Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/muons/src/G4MuBremsstrahlungModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/muons/src/G4MuBremsstrahlungModel.cc (Version 11.3.0) and /processes/electromagnetic/muons/src/G4MuBremsstrahlungModel.cc (Version 9.4.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4MuBremsstrahlungModel.cc,v 1.36 2010-10-26 13:52:32 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-04-patch-02 $
 26 //                                                 28 //
 27 // -------------------------------------------     29 // -------------------------------------------------------------------
 28 //                                                 30 //
 29 // GEANT4 Class file                               31 // GEANT4 Class file
 30 //                                                 32 //
 31 //                                                 33 //
 32 // File name:     G4MuBremsstrahlungModel          34 // File name:     G4MuBremsstrahlungModel
 33 //                                                 35 //
 34 // Author:        Vladimir Ivanchenko on base      36 // Author:        Vladimir Ivanchenko on base of Laszlo Urban code
 35 //                                                 37 //
 36 // Creation date: 24.06.2002                       38 // Creation date: 24.06.2002
 37 //                                                 39 //
 38 // Modifications:                                  40 // Modifications:
 39 //                                                 41 //
 40 // 04-12-02 Change G4DynamicParticle construct     42 // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko)
 41 // 23-12-02 Change interface in order to move      43 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
 42 // 24-01-03 Fix for compounds (V.Ivanchenko)       44 // 24-01-03 Fix for compounds (V.Ivanchenko)
 43 // 27-01-03 Make models region aware (V.Ivanch     45 // 27-01-03 Make models region aware (V.Ivanchenko)
 44 // 13-02-03 Add name (V.Ivanchenko)                46 // 13-02-03 Add name (V.Ivanchenko)
 45 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko)     47 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko)
 46 // 08-04-05 Major optimisation of internal int     48 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
 47 // 03-08-05 Angular correlations according to      49 // 03-08-05 Angular correlations according to PRM (V.Ivanchenko)
 48 // 13-02-06 add ComputeCrossSectionPerAtom (mm     50 // 13-02-06 add ComputeCrossSectionPerAtom (mma)
 49 // 21-03-06 Fix problem of initialisation in c     51 // 21-03-06 Fix problem of initialisation in case when cuts are not defined (VI)
 50 // 07-11-07 Improve sampling of final state (A     52 // 07-11-07 Improve sampling of final state (A.Bogdanov)
 51 // 28-02-08 Use precomputed Z^1/3 and Log(A) (     53 // 28-02-08 Use precomputed Z^1/3 and Log(A) (V.Ivanchenko)
 52 // 31-05-13 Use element selectors instead of l <<  54 //
                                                   >>  55 
                                                   >>  56 //
                                                   >>  57 // Class Description:
                                                   >>  58 //
 53 //                                                 59 //
 54 // -------------------------------------------     60 // -------------------------------------------------------------------
 55 //                                                 61 //
 56 //....oooOO0OOooo........oooOO0OOooo........oo     62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 57 //....oooOO0OOooo........oooOO0OOooo........oo     63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 58                                                    64 
 59 #include "G4MuBremsstrahlungModel.hh"              65 #include "G4MuBremsstrahlungModel.hh"
 60 #include "G4PhysicalConstants.hh"              << 
 61 #include "G4SystemOfUnits.hh"                  << 
 62 #include "G4Gamma.hh"                              66 #include "G4Gamma.hh"
 63 #include "G4MuonMinus.hh"                          67 #include "G4MuonMinus.hh"
 64 #include "G4MuonPlus.hh"                           68 #include "G4MuonPlus.hh"
 65 #include "Randomize.hh"                            69 #include "Randomize.hh"
 66 #include "G4Material.hh"                           70 #include "G4Material.hh"
 67 #include "G4Element.hh"                            71 #include "G4Element.hh"
 68 #include "G4ElementVector.hh"                      72 #include "G4ElementVector.hh"
 69 #include "G4ProductionCutsTable.hh"                73 #include "G4ProductionCutsTable.hh"
 70 #include "G4ModifiedMephi.hh"                  << 
 71 #include "G4ParticleChangeForLoss.hh"              74 #include "G4ParticleChangeForLoss.hh"
 72 #include "G4Log.hh"                            << 
 73                                                    75 
 74 //....oooOO0OOooo........oooOO0OOooo........oo     76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 75 //....oooOO0OOooo........oooOO0OOooo........oo     77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 76                                                    78 
 77 const G4double G4MuBremsstrahlungModel::xgi[]  <<  79 using namespace std;
 78   {0.03377,0.16940,0.38069,0.61931,0.83060,0.9 << 
 79 const G4double G4MuBremsstrahlungModel::wgi[]  << 
 80   {0.08566,0.18038,0.23396,0.23396,0.18038,0.0 << 
 81 G4double G4MuBremsstrahlungModel::fDN[] = {0.0 << 
 82                                                    80 
 83 G4MuBremsstrahlungModel::G4MuBremsstrahlungMod     81 G4MuBremsstrahlungModel::G4MuBremsstrahlungModel(const G4ParticleDefinition* p,
 84                                                    82                                                  const G4String& nam)
 85   : G4VEmModel(nam),                               83   : G4VEmModel(nam),
 86     sqrte(std::sqrt(G4Exp(1.))),               <<  84     particle(0),
 87     lowestKinEnergy(0.1*CLHEP::GeV),           <<  85     sqrte(sqrt(exp(1.))),
 88     minThreshold(0.9*CLHEP::keV)               <<  86     bh(202.4),
                                                   >>  87     bh1(446.),
                                                   >>  88     btf(183.),
                                                   >>  89     btf1(1429.),
                                                   >>  90     fParticleChange(0),
                                                   >>  91     lowestKinEnergy(1.0*GeV),
                                                   >>  92     minThreshold(1.0*keV)
 89 {                                                  93 {
 90   theGamma = G4Gamma::Gamma();                     94   theGamma = G4Gamma::Gamma();
 91   nist = G4NistManager::Instance();            <<  95   nist = G4NistManager::Instance();
 92                                                    96 
 93   SetAngularDistribution(new G4ModifiedMephi() <<  97   mass = rmass = cc = coeff = 1.0;
 94                                                    98 
 95   if (nullptr != p) { SetParticle(p); }        <<  99   if(p) { SetParticle(p); }
 96   if (0.0 == fDN[1]) {                         << 
 97     for (G4int i=1; i<93; ++i) {               << 
 98       G4double dn = 1.54*nist->GetA27(i);      << 
 99       fDN[i] = dn;                             << 
100       if(1 < i) {                              << 
101   fDN[i] /= std::pow(dn, 1./G4double(i));      << 
102       }                                        << 
103     }                                          << 
104   }                                            << 
105 }                                                 100 }
106                                                   101 
107 //....oooOO0OOooo........oooOO0OOooo........oo    102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
108                                                   103 
109 G4double G4MuBremsstrahlungModel::MinEnergyCut << 104 G4MuBremsstrahlungModel::~G4MuBremsstrahlungModel()
110                                                << 
111 {                                                 105 {
112   return minThreshold;                         << 106   size_t n = partialSumSigma.size();
113 }                                              << 107   if(n > 0) {
114                                                << 108     for(size_t i=0; i<n; i++) {
115 //....oooOO0OOooo........oooOO0OOooo........oo << 109       delete partialSumSigma[i];
116                                                << 110     }
117 G4double G4MuBremsstrahlungModel::MinPrimaryEn << 111   }
118                                                << 
119                                                << 
120 {                                              << 
121   return std::max(lowestKinEnergy, cut);       << 
122 }                                                 112 }
123                                                   113 
124 //....oooOO0OOooo........oooOO0OOooo........oo    114 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
125                                                   115 
126 void G4MuBremsstrahlungModel::SetParticle(cons << 116 G4double G4MuBremsstrahlungModel::MinEnergyCut(const G4ParticleDefinition*,
                                                   >> 117                                                const G4MaterialCutsCouple*)
127 {                                                 118 {
128   if(nullptr == particle) {                    << 119   return minThreshold;
129     particle = p;                              << 
130     mass = particle->GetPDGMass();             << 
131     rmass = mass/CLHEP::electron_mass_c2 ;     << 
132     cc = CLHEP::classic_electr_radius/rmass ;  << 
133     coeff = 16.*CLHEP::fine_structure_const*cc << 
134   }                                            << 
135 }                                                 120 }
136                                                   121 
137 //....oooOO0OOooo........oooOO0OOooo........oo    122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
138                                                   123 
139 void G4MuBremsstrahlungModel::Initialise(const    124 void G4MuBremsstrahlungModel::Initialise(const G4ParticleDefinition* p,
140                                          const    125                                          const G4DataVector& cuts)
141 {                                                 126 {
142   SetParticle(p);                              << 127   if(p) { SetParticle(p); }
143   if(nullptr == fParticleChange) {             << 
144     fParticleChange = GetParticleChangeForLoss << 
145   }                                            << 
146   if(IsMaster() && p == particle && lowestKinE << 
147     InitialiseElementSelectors(p, cuts);       << 
148   }                                            << 
149 }                                              << 
150                                                   128 
151 //....oooOO0OOooo........oooOO0OOooo........oo << 129   // partial cross section is computed for fixed energy
                                                   >> 130   G4double fixedEnergy = 0.5*HighEnergyLimit();
152                                                   131 
153 void G4MuBremsstrahlungModel::InitialiseLocal( << 132   const G4ProductionCutsTable* theCoupleTable=
154                                                << 133         G4ProductionCutsTable::GetProductionCutsTable();
155 {                                              << 134   if(theCoupleTable) {
156   if(p == particle && lowestKinEnergy < HighEn << 135     G4int numOfCouples = theCoupleTable->GetTableSize();
157     SetElementSelectors(masterModel->GetElemen << 136 
                                                   >> 137     // clear old data    
                                                   >> 138     G4int nn = partialSumSigma.size();
                                                   >> 139     G4int nc = cuts.size();
                                                   >> 140     if(nn > 0) {
                                                   >> 141       for (G4int ii=0; ii<nn; ii++){
                                                   >> 142   G4DataVector* a = partialSumSigma[ii];
                                                   >> 143   if ( a ) { delete a; }
                                                   >> 144       } 
                                                   >> 145       partialSumSigma.clear();
                                                   >> 146     }
                                                   >> 147     // fill new data
                                                   >> 148     if (numOfCouples>0) {
                                                   >> 149       for (G4int i=0; i<numOfCouples; i++) {
                                                   >> 150         G4double cute = DBL_MAX;
                                                   >> 151 
                                                   >> 152   // protection for usage with extrapolator
                                                   >> 153         if(i < nc) { cute = cuts[i]; }
                                                   >> 154 
                                                   >> 155         const G4MaterialCutsCouple* couple = 
                                                   >> 156     theCoupleTable->GetMaterialCutsCouple(i);
                                                   >> 157   const G4Material* material = couple->GetMaterial();
                                                   >> 158   G4DataVector* dv = ComputePartialSumSigma(material,fixedEnergy,cute);
                                                   >> 159   partialSumSigma.push_back(dv);
                                                   >> 160       }
                                                   >> 161     }
158   }                                               162   }
                                                   >> 163 
                                                   >> 164   // define pointer to G4ParticleChange
                                                   >> 165   if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); }
159 }                                                 166 }
160                                                   167 
161 //....oooOO0OOooo........oooOO0OOooo........oo    168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
162                                                   169 
163 G4double G4MuBremsstrahlungModel::ComputeDEDXP    170 G4double G4MuBremsstrahlungModel::ComputeDEDXPerVolume(
164                                                << 171                 const G4Material* material,
165                                                   172                                               const G4ParticleDefinition*,
166                                                   173                                                     G4double kineticEnergy,
167                                                   174                                                     G4double cutEnergy)
168 {                                                 175 {
169   G4double dedx = 0.0;                            176   G4double dedx = 0.0;
170   if (kineticEnergy <= lowestKinEnergy) { retu << 177   if (kineticEnergy <= lowestKinEnergy) return dedx;
171                                                   178 
172   G4double cut = std::max(cutEnergy, minThresh << 179   G4double tmax = kineticEnergy;
173   cut = std::min(cut, kineticEnergy);          << 180   G4double cut  = std::min(cutEnergy,tmax);
                                                   >> 181   if(cut < minThreshold) cut = minThreshold;
174                                                   182 
175   const G4ElementVector* theElementVector = ma    183   const G4ElementVector* theElementVector = material->GetElementVector();
176   const G4double* theAtomicNumDensityVector =     184   const G4double* theAtomicNumDensityVector =
177     material->GetAtomicNumDensityVector();        185     material->GetAtomicNumDensityVector();
178                                                   186 
179   //  loop for elements in the material           187   //  loop for elements in the material
180   for (size_t i=0; i<material->GetNumberOfElem << 188   for (size_t i=0; i<material->GetNumberOfElements(); i++) {
                                                   >> 189 
181     G4double loss =                               190     G4double loss = 
182       ComputMuBremLoss((*theElementVector)[i]-    191       ComputMuBremLoss((*theElementVector)[i]->GetZ(), kineticEnergy, cut);
                                                   >> 192 
183     dedx += loss*theAtomicNumDensityVector[i];    193     dedx += loss*theAtomicNumDensityVector[i];
184   }                                               194   }
185   //  G4cout << "BR e= " << kineticEnergy << "    195   //  G4cout << "BR e= " << kineticEnergy << "  dedx= " << dedx << G4endl;
186   dedx = std::max(dedx, 0.);                   << 196   if(dedx < 0.) dedx = 0.;
187   return dedx;                                    197   return dedx;
188 }                                                 198 }
189                                                   199 
190 //....oooOO0OOooo........oooOO0OOooo........oo    200 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
191                                                   201 
192 G4double G4MuBremsstrahlungModel::ComputMuBrem    202 G4double G4MuBremsstrahlungModel::ComputMuBremLoss(G4double Z,
193                                                   203                                                    G4double tkin, G4double cut)
194 {                                                 204 {
195   G4double totalEnergy = mass + tkin;             205   G4double totalEnergy = mass + tkin;
196   static const G4double ak1 = 0.05;            << 206   G4double ak1 = 0.05;
197   static const G4int k2 = 5;                   << 207   G4int    k2=5;
                                                   >> 208   G4double xgi[]={0.03377,0.16940,0.38069,0.61931,0.83060,0.96623};
                                                   >> 209   G4double wgi[]={0.08566,0.18038,0.23396,0.23396,0.18038,0.08566};
198   G4double loss = 0.;                             210   G4double loss = 0.;
199                                                   211 
200   G4double vcut = cut/totalEnergy;                212   G4double vcut = cut/totalEnergy;
201   G4int kkk = (G4int)(vcut/ak1) + k2;          << 213   G4double vmax = tkin/totalEnergy;
202   if (kkk > 8) { kkk = 8; }                    << 214 
203   else if (kkk < 1) { kkk = 1; }               << 215   G4double aaa = 0.;
204   G4double hhh = vcut/(G4double)(kkk);         << 216   G4double bbb = vcut;
205                                                << 217   if(vcut>vmax) bbb=vmax ;
206   G4double aa = 0.;                            << 218   G4int kkk = (G4int)((bbb-aaa)/ak1)+k2 ;
207   for(G4int l=0; l<kkk; ++l) {                 << 219   G4double hhh=(bbb-aaa)/float(kkk) ;
208     for(G4int i=0; i<6; ++i) {                 << 220 
                                                   >> 221   G4double aa = aaa;
                                                   >> 222   for(G4int l=0; l<kkk; l++)
                                                   >> 223   {
                                                   >> 224     for(G4int i=0; i<6; i++)
                                                   >> 225     {
209       G4double ep = (aa + xgi[i]*hhh)*totalEne    226       G4double ep = (aa + xgi[i]*hhh)*totalEnergy;
210       loss += ep*wgi[i]*ComputeDMicroscopicCro    227       loss += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep);
211     }                                             228     }
212     aa += hhh;                                    229     aa += hhh;
213   }                                               230   }
214                                                   231 
215   loss *= hhh*totalEnergy;                     << 232   loss *=hhh*totalEnergy ;
                                                   >> 233 
216   return loss;                                    234   return loss;
217 }                                                 235 }
218                                                   236 
219 //....oooOO0OOooo........oooOO0OOooo........oo    237 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
220                                                   238 
221 G4double G4MuBremsstrahlungModel::ComputeMicro    239 G4double G4MuBremsstrahlungModel::ComputeMicroscopicCrossSection(
222                                            G4d    240                                            G4double tkin,
223                                            G4d    241                                            G4double Z,
224                                            G4d    242                                            G4double cut)
225 {                                                 243 {
226   G4double totalEnergy = tkin + mass;             244   G4double totalEnergy = tkin + mass;
227   static const G4double ak1 = 2.3;             << 245   G4double ak1 = 2.3;
228   static const G4int k2 = 4;                   << 246   G4int    k2  = 4;
                                                   >> 247   G4double xgi[]={0.03377,0.16940,0.38069,0.61931,0.83060,0.96623};
                                                   >> 248   G4double wgi[]={0.08566,0.18038,0.23396,0.23396,0.18038,0.08566};
229   G4double cross = 0.;                            249   G4double cross = 0.;
230                                                   250 
231   if(cut >= tkin) return cross;                   251   if(cut >= tkin) return cross;
232                                                   252 
233   G4double vcut = cut/totalEnergy;                253   G4double vcut = cut/totalEnergy;
234   G4double vmax = tkin/totalEnergy;               254   G4double vmax = tkin/totalEnergy;
235                                                   255 
236   G4double aaa = G4Log(vcut);                  << 256   G4double aaa = log(vcut);
237   G4double bbb = G4Log(vmax);                  << 257   G4double bbb = log(vmax);
238   G4int kkk = (G4int)((bbb-aaa)/ak1) + k2 ;    << 258   G4int    kkk = (G4int)((bbb-aaa)/ak1)+k2 ;
239   if(kkk > 8) { kkk = 8; }                     << 259   G4double hhh = (bbb-aaa)/G4double(kkk);
240   else if (kkk < 1) { kkk = 1; }               << 260 
241   G4double hhh = (bbb-aaa)/(G4double)(kkk);    << 
242   G4double aa = aaa;                              261   G4double aa = aaa;
243                                                   262 
244   for(G4int l=0; l<kkk; ++l) {                 << 263   for(G4int l=0; l<kkk; l++)
245     for(G4int i=0; i<6; ++i) {                 << 264   {
246       G4double ep = G4Exp(aa + xgi[i]*hhh)*tot << 265     for(G4int i=0; i<6; i++)
                                                   >> 266     {
                                                   >> 267       G4double ep = exp(aa + xgi[i]*hhh)*totalEnergy;
247       cross += ep*wgi[i]*ComputeDMicroscopicCr    268       cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep);
248     }                                             269     }
249     aa += hhh;                                    270     aa += hhh;
250   }                                               271   }
251                                                   272 
252   cross *= hhh;                                << 273   cross *=hhh;
                                                   >> 274 
253   //G4cout << "BR e= " << tkin<< "  cross= " <    275   //G4cout << "BR e= " << tkin<< "  cross= " << cross/barn << G4endl;
                                                   >> 276 
254   return cross;                                   277   return cross;
255 }                                                 278 }
256                                                   279 
257 //....oooOO0OOooo........oooOO0OOooo........oo    280 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
258                                                   281 
259 G4double G4MuBremsstrahlungModel::ComputeDMicr    282 G4double G4MuBremsstrahlungModel::ComputeDMicroscopicCrossSection(
260                                            G4d    283                                            G4double tkin,
261                                            G4d    284                                            G4double Z,
262                                            G4d    285                                            G4double gammaEnergy)
263 //  differential cross section                    286 //  differential cross section
264 {                                                 287 {
265   G4double dxsection = 0.;                        288   G4double dxsection = 0.;
266   if(gammaEnergy > tkin) { return dxsection; } << 289 
                                                   >> 290   if( gammaEnergy > tkin) return dxsection ;
267                                                   291 
268   G4double E = tkin + mass ;                      292   G4double E = tkin + mass ;
269   G4double v = gammaEnergy/E ;                    293   G4double v = gammaEnergy/E ;
270   G4double delta = 0.5*mass*mass*v/(E-gammaEne    294   G4double delta = 0.5*mass*mass*v/(E-gammaEnergy) ;
271   G4double rab0  = delta*sqrte ;               << 295   G4double rab0=delta*sqrte ;
272                                                   296 
273   G4int iz = G4lrint(Z);                       << 297   G4int iz = G4int(Z);
274   if(iz < 1) { iz = 1; }                       << 298   if(iz < 1) iz = 1;
275   else if(iz > 92) { iz = 92; }                << 
276                                                   299 
277   G4double z13 = 1.0/nist->GetZ13(iz);            300   G4double z13 = 1.0/nist->GetZ13(iz);
278   G4double dnstar = fDN[iz];                   << 301   G4double dn  = 1.54*nist->GetA27(iz);
279                                                   302 
280   G4double b,b1;                               << 303   G4double b,b1,dnstar ;
281   if(1 == iz) {                                << 304 
                                                   >> 305   if(1 == iz)
                                                   >> 306   {
282     b  = bh;                                      307     b  = bh;
283     b1 = bh1;                                     308     b1 = bh1;
284   } else {                                     << 309     dnstar = dn;
                                                   >> 310   }
                                                   >> 311   else
                                                   >> 312   {
285     b  = btf;                                     313     b  = btf;
286     b1 = btf1;                                    314     b1 = btf1;
                                                   >> 315     dnstar = dn/std::pow(dn, 1./Z);
287   }                                               316   }
288                                                   317 
289   // nucleus contribution logarithm               318   // nucleus contribution logarithm
290   G4double rab1 = b*z13;                       << 319   G4double rab1=b*z13;
291   G4double fn = G4Log(rab1/(dnstar*(CLHEP::ele << 320   G4double fn=log(rab1/(dnstar*(electron_mass_c2+rab0*rab1))*
292   (mass + delta*(dnstar*sqrte-2.)));           << 321               (mass+delta*(dnstar*sqrte-2.))) ;
293   fn = std::max(fn, 0.);                       << 322   if(fn <0.) fn = 0. ;
294   // electron contribution logarithm              323   // electron contribution logarithm
295   G4double epmax1 = E/(1.+0.5*mass*rmass/E);   << 324   G4double epmax1=E/(1.+0.5*mass*rmass/E) ;
296   G4double fe = 0.;                            << 325   G4double fe=0.;
297   if(gammaEnergy < epmax1) {                   << 326   if(gammaEnergy<epmax1)
298     G4double rab2 = b1*z13*z13;                << 327   {
299     fe = G4Log(rab2*mass/((1.+delta*rmass/(CLH << 328     G4double rab2=b1*z13*z13 ;
300   (CLHEP::electron_mass_c2+rab0*rab2)));       << 329     fe=log(rab2*mass/((1.+delta*rmass/(electron_mass_c2*sqrte))*
301     fe = std::max(fe, 0.);                     << 330                               (electron_mass_c2+rab0*rab2))) ;
                                                   >> 331     if(fe<0.) fe=0. ;
302   }                                               332   }
303                                                   333 
304   dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn    334   dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn*Z + fe)/gammaEnergy;
305   dxsection = std::max(dxsection, 0.0);        << 335 
306   return dxsection;                               336   return dxsection;
307 }                                                 337 }
308                                                   338 
309 //....oooOO0OOooo........oooOO0OOooo........oo    339 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
310                                                   340 
311 G4double G4MuBremsstrahlungModel::ComputeCross    341 G4double G4MuBremsstrahlungModel::ComputeCrossSectionPerAtom(
312                                            con    342                                            const G4ParticleDefinition*,
313                                                   343                                                  G4double kineticEnergy,
314                                                << 344              G4double Z, G4double,
315                                                   345                                                  G4double cutEnergy,
316                                                   346                                                  G4double maxEnergy)
317 {                                                 347 {
318   G4double cross = 0.0;                           348   G4double cross = 0.0;
319   if (kineticEnergy <= lowestKinEnergy) return    349   if (kineticEnergy <= lowestKinEnergy) return cross;
320   G4double tmax = std::min(maxEnergy, kineticE    350   G4double tmax = std::min(maxEnergy, kineticEnergy);
321   G4double cut  = std::min(cutEnergy, kineticE    351   G4double cut  = std::min(cutEnergy, kineticEnergy);
322   if (cut < minThreshold) cut = minThreshold;  << 352   if(cut < minThreshold) cut = minThreshold;
323   if (cut >= tmax) return cross;                  353   if (cut >= tmax) return cross;
324                                                   354 
325   cross = ComputeMicroscopicCrossSection (kine    355   cross = ComputeMicroscopicCrossSection (kineticEnergy, Z, cut);
326   if(tmax < kineticEnergy) {                      356   if(tmax < kineticEnergy) {
327     cross -= ComputeMicroscopicCrossSection(ki    357     cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax);
328   }                                               358   }
329   return cross;                                   359   return cross;
330 }                                                 360 }
331                                                   361 
332 //....oooOO0OOooo........oooOO0OOooo........oo    362 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
333                                                   363 
                                                   >> 364 G4DataVector* G4MuBremsstrahlungModel::ComputePartialSumSigma(
                                                   >> 365                                        const G4Material* material,
                                                   >> 366                G4double kineticEnergy,
                                                   >> 367                G4double cut)
                                                   >> 368 
                                                   >> 369 // Build the table of cross section per element. 
                                                   >> 370 // The table is built for material 
                                                   >> 371 // This table is used to select randomly an element in the material.
                                                   >> 372 {
                                                   >> 373   G4int nElements = material->GetNumberOfElements();
                                                   >> 374   const G4ElementVector* theElementVector = material->GetElementVector();
                                                   >> 375   const G4double* theAtomNumDensityVector = 
                                                   >> 376     material->GetAtomicNumDensityVector();
                                                   >> 377 
                                                   >> 378   G4DataVector* dv = new G4DataVector();
                                                   >> 379 
                                                   >> 380   G4double cross = 0.0;
                                                   >> 381 
                                                   >> 382   for (G4int i=0; i<nElements; i++ ) {
                                                   >> 383     cross += theAtomNumDensityVector[i] 
                                                   >> 384       * ComputeMicroscopicCrossSection(kineticEnergy, 
                                                   >> 385                (*theElementVector)[i]->GetZ(), cut);
                                                   >> 386     dv->push_back(cross);
                                                   >> 387   }
                                                   >> 388   return dv;
                                                   >> 389 }
                                                   >> 390 
                                                   >> 391 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 392 
334 void G4MuBremsstrahlungModel::SampleSecondarie    393 void G4MuBremsstrahlungModel::SampleSecondaries(
335                               std::vector<G4Dy    394                               std::vector<G4DynamicParticle*>* vdp,
336                               const G4Material << 395             const G4MaterialCutsCouple* couple,
337                               const G4DynamicP << 396             const G4DynamicParticle* dp,
338                               G4double minEner << 397             G4double minEnergy,
339                               G4double maxEner << 398             G4double maxEnergy)
340 {                                                 399 {
341   G4double kineticEnergy = dp->GetKineticEnerg    400   G4double kineticEnergy = dp->GetKineticEnergy();
342   // check against insufficient energy            401   // check against insufficient energy
343   G4double tmax = std::min(kineticEnergy, maxE    402   G4double tmax = std::min(kineticEnergy, maxEnergy);
344   G4double tmin = std::min(kineticEnergy, minE    403   G4double tmin = std::min(kineticEnergy, minEnergy);
345   tmin = std::max(tmin, minThreshold);         << 404   if(tmin < minThreshold) tmin = minThreshold;
346   if(tmin >= tmax) return;                        405   if(tmin >= tmax) return;
347                                                   406 
348   // ===== sampling of energy transfer ======     407   // ===== sampling of energy transfer ======
349                                                   408 
350   G4ParticleMomentum partDirection = dp->GetMo    409   G4ParticleMomentum partDirection = dp->GetMomentumDirection();
351                                                   410 
352   // select randomly one element constituing t    411   // select randomly one element constituing the material
353   const G4Element* anElement = SelectRandomAto << 412   const G4Element* anElement = SelectRandomAtom(couple);
354   G4double Z = anElement->GetZ();                 413   G4double Z = anElement->GetZ();
                                                   >> 414 
                                                   >> 415   G4double totalEnergy   = kineticEnergy + mass;
                                                   >> 416   G4double totalMomentum = sqrt(kineticEnergy*(kineticEnergy + 2.0*mass));
                                                   >> 417 
355   G4double func1 = tmin*                          418   G4double func1 = tmin*
356     ComputeDMicroscopicCrossSection(kineticEne << 419     ComputeDMicroscopicCrossSection(kineticEnergy,Z,tmin);
357                                                   420 
358   G4double gEnergy;                            << 421   G4double lnepksi, epksi;
359   G4double func2;                                 422   G4double func2;
360                                                   423 
361   G4double xmin = G4Log(tmin/minThreshold);    << 
362   G4double xmax = G4Log(tmax/tmin);            << 
363                                                << 
364   do {                                            424   do {
365     gEnergy = minThreshold*G4Exp(xmin + G4Unif << 425     lnepksi = log(tmin) + G4UniformRand()*log(kineticEnergy/tmin);
366     func2 = gEnergy*ComputeDMicroscopicCrossSe << 426     epksi   = exp(lnepksi);
367                                                << 427     func2   = epksi*ComputeDMicroscopicCrossSection(kineticEnergy,Z,epksi);
368     // Loop checking, 03-Aug-2015, Vladimir Iv << 428 
369   } while(func2 < func1*G4UniformRand());         429   } while(func2 < func1*G4UniformRand());
370                                                   430 
371   // angles of the emitted gamma using general << 431   G4double gEnergy = epksi;
372   G4ThreeVector gamDir =                       << 432 
373     GetAngularDistribution()->SampleDirection( << 433   // ===== sample angle =====
374                                                << 434 
375   // create G4DynamicParticle object for the G << 435   G4double gam  = totalEnergy/mass;
376   G4DynamicParticle* gamma = new G4DynamicPart << 436   G4double rmax = gam*std::min(1.0, totalEnergy/gEnergy - 1.0);
377   vdp->push_back(gamma);                       << 437   G4double rmax2= rmax*rmax;
378                                                << 438   G4double x = G4UniformRand()*rmax2/(1.0 + rmax2);
379   // compute post-interaction kinematics of pr << 439 
380   // energy-momentum conservation              << 440   G4double theta = sqrt(x/(1.0 - x))/gam;
381   const G4double totMomentum =                 << 441   G4double sint  = sin(theta);
382     std::sqrt(kineticEnergy*(kineticEnergy + 2 << 442   G4double phi   = twopi * G4UniformRand() ;
383   G4ThreeVector dir =                          << 443   G4double dirx  = sint*cos(phi), diry = sint*sin(phi), dirz = cos(theta) ;
384     (totMomentum*dp->GetMomentumDirection() -  << 444 
385   const G4double finalE = kineticEnergy - gEne << 445   G4ThreeVector gDirection(dirx, diry, dirz);
386                                                << 446   gDirection.rotateUz(partDirection);
387   // if secondary gamma energy is higher than  << 447 
388   // then stop tracking the primary particle a << 448   partDirection *= totalMomentum;
389   // instead of the primary one                << 449   partDirection -= gEnergy*gDirection;
390   if (gEnergy > SecondaryThreshold()) {        << 450   partDirection = partDirection.unit();
391     fParticleChange->ProposeTrackStatus(fStopA << 451 
392     fParticleChange->SetProposedKineticEnergy( << 452   // primary change
393     G4DynamicParticle* newdp = new G4DynamicPa << 453   kineticEnergy -= gEnergy;
394     vdp->push_back(newdp);                     << 454   fParticleChange->SetProposedKineticEnergy(kineticEnergy);
395   } else {                                     << 455   fParticleChange->SetProposedMomentumDirection(partDirection);
396     // continue tracking the primary e-/e+ oth << 456 
397     fParticleChange->SetProposedMomentumDirect << 457   // save secondary
398     fParticleChange->SetProposedKineticEnergy( << 458   G4DynamicParticle* aGamma = 
                                                   >> 459     new G4DynamicParticle(theGamma,gDirection,gEnergy);
                                                   >> 460   vdp->push_back(aGamma);
                                                   >> 461 }
                                                   >> 462 
                                                   >> 463 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 464 
                                                   >> 465 const G4Element* G4MuBremsstrahlungModel::SelectRandomAtom(
                                                   >> 466            const G4MaterialCutsCouple* couple) const
                                                   >> 467 {
                                                   >> 468   // select randomly 1 element within the material
                                                   >> 469 
                                                   >> 470   const G4Material* material = couple->GetMaterial();
                                                   >> 471   G4int nElements = material->GetNumberOfElements();
                                                   >> 472   const G4ElementVector* theElementVector = material->GetElementVector();
                                                   >> 473   if(1 == nElements) { return (*theElementVector)[0]; }
                                                   >> 474   else if(1 > nElements) { return 0; }
                                                   >> 475 
                                                   >> 476   G4DataVector* dv = partialSumSigma[couple->GetIndex()];
                                                   >> 477   G4double rval = G4UniformRand()*((*dv)[nElements-1]);
                                                   >> 478   for (G4int i=0; i<nElements; i++) {
                                                   >> 479     if (rval <= (*dv)[i]) { return (*theElementVector)[i]; }
399   }                                               480   }
                                                   >> 481   return (*theElementVector)[nElements-1];
400 }                                                 482 }
401                                                   483 
402 //....oooOO0OOooo........oooOO0OOooo........oo    484 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
403                                                   485