Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/muons/src/G4MuPairProductionModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/muons/src/G4MuPairProductionModel.cc (Version 11.3.0) and /processes/electromagnetic/muons/src/G4MuPairProductionModel.cc (Version 10.2.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4MuPairProductionModel.cc 91743 2015-08-04 11:49:58Z gcosmo $
 26 //                                                 27 //
 27 // -------------------------------------------     28 // -------------------------------------------------------------------
 28 //                                                 29 //
 29 // GEANT4 Class file                               30 // GEANT4 Class file
 30 //                                                 31 //
 31 //                                                 32 //
 32 // File name:     G4MuPairProductionModel          33 // File name:     G4MuPairProductionModel
 33 //                                                 34 //
 34 // Author:        Vladimir Ivanchenko on base      35 // Author:        Vladimir Ivanchenko on base of Laszlo Urban code
 35 //                                                 36 //
 36 // Creation date: 24.06.2002                       37 // Creation date: 24.06.2002
 37 //                                                 38 //
 38 // Modifications:                                  39 // Modifications:
 39 //                                                 40 //
 40 // 04-12-02 Change G4DynamicParticle construct     41 // 04-12-02 Change G4DynamicParticle constructor in PostStep (V.Ivanchenko)
 41 // 23-12-02 Change interface in order to move      42 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
 42 // 24-01-03 Fix for compounds (V.Ivanchenko)       43 // 24-01-03 Fix for compounds (V.Ivanchenko)
 43 // 27-01-03 Make models region aware (V.Ivanch     44 // 27-01-03 Make models region aware (V.Ivanchenko)
 44 // 13-02-03 Add model (V.Ivanchenko)               45 // 13-02-03 Add model (V.Ivanchenko)
 45 // 06-06-03 Fix in cross section calculation f     46 // 06-06-03 Fix in cross section calculation for high energy (V.Ivanchenko)
 46 // 20-10-03 2*xi in ComputeDDMicroscopicCrossS     47 // 20-10-03 2*xi in ComputeDDMicroscopicCrossSection   (R.Kokoulin)
 47 //          8 integration points in ComputeDMi     48 //          8 integration points in ComputeDMicroscopicCrossSection
 48 // 12-01-04 Take min cut of e- and e+ not its      49 // 12-01-04 Take min cut of e- and e+ not its sum (V.Ivanchenko)
 49 // 10-02-04 Update parameterisation using R.Ko     50 // 10-02-04 Update parameterisation using R.Kokoulin model (V.Ivanchenko)
 50 // 28-04-04 For complex materials repeat calcu     51 // 28-04-04 For complex materials repeat calculation of max energy for each
 51 //          material (V.Ivanchenko)                52 //          material (V.Ivanchenko)
 52 // 01-11-04 Fix bug inside ComputeDMicroscopic     53 // 01-11-04 Fix bug inside ComputeDMicroscopicCrossSection (R.Kokoulin)
 53 // 08-04-05 Major optimisation of internal int     54 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko)
 54 // 03-08-05 Add SetParticle method (V.Ivantche     55 // 03-08-05 Add SetParticle method (V.Ivantchenko)
 55 // 23-10-05 Add protection in sampling of e+e-     56 // 23-10-05 Add protection in sampling of e+e- pair energy needed for 
 56 //          low cuts (V.Ivantchenko)               57 //          low cuts (V.Ivantchenko)
 57 // 13-02-06 Add ComputeCrossSectionPerAtom (mm     58 // 13-02-06 Add ComputeCrossSectionPerAtom (mma)
 58 // 24-04-07 Add protection in SelectRandomAtom     59 // 24-04-07 Add protection in SelectRandomAtom method (V.Ivantchenko)
 59 // 12-05-06 Updated sampling (use cut) in Sele     60 // 12-05-06 Updated sampling (use cut) in SelectRandomAtom (A.Bogdanov) 
 60 // 11-10-07 Add ignoreCut flag (V.Ivanchenko)      61 // 11-10-07 Add ignoreCut flag (V.Ivanchenko) 
 61                                                    62 
 62 //                                                 63 //
 63 // Class Description:                              64 // Class Description:
 64 //                                                 65 //
 65 //                                                 66 //
 66 // -------------------------------------------     67 // -------------------------------------------------------------------
 67 //                                                 68 //
 68 //....oooOO0OOooo........oooOO0OOooo........oo     69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 69 //....oooOO0OOooo........oooOO0OOooo........oo     70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 70                                                    71 
 71 #include "G4MuPairProductionModel.hh"              72 #include "G4MuPairProductionModel.hh"
 72 #include "G4PhysicalConstants.hh"                  73 #include "G4PhysicalConstants.hh"
 73 #include "G4SystemOfUnits.hh"                      74 #include "G4SystemOfUnits.hh"
 74 #include "G4EmParameters.hh"                   << 
 75 #include "G4Electron.hh"                           75 #include "G4Electron.hh"
 76 #include "G4Positron.hh"                           76 #include "G4Positron.hh"
 77 #include "G4MuonMinus.hh"                          77 #include "G4MuonMinus.hh"
 78 #include "G4MuonPlus.hh"                           78 #include "G4MuonPlus.hh"
 79 #include "Randomize.hh"                            79 #include "Randomize.hh"
 80 #include "G4Material.hh"                           80 #include "G4Material.hh"
 81 #include "G4Element.hh"                            81 #include "G4Element.hh"
 82 #include "G4ElementVector.hh"                      82 #include "G4ElementVector.hh"
 83 #include "G4ElementDataRegistry.hh"            << 
 84 #include "G4ProductionCutsTable.hh"                83 #include "G4ProductionCutsTable.hh"
 85 #include "G4ParticleChangeForLoss.hh"              84 #include "G4ParticleChangeForLoss.hh"
 86 #include "G4ModifiedMephi.hh"                  <<  85 #include "G4ParticleChangeForGamma.hh"
 87 #include "G4Log.hh"                                86 #include "G4Log.hh"
 88 #include "G4Exp.hh"                                87 #include "G4Exp.hh"
 89 #include "G4AutoLock.hh"                       << 
 90                                                << 
 91 #include <iostream>                            << 
 92 #include <fstream>                             << 
 93                                                    88 
 94 //....oooOO0OOooo........oooOO0OOooo........oo     89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 95                                                    90 
 96 const G4int G4MuPairProductionModel::ZDATPAIR[ <<  91 // static members
 97                                                <<  92 //
 98 const G4double G4MuPairProductionModel::xgi[]  <<  93 const G4int    G4MuPairProductionModel::zdat[]={1, 4, 13, 29, 92};
 99     0.0198550717512320, 0.1016667612931865, 0. <<  94 const G4double G4MuPairProductionModel::adat[]={1.01, 9.01,26.98, 63.55, 238.03};
100     0.5917173212478250, 0.7627662049581645, 0. <<  95 const G4double G4MuPairProductionModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083,
101   };                                           <<  96                                                 0.5917, 0.7628, 0.8983, 0.9801 };
102                                                <<  97 const G4double G4MuPairProductionModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813,
103 const G4double G4MuPairProductionModel::wgi[]  <<  98                                                 0.1813, 0.1569, 0.1112, 0.0506 };
104     0.0506142681451880, 0.1111905172266870, 0. << 
105     0.1813418916891810, 0.1568533229389435, 0. << 
106   };                                           << 
107                                                << 
108 namespace                                      << 
109 {                                              << 
110   G4Mutex theMuPairMutex = G4MUTEX_INITIALIZER << 
111                                                << 
112   const G4double ak1 = 6.9;                    << 
113   const G4double ak2 = 1.0;                    << 
114 }                                              << 
115                                                    99 
116 //....oooOO0OOooo........oooOO0OOooo........oo    100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
117                                                   101 
                                                   >> 102 using namespace std;
                                                   >> 103 
118 G4MuPairProductionModel::G4MuPairProductionMod    104 G4MuPairProductionModel::G4MuPairProductionModel(const G4ParticleDefinition* p,
119                                                   105                                                  const G4String& nam)
120   : G4VEmModel(nam),                              106   : G4VEmModel(nam),
121   factorForCross(CLHEP::fine_structure_const*C << 107     particle(0),
122      CLHEP::classic_electr_radius*CLHEP::class << 108     factorForCross(4.*fine_structure_const*fine_structure_const
123      4./(3.*CLHEP::pi)),                       << 109                    *classic_electr_radius*classic_electr_radius/(3.*pi)),
124   sqrte(std::sqrt(G4Exp(1.))),                 << 110     sqrte(sqrt(G4Exp(1.))),
125   minPairEnergy(4.*CLHEP::electron_mass_c2),   << 111     currentZ(0),
126   lowestKinEnergy(0.85*CLHEP::GeV)             << 112     fParticleChange(0),
                                                   >> 113     minPairEnergy(4.*electron_mass_c2),
                                                   >> 114     lowestKinEnergy(1.0*GeV),
                                                   >> 115     nzdat(5),
                                                   >> 116     nYBinPerDecade(4),
                                                   >> 117     nbiny(1000),
                                                   >> 118     nbine(0),
                                                   >> 119     ymin(-5.),
                                                   >> 120     dy(0.005)
127 {                                                 121 {
128   nist = G4NistManager::Instance();               122   nist = G4NistManager::Instance();
129                                                   123 
130   theElectron = G4Electron::Electron();           124   theElectron = G4Electron::Electron();
131   thePositron = G4Positron::Positron();           125   thePositron = G4Positron::Positron();
132                                                   126 
133   if(nullptr != p) {                           << 127   particleMass = lnZ = z13 = z23 = 0;
                                                   >> 128 
                                                   >> 129   // setup lowest limit dependent on particle mass
                                                   >> 130   if(p) { 
134     SetParticle(p);                               131     SetParticle(p); 
135     lowestKinEnergy = std::max(lowestKinEnergy << 132     G4double limit = p->GetPDGMass()*8;
                                                   >> 133     if(limit > lowestKinEnergy) { lowestKinEnergy = limit; }
136   }                                               134   }
137   emin = lowestKinEnergy;                         135   emin = lowestKinEnergy;
138   emax = emin*10000.;                          << 136   emax = 10*TeV;
139   SetAngularDistribution(new G4ModifiedMephi() << 
140 }                                                 137 }
141                                                   138 
142 //....oooOO0OOooo........oooOO0OOooo........oo    139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
143                                                   140 
                                                   >> 141 G4MuPairProductionModel::~G4MuPairProductionModel()
                                                   >> 142 {}
                                                   >> 143 
                                                   >> 144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 145 
144 G4double G4MuPairProductionModel::MinPrimaryEn    146 G4double G4MuPairProductionModel::MinPrimaryEnergy(const G4Material*,
145                                                   147                                                    const G4ParticleDefinition*,
146                                                   148                                                    G4double cut)
147 {                                                 149 {
148   return std::max(lowestKinEnergy, cut);       << 150   return std::max(lowestKinEnergy,cut);
149 }                                                 151 }
150                                                   152 
151 //....oooOO0OOooo........oooOO0OOooo........oo    153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
152                                                   154 
153 void G4MuPairProductionModel::Initialise(const    155 void G4MuPairProductionModel::Initialise(const G4ParticleDefinition* p,
154                                          const    156                                          const G4DataVector& cuts)
155 {                                                 157 { 
156   SetParticle(p);                                 158   SetParticle(p); 
                                                   >> 159   if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); }
157                                                   160 
158   if (nullptr == fParticleChange) {            << 161   // for low-energy application this process should not work
159     fParticleChange = GetParticleChangeForLoss << 162   if(lowestKinEnergy >= HighEnergyLimit()) { return; }
160                                                   163 
161     // define scale of internal table for each << 164   // define scale of internal table for each thread only once
162     if (0 == nbine) {                          << 165   if(0 == nbine) {
163       emin = std::max(lowestKinEnergy, LowEner << 166     emin = std::max(lowestKinEnergy, LowEnergyLimit());
164       emax = std::max(HighEnergyLimit(), emin* << 167     emax = std::max(HighEnergyLimit(), emin*2);
165       nbine = std::size_t(nYBinPerDecade*std:: << 168     nbine = size_t(nYBinPerDecade*std::log10(emax/emin));
166       if(nbine < 3) { nbine = 3; }             << 169     if(nbine < 3) { nbine = 3; }
167                                                   170 
168       ymin = G4Log(minPairEnergy/emin);        << 171     ymin = G4Log(minPairEnergy/emin);
169       dy = -ymin/G4double(nbiny);              << 172     dy   = -ymin/G4double(nbiny);
170     }                                          << 
171     if (p == particle) {                       << 
172       G4int pdg = std::abs(p->GetPDGEncoding() << 
173       if (pdg == 2212) {                       << 
174   dataName = "pEEPairProd";                    << 
175       } else if (pdg == 321) {                 << 
176   dataName = "kaonEEPairProd";                 << 
177       } else if (pdg == 211) {                 << 
178   dataName = "pionEEPairProd";                 << 
179       } else if (pdg == 11) {                  << 
180   dataName = "eEEPairProd";                    << 
181       } else if (pdg == 13) {                  << 
182         if (GetName() == "muToMuonPairProd") { << 
183           dataName = "muMuMuPairProd";         << 
184   } else {                                     << 
185     dataName = "muEEPairProd";                 << 
186   }                                            << 
187       }                                        << 
188     }                                          << 
189   }                                               173   }
190                                                   174 
191   // for low-energy application this process s << 175   if(IsMaster() && p == particle) { 
192   if(lowestKinEnergy >= HighEnergyLimit()) { r << 176     
193                                                << 177     if(!fElementData) { 
194   if (p == particle) {                         << 178       fElementData = new G4ElementData();
195     fElementData =                             << 179       MakeSamplingTables(); 
196       G4ElementDataRegistry::Instance()->GetEl << 180     }    
197     if (nullptr == fElementData) {             << 181     InitialiseElementSelectors(p, cuts); 
198       G4AutoLock l(&theMuPairMutex);           << 
199       fElementData =                           << 
200   G4ElementDataRegistry::Instance()->GetElemen << 
201       if (nullptr == fElementData) {           << 
202   fElementData = new G4ElementData(NZDATPAIR); << 
203   fElementData->SetName(dataName);             << 
204       }                                        << 
205       G4bool useDataFile = G4EmParameters::Ins << 
206       if (useDataFile)  { useDataFile = Retrie << 
207       if (!useDataFile) { MakeSamplingTables() << 
208       if (fTableToFile) { StoreTables(); }     << 
209       l.unlock();                              << 
210     }                                          << 
211     if (IsMaster()) {                          << 
212       InitialiseElementSelectors(p, cuts);     << 
213     }                                          << 
214   }                                               182   }
215 }                                                 183 }
216                                                   184 
217 //....oooOO0OOooo........oooOO0OOooo........oo    185 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
218                                                   186 
219 void G4MuPairProductionModel::InitialiseLocal(    187 void G4MuPairProductionModel::InitialiseLocal(const G4ParticleDefinition* p,
220                                                   188                                               G4VEmModel* masterModel)
221 {                                                 189 {
222   if(p == particle && lowestKinEnergy < HighEn    190   if(p == particle && lowestKinEnergy < HighEnergyLimit()) {
223     SetElementSelectors(masterModel->GetElemen    191     SetElementSelectors(masterModel->GetElementSelectors());
                                                   >> 192     fElementData = masterModel->GetElementData();
224   }                                               193   }
225 }                                                 194 }
226                                                   195 
227 //....oooOO0OOooo........oooOO0OOooo........oo    196 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
228                                                   197 
229 G4double G4MuPairProductionModel::ComputeDEDXP    198 G4double G4MuPairProductionModel::ComputeDEDXPerVolume(
230                                                   199                                               const G4Material* material,
231                                                   200                                               const G4ParticleDefinition*,
232                                                   201                                                     G4double kineticEnergy,
233                                                   202                                                     G4double cutEnergy)
234 {                                                 203 {
235   G4double dedx = 0.0;                            204   G4double dedx = 0.0;
236   if (cutEnergy <= minPairEnergy || kineticEne    205   if (cutEnergy <= minPairEnergy || kineticEnergy <= lowestKinEnergy)
237     { return dedx; }                              206     { return dedx; }
238                                                   207 
239   const G4ElementVector* theElementVector = ma    208   const G4ElementVector* theElementVector = material->GetElementVector();
240   const G4double* theAtomicNumDensityVector =     209   const G4double* theAtomicNumDensityVector =
241                                    material->G    210                                    material->GetAtomicNumDensityVector();
242                                                   211 
243   //  loop for elements in the material           212   //  loop for elements in the material
244   for (std::size_t i=0; i<material->GetNumberO << 213   for (size_t i=0; i<material->GetNumberOfElements(); ++i) {
245      G4double Z = (*theElementVector)[i]->GetZ    214      G4double Z = (*theElementVector)[i]->GetZ();
246      G4double tmax = MaxSecondaryEnergyForElem    215      G4double tmax = MaxSecondaryEnergyForElement(kineticEnergy, Z);
247      G4double loss = ComputMuPairLoss(Z, kinet    216      G4double loss = ComputMuPairLoss(Z, kineticEnergy, cutEnergy, tmax);
248      dedx += loss*theAtomicNumDensityVector[i]    217      dedx += loss*theAtomicNumDensityVector[i];
249   }                                               218   }
250   dedx = std::max(dedx, 0.0);                  << 219   if (dedx < 0.) { dedx = 0.; }
251   return dedx;                                    220   return dedx;
252 }                                                 221 }
253                                                   222 
254 //....oooOO0OOooo........oooOO0OOooo........oo    223 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
255                                                   224 
256 G4double G4MuPairProductionModel::ComputMuPair    225 G4double G4MuPairProductionModel::ComputMuPairLoss(G4double Z, 
257                                                   226                                                    G4double tkin,
258                                                   227                                                    G4double cutEnergy, 
259                                                   228                                                    G4double tmax)
260 {                                                 229 {
261   G4double loss = 0.0;                            230   G4double loss = 0.0;
262                                                   231 
263   G4double cut = std::min(cutEnergy, tmax);    << 232   G4double cut = std::min(cutEnergy,tmax);
264   if(cut <= minPairEnergy) { return loss; }       233   if(cut <= minPairEnergy) { return loss; }
265                                                   234 
266   // calculate the rectricted loss                235   // calculate the rectricted loss
267   // numerical integration in log(PairEnergy)     236   // numerical integration in log(PairEnergy)
                                                   >> 237   G4double ak1=6.9;
                                                   >> 238   G4double ak2=1.0;
268   G4double aaa = G4Log(minPairEnergy);            239   G4double aaa = G4Log(minPairEnergy);
269   G4double bbb = G4Log(cut);                      240   G4double bbb = G4Log(cut);
270                                                   241 
271   G4int kkk = std::min(std::max(G4lrint((bbb-a << 242   G4int    kkk = (G4int)((bbb-aaa)/ak1+ak2);
272   G4double hhh = (bbb-aaa)/kkk;                << 243   if (kkk > 8)      { kkk = 8; }
                                                   >> 244   else if (kkk < 1) { kkk = 1; }
                                                   >> 245 
                                                   >> 246   G4double hhh = (bbb-aaa)/(G4double)kkk;
273   G4double x = aaa;                               247   G4double x = aaa;
274                                                   248 
275   for (G4int l=0 ; l<kkk; ++l) {               << 249   for (G4int l=0 ; l<kkk; l++)
276     for (G4int ll=0; ll<NINTPAIR; ++ll) {      << 250   {
                                                   >> 251 
                                                   >> 252     for (G4int ll=0; ll<8; ll++)
                                                   >> 253     {
277       G4double ep = G4Exp(x+xgi[ll]*hhh);         254       G4double ep = G4Exp(x+xgi[ll]*hhh);
278       loss += wgi[ll]*ep*ep*ComputeDMicroscopi    255       loss += wgi[ll]*ep*ep*ComputeDMicroscopicCrossSection(tkin, Z, ep);
279     }                                             256     }
280     x += hhh;                                     257     x += hhh;
281   }                                               258   }
282   loss *= hhh;                                    259   loss *= hhh;
283   loss = std::max(loss, 0.0);                  << 260   if (loss < 0.) loss = 0.;
284   return loss;                                    261   return loss;
285 }                                                 262 }
286                                                   263 
287 //....oooOO0OOooo........oooOO0OOooo........oo    264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
288                                                   265 
289 G4double G4MuPairProductionModel::ComputeMicro    266 G4double G4MuPairProductionModel::ComputeMicroscopicCrossSection(
290                                            G4d    267                                            G4double tkin,
291                                            G4d    268                                            G4double Z,
292                                            G4d    269                                            G4double cutEnergy)
293 {                                                 270 {
294   G4double cross = 0.;                            271   G4double cross = 0.;
295   G4double tmax = MaxSecondaryEnergyForElement    272   G4double tmax = MaxSecondaryEnergyForElement(tkin, Z);
296   G4double cut  = std::max(cutEnergy, minPairE    273   G4double cut  = std::max(cutEnergy, minPairEnergy);
297   if (tmax <= cut) { return cross; }              274   if (tmax <= cut) { return cross; }
298                                                   275 
                                                   >> 276   G4double ak1=6.9 ;
                                                   >> 277   G4double ak2=1.0 ;
299   G4double aaa = G4Log(cut);                      278   G4double aaa = G4Log(cut);
300   G4double bbb = G4Log(tmax);                     279   G4double bbb = G4Log(tmax);
301   G4int kkk = std::min(std::max(G4lrint((bbb-a << 280   G4int kkk = (G4int)((bbb-aaa)/ak1 + ak2);
                                                   >> 281   if(kkk > 8) { kkk = 8; }
                                                   >> 282   else if (kkk < 1) { kkk = 1; }
302                                                   283 
303   G4double hhh = (bbb-aaa)/(kkk);              << 284   G4double hhh = (bbb-aaa)/G4double(kkk);
304   G4double x = aaa;                               285   G4double x = aaa;
305                                                   286 
306   for (G4int l=0; l<kkk; ++l) {                << 287   for(G4int l=0; l<kkk; ++l)
307     for (G4int i=0; i<NINTPAIR; ++i) {         << 288   {
                                                   >> 289     for(G4int i=0; i<8; ++i)
                                                   >> 290     {
308       G4double ep = G4Exp(x + xgi[i]*hhh);        291       G4double ep = G4Exp(x + xgi[i]*hhh);
309       cross += ep*wgi[i]*ComputeDMicroscopicCr    292       cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep);
310     }                                             293     }
311     x += hhh;                                     294     x += hhh;
312   }                                               295   }
313                                                   296 
314   cross *= hhh;                                   297   cross *= hhh;
315   cross = std::max(cross, 0.0);                << 298   if(cross < 0.0) { cross = 0.0; }
316   return cross;                                   299   return cross;
317 }                                                 300 }
318                                                   301 
319 //....oooOO0OOooo........oooOO0OOooo........oo    302 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
320                                                   303 
321 G4double G4MuPairProductionModel::ComputeDMicr    304 G4double G4MuPairProductionModel::ComputeDMicroscopicCrossSection(
322                                            G4d    305                                            G4double tkin,
323                                            G4d    306                                            G4double Z,
324                                            G4d    307                                            G4double pairEnergy)
325 // Calculates the  differential (D) microscopi << 308  // Calculates the  differential (D) microscopic cross section
326 // using the cross section formula of R.P. Kok << 309  // using the cross section formula of R.P. Kokoulin (18/01/98)
327 // Code modified by R.P. Kokoulin, V.N. Ivanch << 310  // Code modified by R.P. Kokoulin, V.N. Ivanchenko (27/01/04)
328 {                                                 311 {
329   static const G4double bbbtf= 183. ;             312   static const G4double bbbtf= 183. ;
330   static const G4double bbbh = 202.4 ;            313   static const G4double bbbh = 202.4 ;
331   static const G4double g1tf = 1.95e-5 ;          314   static const G4double g1tf = 1.95e-5 ;
332   static const G4double g2tf = 5.3e-5 ;           315   static const G4double g2tf = 5.3e-5 ;
333   static const G4double g1h  = 4.4e-5 ;           316   static const G4double g1h  = 4.4e-5 ;
334   static const G4double g2h  = 4.8e-5 ;           317   static const G4double g2h  = 4.8e-5 ;
335                                                   318 
336   if (pairEnergy <= minPairEnergy)             << 
337     return 0.0;                                << 
338                                                << 
339   G4double totalEnergy  = tkin + particleMass;    319   G4double totalEnergy  = tkin + particleMass;
340   G4double residEnergy  = totalEnergy - pairEn    320   G4double residEnergy  = totalEnergy - pairEnergy;
                                                   >> 321   G4double massratio    = particleMass/electron_mass_c2 ;
                                                   >> 322   G4double massratio2   = massratio*massratio ;
                                                   >> 323   G4double cross = 0.;
341                                                   324 
342   if (residEnergy <= 0.75*sqrte*z13*particleMa << 325   G4double c3 = 0.75*sqrte*particleMass;
343     return 0.0;                                << 326   if (residEnergy <= c3*z13) { return cross; }
344                                                << 
345   G4double a0 = 1.0 / (totalEnergy * residEner << 
346   G4double alf = 4.0 * electron_mass_c2 / pair << 
347   G4double rt = std::sqrt(1.0 - alf);          << 
348   G4double delta = 6.0 * particleMass * partic << 
349   G4double tmnexp = alf/(1.0 + rt) + delta*rt; << 
350                                                << 
351   if(tmnexp >= 1.0) { return 0.0; }            << 
352                                                << 
353   G4double tmn = G4Log(tmnexp);                << 
354                                                   327 
355   G4double massratio = particleMass/CLHEP::ele << 328   G4double c7 = 4.*CLHEP::electron_mass_c2;
356   G4double massratio2 = massratio*massratio;   << 329   G4double c8 = 6.*particleMass*particleMass;
357   G4double inv_massratio2 = 1.0 / massratio2;  << 330   G4double alf = c7/pairEnergy;
                                                   >> 331   G4double a3 = 1. - alf;
                                                   >> 332   if (a3 <= 0.) { return cross; }
358                                                   333 
359   // zeta calculation                             334   // zeta calculation
360   G4double bbb,g1,g2;                             335   G4double bbb,g1,g2;
361   if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 =    336   if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = g2h ; }
362   else          { bbb = bbbtf; g1 = g1tf; g2 =    337   else          { bbb = bbbtf; g1 = g1tf; g2 = g2tf; }
363                                                   338 
364   G4double zeta = 0.0;                         << 339   G4double zeta = 0;
365   G4double z1exp = totalEnergy / (particleMass << 340   G4double zeta1 = 
366                                                << 341     0.073*G4Log(totalEnergy/(particleMass+g1*z23*totalEnergy))-0.26;
367   // 35.221047195922 is the root of zeta1(x) = << 342   if ( zeta1 > 0.)
368   // condition below is the same as zeta1 > 0. << 
369   if (z1exp > 35.221047195922)                 << 
370   {                                               343   {
371     G4double z2exp = totalEnergy / (particleMa << 344     G4double zeta2 = 
372     zeta = (0.073 * G4Log(z1exp) - 0.26) / (0. << 345       0.058*G4Log(totalEnergy/(particleMass+g2*z13*totalEnergy))-0.14;
                                                   >> 346     zeta  = zeta1/zeta2 ;
373   }                                               347   }
374                                                   348 
375   G4double z2 = Z*(Z+zeta);                       349   G4double z2 = Z*(Z+zeta);
376   G4double screen0 = 2.*electron_mass_c2*sqrte    350   G4double screen0 = 2.*electron_mass_c2*sqrte*bbb/(z13*pairEnergy);
377   G4double beta = 0.5*pairEnergy*pairEnergy*a0 << 351   G4double a0 = totalEnergy*residEnergy;
378   G4double xi0 = 0.5*massratio2*beta;          << 352   G4double a1 = pairEnergy*pairEnergy/a0;
379                                                << 353   G4double bet = 0.5*a1;
380   // Gaussian integration in ln(1-ro) ( with 8 << 354   G4double xi0 = 0.25*massratio2*a1;
381   G4double rho[NINTPAIR];                      << 355   G4double del = c8/a0;
382   G4double rho2[NINTPAIR];                     << 356 
383   G4double xi[NINTPAIR];                       << 357   G4double rta3 = sqrt(a3);
384   G4double xi1[NINTPAIR];                      << 358   G4double tmnexp = alf/(1. + rta3) + del*rta3;
385   G4double xii[NINTPAIR];                      << 359   if(tmnexp >= 1.0) { return cross; }
386                                                   360 
387   for (G4int i = 0; i < NINTPAIR; ++i)         << 361   G4double tmn = G4Log(tmnexp);
388   {                                            << 362   G4double sum = 0.;
389     rho[i] = G4Exp(tmn*xgi[i]) - 1.0; // rho = << 
390     rho2[i] = rho[i] * rho[i];                 << 
391     xi[i] = xi0*(1.0-rho2[i]);                 << 
392     xi1[i] = 1.0 + xi[i];                      << 
393     xii[i] = 1.0 / xi[i];                      << 
394   }                                            << 
395                                                << 
396   G4double ye1[NINTPAIR];                      << 
397   G4double ym1[NINTPAIR];                      << 
398                                                << 
399   G4double b40 = 4.0 * beta;                   << 
400   G4double b62 = 6.0 * beta + 2.0;             << 
401                                                   363 
402   for (G4int i = 0; i < NINTPAIR; ++i)         << 364   // Gaussian integration in ln(1-ro) ( with 8 points)
                                                   >> 365   for (G4int i=0; i<8; ++i)
403   {                                               366   {
404     G4double yeu = (b40 + 5.0) + (b40 - 1.0) * << 367     G4double a4 = G4Exp(tmn*xgi[i]);     // a4 = (1.-asymmetry)
405     G4double yed = b62*G4Log(3.0 + xii[i]) + ( << 368     G4double a5 = a4*(2.-a4) ;
406                                                << 369     G4double a6 = 1.-a5 ;
407     G4double ymu = b62 * (1.0 + rho2[i]) + 6.0 << 370     G4double a7 = 1.+a6 ;
408     G4double ymd = (b40 + 3.0)*(1.0 + rho2[i]) << 371     G4double a9 = 3.+a6 ;
409       + 2.0 - 3.0 * rho2[i];                   << 372     G4double xi = xi0*a5 ;
410                                                << 373     G4double xii = 1./xi ;
411     ye1[i] = 1.0 + yeu / yed;                  << 374     G4double xi1 = 1.+xi ;
412     ym1[i] = 1.0 + ymu / ymd;                  << 375     G4double screen = screen0*xi1/a5 ;
413   }                                            << 376     G4double yeu = 5.-a6+4.*bet*a7 ;
414                                                << 377     G4double yed = 2.*(1.+3.*bet)*G4Log(3.+xii)-a6-a1*(2.-a6) ;
415   G4double be[NINTPAIR];                       << 378     G4double ye1 = 1.+yeu/yed ;
416   G4double bm[NINTPAIR];                       << 379     G4double ale = G4Log(bbb/z13*sqrt(xi1*ye1)/(1.+screen*ye1)) ;
417                                                << 380     G4double cre = 0.5*G4Log(1.+2.25*z23*xi1*ye1/massratio2) ;
418   for(G4int i = 0; i < NINTPAIR; ++i) {        << 381     G4double be;
419     if(xi[i] <= 1000.0) {                      << 382 
420       be[i] = ((2.0 + rho2[i])*(1.0 + beta) +  << 383     if (xi <= 1.e3) { 
421          xi[i]*(3.0 + rho2[i]))*G4Log(1.0 + xi << 384       be = ((2.+a6)*(1.+bet)+xi*a9)*G4Log(1.+xii)+(a5-bet)/xi1-a9;
422   (1.0 - rho2[i] - beta)/xi1[i] - (3.0 + rho2[ << 385     } else {           
                                                   >> 386       be = (3.-a6+a1*a7)/(2.*xi);
                                                   >> 387     }
                                                   >> 388     G4double fe = (ale-cre)*be;
                                                   >> 389     if ( fe < 0.) fe = 0. ;
                                                   >> 390 
                                                   >> 391     G4double ymu = 4.+a6 +3.*bet*a7 ;
                                                   >> 392     G4double ymd = a7*(1.5+a1)*G4Log(3.+xi)+1.-1.5*a6 ;
                                                   >> 393     G4double ym1 = 1.+ymu/ymd ;
                                                   >> 394     G4double alm_crm = G4Log(bbb*massratio/(1.5*z23*(1.+screen*ym1)));
                                                   >> 395     G4double a10,bm;
                                                   >> 396     if ( xi >= 1.e-3)
                                                   >> 397     {
                                                   >> 398       a10 = (1.+a1)*a5 ;
                                                   >> 399       bm  = (a7*(1.+1.5*bet)-a10*xii)*G4Log(xi1)+xi*(a5-bet)/xi1+a10;
423     } else {                                      400     } else {
424       be[i] = 0.5*(3.0 - rho2[i] + 2.0*beta*(1 << 401       bm = (5.-a6+bet*a9)*(xi/2.);
425     }                                             402     }
426                                                   403 
427     if(xi[i] >= 0.001) {                       << 404     G4double fm = alm_crm*bm;
428       G4double a10 = (1.0 + 2.0 * beta) * (1.0 << 405     if ( fm < 0.) { fm = 0.; }
429       bm[i] = ((1.0 + rho2[i])*(1.0 + 1.5 * be << 
430                 xi[i] * (1.0 - rho2[i] - beta) << 
431     } else {                                   << 
432       bm[i] = 0.5*(5.0 - rho2[i] + beta * (3.0 << 
433     }                                          << 
434   }                                            << 
435                                                << 
436   G4double sum = 0.0;                          << 
437                                                << 
438   for (G4int i = 0; i < NINTPAIR; ++i) {       << 
439     G4double screen = screen0*xi1[i]/(1.0 - rh << 
440     G4double ale = G4Log(bbb/z13*std::sqrt(xi1 << 
441     G4double cre = 0.5*G4Log(1. + 2.25*z23*xi1 << 
442                                                   406 
443     G4double fe = (ale-cre)*be[i];             << 407     sum += wgi[i]*a4*(fe+fm/massratio2);
444     fe = std::max(fe, 0.0);                    << 
445                                                << 
446     G4double alm_crm = G4Log(bbb*massratio/(1. << 
447     G4double fm = std::max(alm_crm*bm[i], 0.0) << 
448                                                << 
449     sum += wgi[i]*(1.0 + rho[i])*(fe + fm);    << 
450   }                                               408   }
451                                                   409 
452   return -tmn*sum*factorForCross*z2*residEnerg << 410   cross = -tmn*sum*factorForCross*z2*residEnergy/(totalEnergy*pairEnergy);
                                                   >> 411   if(cross < 0.0) { cross = 0.0; }
                                                   >> 412   return cross;
453 }                                                 413 }
454                                                   414 
455 //....oooOO0OOooo........oooOO0OOooo........oo    415 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
456                                                   416 
457 G4double G4MuPairProductionModel::ComputeCross    417 G4double G4MuPairProductionModel::ComputeCrossSectionPerAtom(
458                                            con    418                                            const G4ParticleDefinition*,
459                                                   419                                                  G4double kineticEnergy,
460                                                   420                                                  G4double Z, G4double,
461                                                   421                                                  G4double cutEnergy,
462                                                   422                                                  G4double maxEnergy)
463 {                                                 423 {
464   G4double cross = 0.0;                           424   G4double cross = 0.0;
465   if (kineticEnergy <= lowestKinEnergy) { retu    425   if (kineticEnergy <= lowestKinEnergy) { return cross; }
466                                                   426 
467   G4double maxPairEnergy = MaxSecondaryEnergyF    427   G4double maxPairEnergy = MaxSecondaryEnergyForElement(kineticEnergy, Z);
468   G4double tmax = std::min(maxEnergy, maxPairE    428   G4double tmax = std::min(maxEnergy, maxPairEnergy);
469   G4double cut  = std::max(cutEnergy, minPairE    429   G4double cut  = std::max(cutEnergy, minPairEnergy);
470   if (cut >= tmax) { return cross; }              430   if (cut >= tmax) { return cross; }
471                                                   431 
472   cross = ComputeMicroscopicCrossSection(kinet    432   cross = ComputeMicroscopicCrossSection(kineticEnergy, Z, cut);
473   if(tmax < kineticEnergy) {                      433   if(tmax < kineticEnergy) {
474     cross -= ComputeMicroscopicCrossSection(ki    434     cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax);
475   }                                               435   }
476   return cross;                                   436   return cross;
477 }                                                 437 }
478                                                   438 
479 //....oooOO0OOooo........oooOO0OOooo........oo    439 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
480                                                   440 
481 void G4MuPairProductionModel::MakeSamplingTabl    441 void G4MuPairProductionModel::MakeSamplingTables()
482 {                                                 442 {
483   G4double factore = G4Exp(G4Log(emax/emin)/G4    443   G4double factore = G4Exp(G4Log(emax/emin)/G4double(nbine));
484                                                   444 
485   for (G4int iz=0; iz<NZDATPAIR; ++iz) {       << 445   for (G4int iz=0; iz<nzdat; ++iz) {
486                                                   446 
487     G4double Z = ZDATPAIR[iz];                 << 447     G4double Z = zdat[iz];
488     G4Physics2DVector* pv = new G4Physics2DVec    448     G4Physics2DVector* pv = new G4Physics2DVector(nbiny+1,nbine+1);
489     G4double kinEnergy = emin;                    449     G4double kinEnergy = emin;
490                                                   450 
491     for (std::size_t it=0; it<=nbine; ++it) {  << 451     for (size_t it=0; it<=nbine; ++it) {
492                                                   452 
493       pv->PutY(it, G4Log(kinEnergy/CLHEP::MeV) << 453       pv->PutY(it, G4Log(kinEnergy/MeV));
494       G4double maxPairEnergy = MaxSecondaryEne    454       G4double maxPairEnergy = MaxSecondaryEnergyForElement(kinEnergy, Z);
495       /*                                          455       /*
496       G4cout << "it= " << it << " E= " << kinE    456       G4cout << "it= " << it << " E= " << kinEnergy 
497              << "  " << particle->GetParticleN    457              << "  " << particle->GetParticleName()   
498              << " maxE= " << maxPairEnergy <<     458              << " maxE= " << maxPairEnergy << "  minE= " << minPairEnergy 
499              << " ymin= " << ymin << G4endl;      459              << " ymin= " << ymin << G4endl;
500       */                                          460       */
501       G4double coef = G4Log(minPairEnergy/kinE    461       G4double coef = G4Log(minPairEnergy/kinEnergy)/ymin;
502       G4double ymax = G4Log(maxPairEnergy/kinE    462       G4double ymax = G4Log(maxPairEnergy/kinEnergy)/coef;
503       G4double fac  = (ymax - ymin)/dy;           463       G4double fac  = (ymax - ymin)/dy;
504       std::size_t imax   = (std::size_t)fac;   << 464       size_t imax   = (size_t)fac;
505       fac -= (G4double)imax;                      465       fac -= (G4double)imax;
506                                                   466    
507       G4double xSec = 0.0;                        467       G4double xSec = 0.0;
508       G4double x = ymin;                          468       G4double x = ymin;
509       /*                                          469       /*
510       G4cout << "Z= " << currentZ << " z13= "     470       G4cout << "Z= " << currentZ << " z13= " << z13 
511              << " mE= " << maxPairEnergy << "     471              << " mE= " << maxPairEnergy << "  ymin= " << ymin 
512              << " dy= " << dy << "  c= " << co    472              << " dy= " << dy << "  c= " << coef << G4endl;
513       */                                          473       */
514       // start from zero                          474       // start from zero
515       pv->PutValue(0, it, 0.0);                   475       pv->PutValue(0, it, 0.0);
516       if(0 == it) { pv->PutX(nbiny, 0.0); }       476       if(0 == it) { pv->PutX(nbiny, 0.0); }
517                                                   477 
518       for (std::size_t i=0; i<nbiny; ++i) {    << 478       for (size_t i=0; i<nbiny; ++i) {
519                                                   479 
520         if(0 == it) { pv->PutX(i, x); }           480         if(0 == it) { pv->PutX(i, x); }
521                                                   481 
522         if(i < imax) {                            482         if(i < imax) {
523           G4double ep = kinEnergy*G4Exp(coef*(    483           G4double ep = kinEnergy*G4Exp(coef*(x + dy*0.5));
524                                                   484 
525           // not multiplied by interval, becau    485           // not multiplied by interval, because table 
526           // will be used only for sampling       486           // will be used only for sampling
527           //G4cout << "i= " << i << " x= " <<     487           //G4cout << "i= " << i << " x= " << x << "E= " << kinEnergy  
528           //         << " Egamma= " << ep << G    488           //         << " Egamma= " << ep << G4endl;
529           xSec += ep*ComputeDMicroscopicCrossS    489           xSec += ep*ComputeDMicroscopicCrossSection(kinEnergy, Z, ep);
530                                                   490 
531           // last bin before the kinematic lim    491           // last bin before the kinematic limit
532         } else if(i == imax) {                    492         } else if(i == imax) {
533           G4double ep = kinEnergy*G4Exp(coef*(    493           G4double ep = kinEnergy*G4Exp(coef*(x + fac*dy*0.5));
534           xSec += ep*fac*ComputeDMicroscopicCr    494           xSec += ep*fac*ComputeDMicroscopicCrossSection(kinEnergy, Z, ep);
535         }                                         495         }
536         pv->PutValue(i + 1, it, xSec);            496         pv->PutValue(i + 1, it, xSec);
537         x += dy;                                  497         x += dy;
538       }                                           498       } 
539       kinEnergy *= factore;                       499       kinEnergy *= factore;
540                                                   500 
541       // to avoid precision lost                  501       // to avoid precision lost
542       if(it+1 == nbine) { kinEnergy = emax; }     502       if(it+1 == nbine) { kinEnergy = emax; }
543     }                                             503     }
544     fElementData->InitialiseForElement(iz, pv) << 504     fElementData->InitialiseForElement(zdat[iz], pv);
545   }                                               505   }
546 }                                                 506 }
547                                                   507 
548 //....oooOO0OOooo........oooOO0OOooo........oo    508 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
549                                                   509 
550 void G4MuPairProductionModel::SampleSecondarie    510 void G4MuPairProductionModel::SampleSecondaries(
551                               std::vector<G4Dy    511                               std::vector<G4DynamicParticle*>* vdp, 
552                               const G4Material    512                               const G4MaterialCutsCouple* couple,
553                               const G4DynamicP    513                               const G4DynamicParticle* aDynamicParticle,
554                               G4double tmin,      514                               G4double tmin,
555                               G4double tmax)      515                               G4double tmax)
556 {                                                 516 {
557   G4double kinEnergy = aDynamicParticle->GetKi << 517   G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
558   //G4cout << "------- G4MuPairProductionModel    518   //G4cout << "------- G4MuPairProductionModel::SampleSecondaries E(MeV)= " 
559   //         << kinEnergy << "  "              << 519   //         << kineticEnergy << "  " 
560   //         << aDynamicParticle->GetDefinitio    520   //         << aDynamicParticle->GetDefinition()->GetParticleName() << G4endl;
561   G4double totalEnergy   = kinEnergy + particl << 521   G4double totalEnergy   = kineticEnergy + particleMass;
562   G4double totalMomentum =                        522   G4double totalMomentum = 
563     std::sqrt(kinEnergy*(kinEnergy + 2.0*parti << 523     sqrt(kineticEnergy*(kineticEnergy + 2.0*particleMass));
564                                                   524 
565   G4ThreeVector partDirection = aDynamicPartic    525   G4ThreeVector partDirection = aDynamicParticle->GetMomentumDirection();
566                                                   526 
567   // select randomly one element constituing t    527   // select randomly one element constituing the material
568   const G4Element* anElement = SelectRandomAto << 528   const G4Element* anElement = SelectRandomAtom(couple,particle,kineticEnergy);
569                                                   529 
570   // define interval of energy transfer           530   // define interval of energy transfer
571   G4double maxPairEnergy = MaxSecondaryEnergyF << 531   G4double maxPairEnergy = MaxSecondaryEnergyForElement(kineticEnergy, 
572                                                   532                                                         anElement->GetZ());
573   G4double maxEnergy = std::min(tmax, maxPairE << 533   G4double maxEnergy     = std::min(tmax, maxPairEnergy);
574   G4double minEnergy = std::max(tmin, minPairE << 534   G4double minEnergy     = std::max(tmin, minPairEnergy);
575                                                   535 
576   if (minEnergy >= maxEnergy) { return; }      << 536   if(minEnergy >= maxEnergy) { return; }
577   //G4cout << "emin= " << minEnergy << " emax=    537   //G4cout << "emin= " << minEnergy << " emax= " << maxEnergy 
578   // << " minPair= " << minPairEnergy << " max    538   // << " minPair= " << minPairEnergy << " maxpair= " << maxPairEnergy 
579   //    << " ymin= " << ymin << " dy= " << dy     539   //    << " ymin= " << ymin << " dy= " << dy << G4endl;
580                                                   540 
581   G4double coeff = G4Log(minPairEnergy/kinEner << 541   G4double coeff = G4Log(minPairEnergy/kineticEnergy)/ymin;
582                                                   542 
583   // compute limits                               543   // compute limits 
584   G4double yymin = G4Log(minEnergy/kinEnergy)/ << 544   G4double yymin = G4Log(minEnergy/kineticEnergy)/coeff;
585   G4double yymax = G4Log(maxEnergy/kinEnergy)/ << 545   G4double yymax = G4Log(maxEnergy/kineticEnergy)/coeff;
586                                                   546  
587   //G4cout << "yymin= " << yymin << "  yymax=     547   //G4cout << "yymin= " << yymin << "  yymax= " << yymax << G4endl;
588                                                   548 
589   // units should not be used, bacause table w    549   // units should not be used, bacause table was built without
590   G4double logTkin = G4Log(kinEnergy/CLHEP::Me << 550   G4double logTkin = G4Log(kineticEnergy/MeV);
591                                                   551 
592   // sample e-e+ energy, pair energy first        552   // sample e-e+ energy, pair energy first
593                                                   553 
594   // select sample table via Z                    554   // select sample table via Z
595   G4int iz1(0), iz2(0);                           555   G4int iz1(0), iz2(0);
596   for (G4int iz=0; iz<NZDATPAIR; ++iz) {       << 556   for(G4int iz=0; iz<nzdat; ++iz) { 
597     if(currentZ == ZDATPAIR[iz]) {             << 557     if(currentZ == zdat[iz]) {
598       iz1 = iz2 = iz;                          << 558       iz1 = iz2 = currentZ; 
599       break;                                      559       break;
600     } else if(currentZ < ZDATPAIR[iz]) {       << 560     } else if(currentZ < zdat[iz]) {
601       iz2 = iz;                                << 561       iz2 = zdat[iz];
602       if(iz > 0) { iz1 = iz-1; }               << 562       if(iz > 0) { iz1 = zdat[iz-1]; }
603       else { iz1 = iz2; }                         563       else { iz1 = iz2; }
604       break;                                      564       break;
605     }                                             565     } 
606   }                                               566   }
607   if (0 == iz1) { iz1 = iz2 = NZDATPAIR-1; }   << 567   if(0 == iz1) { iz1 = iz2 = zdat[nzdat-1]; }
608                                                   568 
609   G4double pairEnergy = 0.0;                   << 569   G4double PairEnergy = 0.0;
610   G4int count = 0;                                570   G4int count = 0;
611   //G4cout << "start loop Z1= " << iz1 << " Z2    571   //G4cout << "start loop Z1= " << iz1 << " Z2= " << iz2 << G4endl;
612   do {                                            572   do {
613     ++count;                                      573     ++count;
614     // sampling using only one random number      574     // sampling using only one random number
615     G4double rand = G4UniformRand();              575     G4double rand = G4UniformRand();
616                                                   576   
617     G4double x = FindScaledEnergy(iz1, rand, l    577     G4double x = FindScaledEnergy(iz1, rand, logTkin, yymin, yymax);
618     if(iz1 != iz2) {                              578     if(iz1 != iz2) {
619       G4double x2 = FindScaledEnergy(iz2, rand    579       G4double x2 = FindScaledEnergy(iz2, rand, logTkin, yymin, yymax);
620       G4double lz1= nist->GetLOGZ(ZDATPAIR[iz1 << 580       G4double lz1= nist->GetLOGZ(iz1);
621       G4double lz2= nist->GetLOGZ(ZDATPAIR[iz2 << 581       G4double lz2= nist->GetLOGZ(iz2);
622       //G4cout << count << ".  x= " << x << "     582       //G4cout << count << ".  x= " << x << "  x2= " << x2 
623       //             << " Z1= " << iz1 << " Z2    583       //             << " Z1= " << iz1 << " Z2= " << iz2 << G4endl;
624       x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1);      584       x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1);
625     }                                             585     }
626     //G4cout << "x= " << x << "  coeff= " << c    586     //G4cout << "x= " << x << "  coeff= " << coeff << G4endl;
627     pairEnergy = kinEnergy*G4Exp(x*coeff);     << 587     PairEnergy = kineticEnergy*G4Exp(x*coeff);
628                                                   588     
629     // Loop checking, 03-Aug-2015, Vladimir Iv    589     // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
630   } while((pairEnergy < minEnergy || pairEnerg << 590   } while((PairEnergy < minEnergy || PairEnergy > maxEnergy) && 10 > count);
631                                                   591 
632   //G4cout << "## pairEnergy(GeV)= " << pairEn << 592   //G4cout << "## PairEnergy(GeV)= " << PairEnergy/GeV 
633   //         << " Etot(GeV)= " << totalEnergy/    593   //         << " Etot(GeV)= " << totalEnergy/GeV << G4endl; 
634                                                   594 
635   // sample r=(E+-E-)/pairEnergy  ( uniformly  << 595   // sample r=(E+-E-)/PairEnergy  ( uniformly .....)
636   G4double rmax =                                 596   G4double rmax =
637     (1.-6.*particleMass*particleMass/(totalEne << 597     (1.-6.*particleMass*particleMass/(totalEnergy*(totalEnergy-PairEnergy)))
638     *std::sqrt(1.-minPairEnergy/pairEnergy);   << 598                                        *sqrt(1.-minPairEnergy/PairEnergy);
639   G4double r = rmax * (-1.+2.*G4UniformRand())    599   G4double r = rmax * (-1.+2.*G4UniformRand()) ;
640                                                   600 
641   // compute energies from pairEnergy,r        << 601   // compute energies from PairEnergy,r
642   G4double eEnergy = (1.-r)*pairEnergy*0.5;    << 602   G4double ElectronEnergy = (1.-r)*PairEnergy*0.5;
643   G4double pEnergy = pairEnergy - eEnergy;     << 603   G4double PositronEnergy = PairEnergy - ElectronEnergy;
644                                                << 604 
645   // Sample angles                             << 605   // The angle of the emitted virtual photon is sampled
646   G4ThreeVector eDirection, pDirection;        << 606   // according to the muon bremsstrahlung model
647   //                                           << 607  
648   GetAngularDistribution()->SamplePairDirectio << 608   G4double gam  = totalEnergy/particleMass;
649                                                << 609   G4double gmax = gam*std::min(1.0, totalEnergy/PairEnergy - 1.0);
650                                                << 610   G4double gmax2= gmax*gmax;
651   // create G4DynamicParticle object for e+e-  << 611   G4double x = G4UniformRand()*gmax2/(1.0 + gmax2);
652   eEnergy = std::max(eEnergy - CLHEP::electron << 612 
653   pEnergy = std::max(pEnergy - CLHEP::electron << 613   G4double theta = sqrt(x/(1.0 - x))/gam;
654   auto aParticle1 = new G4DynamicParticle(theE << 614   G4double sint  = sin(theta);
655   auto aParticle2 = new G4DynamicParticle(theP << 615   G4double phi   = twopi * G4UniformRand() ;
656   // Fill output vector                        << 616   G4double dirx  = sint*cos(phi), diry = sint*sin(phi), dirz = cos(theta) ;
657   vdp->push_back(aParticle1);                  << 617 
658   vdp->push_back(aParticle2);                  << 618   G4ThreeVector gDirection(dirx, diry, dirz);
                                                   >> 619   gDirection.rotateUz(partDirection);
                                                   >> 620 
                                                   >> 621   // the angles of e- and e+ assumed to be the same as virtual gamma
                                                   >> 622 
                                                   >> 623   // create G4DynamicParticle object for the particle1
                                                   >> 624   G4DynamicParticle* aParticle1 = 
                                                   >> 625     new G4DynamicParticle(theElectron, gDirection, 
                                                   >> 626                           ElectronEnergy - electron_mass_c2);
                                                   >> 627 
                                                   >> 628   // create G4DynamicParticle object for the particle2
                                                   >> 629   G4DynamicParticle* aParticle2 = 
                                                   >> 630     new G4DynamicParticle(thePositron, gDirection,
                                                   >> 631                           PositronEnergy - electron_mass_c2);
659                                                   632 
660   // primary change                               633   // primary change
661   kinEnergy -= pairEnergy;                     << 634   kineticEnergy -= (ElectronEnergy + PositronEnergy);
                                                   >> 635   fParticleChange->SetProposedKineticEnergy(kineticEnergy);
                                                   >> 636 
662   partDirection *= totalMomentum;                 637   partDirection *= totalMomentum;
663   partDirection -= (aParticle1->GetMomentum()     638   partDirection -= (aParticle1->GetMomentum() + aParticle2->GetMomentum());
664   partDirection = partDirection.unit();           639   partDirection = partDirection.unit();
                                                   >> 640   fParticleChange->SetProposedMomentumDirection(partDirection);
665                                                   641 
666   // if energy transfer is higher than thresho << 642   // add secondary
667   // then stop tracking the primary particle a << 643   vdp->push_back(aParticle1);
668   if (pairEnergy > SecondaryThreshold()) {     << 644   vdp->push_back(aParticle2);
669     fParticleChange->ProposeTrackStatus(fStopA << 
670     fParticleChange->SetProposedKineticEnergy( << 
671     auto newdp = new G4DynamicParticle(particl << 
672     vdp->push_back(newdp);                     << 
673   } else { // continue tracking the primary e- << 
674     fParticleChange->SetProposedMomentumDirect << 
675     fParticleChange->SetProposedKineticEnergy( << 
676   }                                            << 
677   //G4cout << "-- G4MuPairProductionModel::Sam    645   //G4cout << "-- G4MuPairProductionModel::SampleSecondaries done" << G4endl; 
678 }                                                 646 }
679                                                   647 
680 //....oooOO0OOooo........oooOO0OOooo........oo    648 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
681                                                   649 
682 G4double                                       << 650 void G4MuPairProductionModel::DataCorrupted(G4int Z, G4double logTkin)
683 G4MuPairProductionModel::FindScaledEnergy(G4in << 
684             G4double logTkin,                  << 
685             G4double yymin, G4double yymax)    << 
686 {                                              << 
687   G4double res = yymin;                        << 
688   G4Physics2DVector* pv = fElementData->GetEle << 
689   if (nullptr != pv) {                         << 
690     G4double pmin = pv->Value(yymin, logTkin); << 
691     G4double pmax = pv->Value(yymax, logTkin); << 
692     G4double p0   = pv->Value(0.0, logTkin);   << 
693     if(p0 <= 0.0) { DataCorrupted(ZDATPAIR[iz] << 
694     else { res = pv->FindLinearX((pmin + rand* << 
695   } else {                                     << 
696     DataCorrupted(ZDATPAIR[iz], logTkin);      << 
697   }                                            << 
698   return res;                                  << 
699 }                                              << 
700                                                << 
701 //....oooOO0OOooo........oooOO0OOooo........oo << 
702                                                << 
703 void G4MuPairProductionModel::DataCorrupted(G4 << 
704 {                                                 651 {
705   G4ExceptionDescription ed;                      652   G4ExceptionDescription ed;
706   ed << "G4ElementData is not properly initial    653   ed << "G4ElementData is not properly initialized Z= " << Z
707      << " Ekin(MeV)= " << G4Exp(logTkin)          654      << " Ekin(MeV)= " << G4Exp(logTkin)
708      << " IsMasterThread= " << IsMaster()         655      << " IsMasterThread= " << IsMaster() 
709      << " Model " << GetName();                   656      << " Model " << GetName();
710   G4Exception("G4MuPairProductionModel::()", " << 657   G4Exception("G4MuPairProductionModel::()","em0033",FatalException,
711 }                                              << 658               ed,"");
712                                                << 
713 //....oooOO0OOooo........oooOO0OOooo........oo << 
714                                                << 
715 void G4MuPairProductionModel::StoreTables() co << 
716 {                                              << 
717   for (G4int iz=0; iz<NZDATPAIR; ++iz) {       << 
718     G4int Z = ZDATPAIR[iz];                    << 
719     G4Physics2DVector* pv = fElementData->GetE << 
720     if(nullptr == pv) {                        << 
721       DataCorrupted(Z, 1.0);                   << 
722       return;                                  << 
723     }                                          << 
724     std::ostringstream ss;                     << 
725     ss << "mupair/" << particle->GetParticleNa << 
726     std::ofstream outfile(ss.str());           << 
727     pv->Store(outfile);                        << 
728   }                                            << 
729 }                                                 659 }
730                                                   660 
731 //....oooOO0OOooo........oooOO0OOooo........oo    661 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
732                                                   662 
733 G4bool G4MuPairProductionModel::RetrieveTables << 
734 {                                              << 
735   for (G4int iz=0; iz<NZDATPAIR; ++iz) {       << 
736     G4double Z = ZDATPAIR[iz];                 << 
737     G4Physics2DVector* pv = new G4Physics2DVec << 
738     std::ostringstream ss;                     << 
739     ss << G4EmParameters::Instance()->GetDirLE << 
740        << particle->GetParticleName() << Z <<  << 
741     std::ifstream infile(ss.str(), std::ios::i << 
742     if(!pv->Retrieve(infile)) {                << 
743       delete pv;                               << 
744       return false;                            << 
745     }                                          << 
746     fElementData->InitialiseForElement(iz, pv) << 
747   }                                            << 
748   return true;                                 << 
749 }                                              << 
750                                                   663 
751 //....oooOO0OOooo........oooOO0OOooo........oo << 
752                                                   664