444 return DDCrossSection; 408 G4double ymd = (b40 + 3.0)*(1.0 + rho2[i]) << 409 + 2.0 - 3.0 * rho2[i]; << 410 << 411 ye1[i] = 1.0 + yeu / yed; << 412 ym1[i] = 1.0 + ymu / ymd; << 413 } << 414 << 415 G4double be[NINTPAIR]; << 416 G4double bm[NINTPAIR]; << 417 << 418 for(G4int i = 0; i < NINTPAIR; ++i) { << 419 if(xi[i] <= 1000.0) { << 420 be[i] = ((2.0 + rho2[i])*(1.0 + beta) + << 421 xi[i]*(3.0 + rho2[i]))*G4Log(1.0 + xi << 422 (1.0 - rho2[i] - beta)/xi1[i] - (3.0 + rho2[ << 423 } else { << 424 be[i] = 0.5*(3.0 - rho2[i] + 2.0*beta*(1 << 425 } << 426 445 427 if(xi[i] >= 0.001) { << 446 } 428 G4double a10 = (1.0 + 2.0 * beta) * (1.0 << 429 bm[i] = ((1.0 + rho2[i])*(1.0 + 1.5 * be << 430 xi[i] * (1.0 - rho2[i] - beta) << 431 } else { << 432 bm[i] = 0.5*(5.0 - rho2[i] + beta * (3.0 << 433 } << 434 } << 435 447 436 G4double sum = 0.0; << 448 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 437 449 438 for (G4int i = 0; i < NINTPAIR; ++i) { << 450 G4double 439 G4double screen = screen0*xi1[i]/(1.0 - rh << 451 G4MuPairProductionModel::CrossSection(const G4MaterialCutsCouple* couple, 440 G4double ale = G4Log(bbb/z13*std::sqrt(xi1 << 452 const G4ParticleDefinition*, 441 G4double cre = 0.5*G4Log(1. + 2.25*z23*xi1 << 453 G4double kineticEnergy, >> 454 G4double cutEnergy, G4double maxEnergy) >> 455 { >> 456 G4double cross = 0.0; 442 457 443 G4double fe = (ale-cre)*be[i]; << 458 G4double tmax = std::min(maxEnergy, kineticEnergy); 444 fe = std::max(fe, 0.0); << 459 if (cutEnergy >= tmax) return cross; 445 460 446 G4double alm_crm = G4Log(bbb*massratio/(1. << 461 const G4Material* material = couple->GetMaterial(); 447 G4double fm = std::max(alm_crm*bm[i], 0.0) << 462 const G4ElementVector* theElementVector = material->GetElementVector(); >> 463 const G4double* theAtomNumDensityVector=material->GetAtomicNumDensityVector(); 448 464 449 sum += wgi[i]*(1.0 + rho[i])*(fe + fm); << 465 for (size_t i=0; i<material->GetNumberOfElements(); i++) { 450 } << 466 G4double Z = (*theElementVector)[i]->GetZ(); >> 467 G4double cr = ComputeMicroscopicCrossSection(kineticEnergy, Z, cutEnergy); 451 468 452 return -tmn*sum*factorForCross*z2*residEnerg << 469 if (maxEnergy < kineticEnergy) { >> 470 cr -= ComputeMicroscopicCrossSection(kineticEnergy, Z, maxEnergy); >> 471 } >> 472 cross += theAtomNumDensityVector[i] * cr; >> 473 } >> 474 return cross; 453 } 475 } 454 476 455 //....oooOO0OOooo........oooOO0OOooo........oo 477 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 456 478 457 G4double G4MuPairProductionModel::ComputeCross << 479 G4DataVector* G4MuPairProductionModel::ComputePartialSumSigma( 458 con << 480 const G4Material* material, 459 << 481 G4double kineticEnergy, 460 << 482 G4double cut) 461 << 483 462 << 484 // Build the table of cross section per element. >> 485 // This table is used by DoIt to select randomly an element in the material. 463 { 486 { >> 487 G4int nElements = material->GetNumberOfElements(); >> 488 const G4ElementVector* theElementVector = material->GetElementVector(); >> 489 const G4double* theAtomNumDensityVector=material->GetAtomicNumDensityVector(); >> 490 >> 491 G4DataVector* dv = new G4DataVector(); >> 492 464 G4double cross = 0.0; 493 G4double cross = 0.0; 465 if (kineticEnergy <= lowestKinEnergy) { retu << 466 494 467 G4double maxPairEnergy = MaxSecondaryEnergyF << 495 for (G4int i=0; i<nElements; i++ ) { 468 G4double tmax = std::min(maxEnergy, maxPairE << 496 G4double Z = (*theElementVector)[i]->GetZ(); 469 G4double cut = std::max(cutEnergy, minPairE << 497 cross += theAtomNumDensityVector[i] * ComputeMicroscopicCrossSection( 470 if (cut >= tmax) { return cross; } << 498 kineticEnergy, Z, cut); 471 << 499 dv->push_back(cross); 472 cross = ComputeMicroscopicCrossSection(kinet << 473 if(tmax < kineticEnergy) { << 474 cross -= ComputeMicroscopicCrossSection(ki << 475 } 500 } 476 return cross; << 501 return dv; 477 } 502 } 478 503 479 //....oooOO0OOooo........oooOO0OOooo........oo 504 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 480 505 481 void G4MuPairProductionModel::MakeSamplingTabl 506 void G4MuPairProductionModel::MakeSamplingTables() 482 { 507 { 483 G4double factore = G4Exp(G4Log(emax/emin)/G4 << 508 static const G4double sqrte = sqrt(exp(1.)) ; >> 509 G4double particleMass = (G4MuonPlus::MuonPlus())->GetPDGMass(); 484 510 485 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 511 for (G4int iz=0; iz<nzdat; iz++) >> 512 { >> 513 G4double atomicNumber = zdat[iz]; >> 514 G4double z13 = exp(log(atomicNumber)/3.) ; 486 515 487 G4double Z = ZDATPAIR[iz]; << 516 for (G4int it=0; it<ntdat; it++) 488 G4Physics2DVector* pv = new G4Physics2DVec << 517 { 489 G4double kinEnergy = emin; << 518 G4double kineticEnergy = tdat[it]; 490 << 519 G4double maxPairEnergy = kineticEnergy+particleMass*(1.-0.75*sqrte*z13) ; 491 for (std::size_t it=0; it<=nbine; ++it) { << 520 492 << 521 G4double CrossSection = 0.0 ; 493 pv->PutY(it, G4Log(kinEnergy/CLHEP::MeV) << 522 494 G4double maxPairEnergy = MaxSecondaryEne << 523 G4double ymin = -5. ; 495 /* << 524 G4double ymax = 0. ; 496 G4cout << "it= " << it << " E= " << kinE << 525 G4double dy = (ymax-ymin)/NBIN ; 497 << " " << particle->GetParticleN << 526 498 << " maxE= " << maxPairEnergy << << 527 G4double y = ymin - 0.5*dy ; 499 << " ymin= " << ymin << G4endl; << 528 G4double yy = ymin - dy ; 500 */ << 529 G4double x = exp(y); 501 G4double coef = G4Log(minPairEnergy/kinE << 530 G4double fac = exp(dy); 502 G4double ymax = G4Log(maxPairEnergy/kinE << 531 G4double dx = exp(yy)*(fac - 1.0); 503 G4double fac = (ymax - ymin)/dy; << 532 504 std::size_t imax = (std::size_t)fac; << 533 if (maxPairEnergy > minPairEnergy) { 505 fac -= (G4double)imax; << 534 G4double c = log(maxPairEnergy/minPairEnergy); 506 << 535 for (G4int i=0 ; i<NBIN; i++) 507 G4double xSec = 0.0; << 536 { 508 G4double x = ymin; << 537 y += dy ; 509 /* << 538 x *= fac; 510 G4cout << "Z= " << currentZ << " z13= " << 539 dx*= fac; 511 << " mE= " << maxPairEnergy << " << 540 G4double ep = minPairEnergy*exp(c*x) ; 512 << " dy= " << dy << " c= " << co << 541 CrossSection += ep*dx*ComputeDMicroscopicCrossSection( 513 */ << 542 kineticEnergy, atomicNumber, ep); 514 // start from zero << 543 ya[i] = y; 515 pv->PutValue(0, it, 0.0); << 544 proba[iz][it][i] = CrossSection; 516 if(0 == it) { pv->PutX(nbiny, 0.0); } << 517 << 518 for (std::size_t i=0; i<nbiny; ++i) { << 519 << 520 if(0 == it) { pv->PutX(i, x); } << 521 << 522 if(i < imax) { << 523 G4double ep = kinEnergy*G4Exp(coef*( << 524 << 525 // not multiplied by interval, becau << 526 // will be used only for sampling << 527 //G4cout << "i= " << i << " x= " << << 528 // << " Egamma= " << ep << G << 529 xSec += ep*ComputeDMicroscopicCrossS << 530 << 531 // last bin before the kinematic lim << 532 } else if(i == imax) { << 533 G4double ep = kinEnergy*G4Exp(coef*( << 534 xSec += ep*fac*ComputeDMicroscopicCr << 535 } 545 } 536 pv->PutValue(i + 1, it, xSec); << 546 } else { 537 x += dy; << 547 for (G4int i=0 ; i<NBIN; i++) 538 } << 548 { 539 kinEnergy *= factore; << 549 y += dy ; >> 550 ya[i] = y ; >> 551 proba[iz][it][i] = 0.0 ; >> 552 } >> 553 } >> 554 >> 555 ya[NBIN]=0. ; >> 556 >> 557 proba[iz][it][NBIN] = CrossSection; 540 558 541 // to avoid precision lost << 559 if(CrossSection > 0.) 542 if(it+1 == nbine) { kinEnergy = emax; } << 560 { >> 561 for(G4int ib=0; ib<=NBIN; ib++) >> 562 { >> 563 proba[iz][it][ib] /= CrossSection ; >> 564 >> 565 } >> 566 } 543 } 567 } 544 fElementData->InitialiseForElement(iz, pv) << 545 } 568 } >> 569 samplingTablesAreFilled = true; 546 } 570 } 547 571 548 //....oooOO0OOooo........oooOO0OOooo........oo 572 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 549 573 550 void G4MuPairProductionModel::SampleSecondarie << 574 G4DynamicParticle* G4MuPairProductionModel::SampleSecondary( 551 std::vector<G4Dy << 575 const G4MaterialCutsCouple*, 552 const G4Material << 576 const G4DynamicParticle*, 553 const G4DynamicP << 577 G4double, 554 G4double tmin, << 578 G4double) 555 G4double tmax) << 579 { 556 { << 580 return 0; 557 G4double kinEnergy = aDynamicParticle->GetKi << 581 } 558 //G4cout << "------- G4MuPairProductionModel << 582 559 // << kinEnergy << " " << 583 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 560 // << aDynamicParticle->GetDefinitio << 584 561 G4double totalEnergy = kinEnergy + particl << 585 std::vector<G4DynamicParticle*>* G4MuPairProductionModel::SampleSecondaries( 562 G4double totalMomentum = << 586 const G4MaterialCutsCouple* couple, 563 std::sqrt(kinEnergy*(kinEnergy + 2.0*parti << 587 const G4DynamicParticle* aDynamicParticle, 564 << 588 G4double minEnergy, 565 G4ThreeVector partDirection = aDynamicPartic << 589 G4double maxEnergy) 566 << 590 { 567 // select randomly one element constituing t << 591 static const G4double esq = sqrt(exp(1.)); 568 const G4Element* anElement = SelectRandomAto << 592 G4double kineticEnergy = aDynamicParticle->GetKineticEnergy(); 569 << 593 G4double particleMass = aDynamicParticle->GetDefinition()->GetPDGMass(); 570 // define interval of energy transfer << 594 G4ParticleMomentum ParticleDirection = 571 G4double maxPairEnergy = MaxSecondaryEnergyF << 595 aDynamicParticle->GetMomentumDirection(); 572 << 596 573 G4double maxEnergy = std::min(tmax, maxPairE << 597 // select randomly one element constituing the material 574 G4double minEnergy = std::max(tmin, minPairE << 598 const G4Element* anElement = SelectRandomAtom(couple); 575 << 599 576 if (minEnergy >= maxEnergy) { return; } << 600 // limits of the energy sampling 577 //G4cout << "emin= " << minEnergy << " emax= << 601 G4double totalEnergy = kineticEnergy + particleMass ; 578 // << " minPair= " << minPairEnergy << " max << 602 //G4double TotalMomentum = sqrt(KineticEnergy*(TotalEnergy+particleMass)) ; 579 // << " ymin= " << ymin << " dy= " << dy << 603 G4double Z3 = anElement->GetIonisation()->GetZ3() ; 580 << 604 G4double maxPairEnergy = totalEnergy-0.75*esq*particleMass*Z3 ; 581 G4double coeff = G4Log(minPairEnergy/kinEner << 605 if(maxPairEnergy > maxEnergy) maxPairEnergy = maxEnergy; 582 << 606 583 // compute limits << 607 // check against insufficient energy 584 G4double yymin = G4Log(minEnergy/kinEnergy)/ << 608 if(minEnergy >= maxPairEnergy) return 0; 585 G4double yymax = G4Log(maxEnergy/kinEnergy)/ << 609 586 << 610 // sample e-e+ energy, pair energy first 587 //G4cout << "yymin= " << yymin << " yymax= << 611 G4double PairEnergy,x,yc,y ; 588 << 612 // G4int iZ,iT; 589 // units should not be used, bacause table w << 613 G4int iy ; 590 G4double logTkin = G4Log(kinEnergy/CLHEP::Me << 614 591 << 615 // select sampling table ; 592 // sample e-e+ energy, pair energy first << 616 G4double lnZ = log(anElement->GetZ()) ; 593 << 617 G4double delmin = 1.e10 ; 594 // select sample table via Z << 618 G4double del ; 595 G4int iz1(0), iz2(0); << 619 G4int izz = 0; 596 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 620 G4int itt = 0; 597 if(currentZ == ZDATPAIR[iz]) { << 621 G4int NBINminus1 = NBIN-1; 598 iz1 = iz2 = iz; << 622 for (G4int iz=0; iz<nzdat; iz++) 599 break; << 623 { 600 } else if(currentZ < ZDATPAIR[iz]) { << 624 del = abs(lnZ-log(zdat[iz])) ; 601 iz2 = iz; << 625 if(del<delmin) 602 if(iz > 0) { iz1 = iz-1; } << 626 { 603 else { iz1 = iz2; } << 627 delmin=del ; 604 break; << 628 izz=iz ; 605 } << 629 } 606 } << 630 } 607 if (0 == iz1) { iz1 = iz2 = NZDATPAIR-1; } << 631 delmin = 1.e10 ; 608 << 632 for (G4int it=0; it<ntdat; it++) 609 G4double pairEnergy = 0.0; << 633 { 610 G4int count = 0; << 634 del = abs(log(kineticEnergy)-log(tdat[it])) ; 611 //G4cout << "start loop Z1= " << iz1 << " Z2 << 635 if(del<delmin) 612 do { << 636 { 613 ++count; << 637 delmin=del; 614 // sampling using only one random number << 638 itt=it ; 615 G4double rand = G4UniformRand(); << 639 } 616 << 640 } 617 G4double x = FindScaledEnergy(iz1, rand, l << 641 618 if(iz1 != iz2) { << 642 if( minEnergy <= minPairEnergy) 619 G4double x2 = FindScaledEnergy(iz2, rand << 643 iy = 0 ; 620 G4double lz1= nist->GetLOGZ(ZDATPAIR[iz1 << 644 else 621 G4double lz2= nist->GetLOGZ(ZDATPAIR[iz2 << 645 { 622 //G4cout << count << ". x= " << x << " << 646 G4double xc = log(minEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy); 623 // << " Z1= " << iz1 << " Z2 << 647 yc = log(xc) ; 624 x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1); << 648 iy = -1 ; 625 } << 649 do { iy += 1;} while ((ya[iy] < yc )&&(iy < NBINminus1)); 626 //G4cout << "x= " << x << " coeff= " << c << 650 } 627 pairEnergy = kinEnergy*G4Exp(x*coeff); << 651 628 << 652 G4double norm = proba[izz][itt][iy]; 629 // Loop checking, 03-Aug-2015, Vladimir Iv << 653 630 } while((pairEnergy < minEnergy || pairEnerg << 654 G4double r = norm+G4UniformRand()*(1.-norm); >> 655 >> 656 iy -= 1; >> 657 do { iy += 1;} while ((proba[izz][itt][iy] < r)&&(iy < NBINminus1)); >> 658 >> 659 //sampling is uniformly in y in the bin >> 660 if( iy < NBIN ) y = ya[iy] + G4UniformRand() * ( ya[iy+1] - ya[iy]); >> 661 else y = ya[iy]; >> 662 >> 663 x = exp(y); >> 664 >> 665 PairEnergy = minPairEnergy*exp(x*log(maxPairEnergy/minPairEnergy)); >> 666 >> 667 // sample r=(E+-E-)/PairEnergy ( uniformly .....) >> 668 G4double rmax = (1.-6.*particleMass*particleMass/(totalEnergy* >> 669 (totalEnergy-PairEnergy))) >> 670 *sqrt(1.-minPairEnergy/PairEnergy); >> 671 r = rmax * (-1.+2.*G4UniformRand()) ; >> 672 >> 673 // compute energies from PairEnergy,r >> 674 G4double ElectronEnergy=(1.-r)*PairEnergy/2. ; >> 675 G4double PositronEnergy=(1.+r)*PairEnergy/2. ; >> 676 >> 677 // angles of the emitted particles ( Z - axis along the parent particle) >> 678 // (mean theta for the moment) >> 679 G4double Teta = electron_mass_c2/totalEnergy ; >> 680 >> 681 G4double Phi = twopi * G4UniformRand() ; >> 682 G4double dirx = sin(Teta)*cos(Phi) , diry = sin(Teta)*sin(Phi) , >> 683 dirz = cos(Teta) ; >> 684 >> 685 G4double ElectronMomentum , PositronMomentum ; >> 686 //G4double finalPx,finalPy,finalPz ; >> 687 G4double ElectKineEnergy = ElectronEnergy - electron_mass_c2 ; >> 688 >> 689 ElectronMomentum = sqrt(ElectKineEnergy*(ElectronEnergy+electron_mass_c2)); >> 690 G4ThreeVector ElectDirection ( dirx, diry, dirz ); >> 691 ElectDirection.rotateUz(ParticleDirection); >> 692 >> 693 // create G4DynamicParticle object for the particle1 >> 694 G4DynamicParticle* aParticle1= new G4DynamicParticle(); >> 695 aParticle1->SetDefinition(G4Electron::Electron()); >> 696 aParticle1->SetMomentumDirection(ElectDirection); >> 697 aParticle1->SetKineticEnergy(ElectKineEnergy); >> 698 >> 699 >> 700 G4double PositKineEnergy = PositronEnergy - electron_mass_c2 ; >> 701 PositronMomentum = sqrt(PositKineEnergy*(PositronEnergy+electron_mass_c2)); >> 702 >> 703 G4ThreeVector PositDirection ( -dirx, -diry, dirz ); >> 704 PositDirection.rotateUz(ParticleDirection); >> 705 >> 706 // create G4DynamicParticle object for the particle2 >> 707 G4DynamicParticle* aParticle2= new G4DynamicParticle(); >> 708 aParticle2->SetDefinition(G4Positron::Positron()); >> 709 aParticle2->SetMomentumDirection(PositDirection); >> 710 aParticle2->SetKineticEnergy(PositKineEnergy); 631 711 632 //G4cout << "## pairEnergy(GeV)= " << pairEn << 633 // << " Etot(GeV)= " << totalEnergy/ << 634 712 635 // sample r=(E+-E-)/pairEnergy ( uniformly << 713 std::vector<G4DynamicParticle*>* vdp = new std::vector<G4DynamicParticle*>; 636 G4double rmax = << 637 (1.-6.*particleMass*particleMass/(totalEne << 638 *std::sqrt(1.-minPairEnergy/pairEnergy); << 639 G4double r = rmax * (-1.+2.*G4UniformRand()) << 640 << 641 // compute energies from pairEnergy,r << 642 G4double eEnergy = (1.-r)*pairEnergy*0.5; << 643 G4double pEnergy = pairEnergy - eEnergy; << 644 << 645 // Sample angles << 646 G4ThreeVector eDirection, pDirection; << 647 // << 648 GetAngularDistribution()->SamplePairDirectio << 649 << 650 << 651 // create G4DynamicParticle object for e+e- << 652 eEnergy = std::max(eEnergy - CLHEP::electron << 653 pEnergy = std::max(pEnergy - CLHEP::electron << 654 auto aParticle1 = new G4DynamicParticle(theE << 655 auto aParticle2 = new G4DynamicParticle(theP << 656 // Fill output vector << 657 vdp->push_back(aParticle1); 714 vdp->push_back(aParticle1); 658 vdp->push_back(aParticle2); 715 vdp->push_back(aParticle2); 659 716 660 // primary change << 717 return vdp; 661 kinEnergy -= pairEnergy; << 662 partDirection *= totalMomentum; << 663 partDirection -= (aParticle1->GetMomentum() << 664 partDirection = partDirection.unit(); << 665 << 666 // if energy transfer is higher than thresho << 667 // then stop tracking the primary particle a << 668 if (pairEnergy > SecondaryThreshold()) { << 669 fParticleChange->ProposeTrackStatus(fStopA << 670 fParticleChange->SetProposedKineticEnergy( << 671 auto newdp = new G4DynamicParticle(particl << 672 vdp->push_back(newdp); << 673 } else { // continue tracking the primary e- << 674 fParticleChange->SetProposedMomentumDirect << 675 fParticleChange->SetProposedKineticEnergy( << 676 } << 677 //G4cout << "-- G4MuPairProductionModel::Sam << 678 } 718 } 679 719 680 //....oooOO0OOooo........oooOO0OOooo........oo 720 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 681 721 682 G4double << 722 const G4Element* G4MuPairProductionModel::SelectRandomAtom( 683 G4MuPairProductionModel::FindScaledEnergy(G4in << 723 const G4MaterialCutsCouple* couple) const 684 G4double logTkin, << 685 G4double yymin, G4double yymax) << 686 { 724 { 687 G4double res = yymin; << 725 // select randomly 1 element within the material 688 G4Physics2DVector* pv = fElementData->GetEle << 689 if (nullptr != pv) { << 690 G4double pmin = pv->Value(yymin, logTkin); << 691 G4double pmax = pv->Value(yymax, logTkin); << 692 G4double p0 = pv->Value(0.0, logTkin); << 693 if(p0 <= 0.0) { DataCorrupted(ZDATPAIR[iz] << 694 else { res = pv->FindLinearX((pmin + rand* << 695 } else { << 696 DataCorrupted(ZDATPAIR[iz], logTkin); << 697 } << 698 return res; << 699 } << 700 726 701 //....oooOO0OOooo........oooOO0OOooo........oo << 727 const G4Material* material = couple->GetMaterial(); 702 << 728 G4int nElements = material->GetNumberOfElements(); 703 void G4MuPairProductionModel::DataCorrupted(G4 << 729 const G4ElementVector* theElementVector = material->GetElementVector(); 704 { << 730 if (nElements == 1) return (*theElementVector)[0]; 705 G4ExceptionDescription ed; << 731 else if (nElements < 1) return 0; 706 ed << "G4ElementData is not properly initial << 707 << " Ekin(MeV)= " << G4Exp(logTkin) << 708 << " IsMasterThread= " << IsMaster() << 709 << " Model " << GetName(); << 710 G4Exception("G4MuPairProductionModel::()", " << 711 } << 712 << 713 //....oooOO0OOooo........oooOO0OOooo........oo << 714 732 715 void G4MuPairProductionModel::StoreTables() co << 733 G4DataVector* dv = partialSumSigma[couple->GetIndex()]; 716 { << 734 G4double rval = G4UniformRand()*((*dv)[nElements-1]); 717 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 735 for (G4int i=0; i<nElements; i++) { 718 G4int Z = ZDATPAIR[iz]; << 736 if (rval <= (*dv)[i]) return (*theElementVector)[i]; 719 G4Physics2DVector* pv = fElementData->GetE << 720 if(nullptr == pv) { << 721 DataCorrupted(Z, 1.0); << 722 return; << 723 } << 724 std::ostringstream ss; << 725 ss << "mupair/" << particle->GetParticleNa << 726 std::ofstream outfile(ss.str()); << 727 pv->Store(outfile); << 728 } 737 } >> 738 return (*theElementVector)[nElements-1]; 729 } 739 } 730 740 731 //....oooOO0OOooo........oooOO0OOooo........oo 741 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 732 742 733 G4bool G4MuPairProductionModel::RetrieveTables << 734 { << 735 for (G4int iz=0; iz<NZDATPAIR; ++iz) { << 736 G4double Z = ZDATPAIR[iz]; << 737 G4Physics2DVector* pv = new G4Physics2DVec << 738 std::ostringstream ss; << 739 ss << G4EmParameters::Instance()->GetDirLE << 740 << particle->GetParticleName() << Z << << 741 std::ifstream infile(ss.str(), std::ios::i << 742 if(!pv->Retrieve(infile)) { << 743 delete pv; << 744 return false; << 745 } << 746 fElementData->InitialiseForElement(iz, pv) << 747 } << 748 return true; << 749 } << 750 743 751 //....oooOO0OOooo........oooOO0OOooo........oo << 752 744