Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4MuBremsstrahlungModel.cc,v 1.24 2007/11/08 11:48:28 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-01-patch-01 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class file 31 // GEANT4 Class file 30 // 32 // 31 // 33 // 32 // File name: G4MuBremsstrahlungModel 34 // File name: G4MuBremsstrahlungModel 33 // 35 // 34 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 37 // 36 // Creation date: 24.06.2002 38 // Creation date: 24.06.2002 37 // 39 // 38 // Modifications: 40 // Modifications: 39 // 41 // 40 // 04-12-02 Change G4DynamicParticle construct 42 // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko) 41 // 23-12-02 Change interface in order to move 43 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 42 // 24-01-03 Fix for compounds (V.Ivanchenko) 44 // 24-01-03 Fix for compounds (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanch 45 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 46 // 13-02-03 Add name (V.Ivanchenko) 45 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 47 // 10-02-04 Add lowestKinEnergy (V.Ivanchenko) 46 // 08-04-05 Major optimisation of internal int << 48 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 47 // 03-08-05 Angular correlations according to << 49 // 03-08-05 Angular correlations according to PRM (V.Ivantchenko) 48 // 13-02-06 add ComputeCrossSectionPerAtom (mm 50 // 13-02-06 add ComputeCrossSectionPerAtom (mma) 49 // 21-03-06 Fix problem of initialisation in c 51 // 21-03-06 Fix problem of initialisation in case when cuts are not defined (VI) 50 // 07-11-07 Improve sampling of final state (A 52 // 07-11-07 Improve sampling of final state (A.Bogdanov) 51 // 28-02-08 Use precomputed Z^1/3 and Log(A) ( << 53 // 52 // 31-05-13 Use element selectors instead of l << 54 >> 55 // >> 56 // Class Description: >> 57 // 53 // 58 // 54 // ------------------------------------------- 59 // ------------------------------------------------------------------- 55 // 60 // 56 //....oooOO0OOooo........oooOO0OOooo........oo 61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 58 63 59 #include "G4MuBremsstrahlungModel.hh" 64 #include "G4MuBremsstrahlungModel.hh" 60 #include "G4PhysicalConstants.hh" << 61 #include "G4SystemOfUnits.hh" << 62 #include "G4Gamma.hh" 65 #include "G4Gamma.hh" 63 #include "G4MuonMinus.hh" 66 #include "G4MuonMinus.hh" 64 #include "G4MuonPlus.hh" 67 #include "G4MuonPlus.hh" 65 #include "Randomize.hh" 68 #include "Randomize.hh" 66 #include "G4Material.hh" 69 #include "G4Material.hh" 67 #include "G4Element.hh" 70 #include "G4Element.hh" 68 #include "G4ElementVector.hh" 71 #include "G4ElementVector.hh" 69 #include "G4ProductionCutsTable.hh" 72 #include "G4ProductionCutsTable.hh" 70 #include "G4ModifiedMephi.hh" << 71 #include "G4ParticleChangeForLoss.hh" 73 #include "G4ParticleChangeForLoss.hh" 72 #include "G4Log.hh" << 73 74 74 //....oooOO0OOooo........oooOO0OOooo........oo 75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 76 >> 77 // static members >> 78 // >> 79 G4double G4MuBremsstrahlungModel::zdat[]={1., 4., 13., 29., 92.}; >> 80 G4double G4MuBremsstrahlungModel::adat[]={1.01, 9.01, 26.98, 63.55, 238.03}; >> 81 G4double G4MuBremsstrahlungModel::tdat[]={1.e3, 1.e4, 1.e5, 1.e6, 1.e7, 1.e8, >> 82 1.e9, 1.e10}; >> 83 75 //....oooOO0OOooo........oooOO0OOooo........oo 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 76 85 77 const G4double G4MuBremsstrahlungModel::xgi[] << 86 using namespace std; 78 {0.03377,0.16940,0.38069,0.61931,0.83060,0.9 << 79 const G4double G4MuBremsstrahlungModel::wgi[] << 80 {0.08566,0.18038,0.23396,0.23396,0.18038,0.0 << 81 G4double G4MuBremsstrahlungModel::fDN[] = {0.0 << 82 87 83 G4MuBremsstrahlungModel::G4MuBremsstrahlungMod 88 G4MuBremsstrahlungModel::G4MuBremsstrahlungModel(const G4ParticleDefinition* p, 84 89 const G4String& nam) 85 : G4VEmModel(nam), 90 : G4VEmModel(nam), 86 sqrte(std::sqrt(G4Exp(1.))), << 91 particle(0), 87 lowestKinEnergy(0.1*CLHEP::GeV), << 92 lowestKinEnergy(1.0*GeV), 88 minThreshold(0.9*CLHEP::keV) << 93 minThreshold(1.0*keV), >> 94 nzdat(5), >> 95 ntdat(8), >> 96 NBIN(1000), >> 97 cutFixed(0.98*keV), >> 98 ignoreCut(false), >> 99 samplingTablesAreFilled(false) 89 { 100 { 90 theGamma = G4Gamma::Gamma(); 101 theGamma = G4Gamma::Gamma(); 91 nist = G4NistManager::Instance(); << 102 if(p) SetParticle(p); >> 103 } 92 104 93 SetAngularDistribution(new G4ModifiedMephi() << 105 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 94 106 95 if (nullptr != p) { SetParticle(p); } << 107 G4MuBremsstrahlungModel::~G4MuBremsstrahlungModel() 96 if (0.0 == fDN[1]) { << 108 { 97 for (G4int i=1; i<93; ++i) { << 109 size_t n = partialSumSigma.size(); 98 G4double dn = 1.54*nist->GetA27(i); << 110 if(n > 0) { 99 fDN[i] = dn; << 111 for(size_t i=0; i<n; i++) { 100 if(1 < i) { << 112 delete partialSumSigma[i]; 101 fDN[i] /= std::pow(dn, 1./G4double(i)); << 102 } << 103 } 113 } 104 } 114 } 105 } 115 } 106 116 107 //....oooOO0OOooo........oooOO0OOooo........oo 117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 108 118 109 G4double G4MuBremsstrahlungModel::MinEnergyCut 119 G4double G4MuBremsstrahlungModel::MinEnergyCut(const G4ParticleDefinition*, 110 120 const G4MaterialCutsCouple*) 111 { 121 { 112 return minThreshold; 122 return minThreshold; 113 } 123 } 114 124 115 //....oooOO0OOooo........oooOO0OOooo........oo 125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 116 126 117 G4double G4MuBremsstrahlungModel::MinPrimaryEn << 118 << 119 << 120 { << 121 return std::max(lowestKinEnergy, cut); << 122 } << 123 << 124 //....oooOO0OOooo........oooOO0OOooo........oo << 125 << 126 void G4MuBremsstrahlungModel::SetParticle(cons 127 void G4MuBremsstrahlungModel::SetParticle(const G4ParticleDefinition* p) 127 { 128 { 128 if(nullptr == particle) { << 129 if(!particle) { 129 particle = p; 130 particle = p; 130 mass = particle->GetPDGMass(); 131 mass = particle->GetPDGMass(); 131 rmass = mass/CLHEP::electron_mass_c2 ; << 132 cc = CLHEP::classic_electr_radius/rmass ; << 133 coeff = 16.*CLHEP::fine_structure_const*cc << 134 } 132 } 135 } 133 } 136 134 137 //....oooOO0OOooo........oooOO0OOooo........oo 135 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 138 136 139 void G4MuBremsstrahlungModel::Initialise(const 137 void G4MuBremsstrahlungModel::Initialise(const G4ParticleDefinition* p, 140 const 138 const G4DataVector& cuts) 141 { 139 { 142 SetParticle(p); << 140 if(p) SetParticle(p); 143 if(nullptr == fParticleChange) { << 144 fParticleChange = GetParticleChangeForLoss << 145 } << 146 if(IsMaster() && p == particle && lowestKinE << 147 InitialiseElementSelectors(p, cuts); << 148 } << 149 } << 150 141 151 //....oooOO0OOooo........oooOO0OOooo........oo << 142 highKinEnergy = HighEnergyLimit(); 152 143 153 void G4MuBremsstrahlungModel::InitialiseLocal( << 144 G4double fixedEnergy = 0.5*highKinEnergy; 154 << 145 155 { << 146 const G4ProductionCutsTable* theCoupleTable= 156 if(p == particle && lowestKinEnergy < HighEn << 147 G4ProductionCutsTable::GetProductionCutsTable(); 157 SetElementSelectors(masterModel->GetElemen << 148 if(theCoupleTable) { >> 149 G4int numOfCouples = theCoupleTable->GetTableSize(); >> 150 >> 151 G4int nn = partialSumSigma.size(); >> 152 G4int nc = cuts.size(); >> 153 if(nn > 0) { >> 154 for (G4int ii=0; ii<nn; ii++){ >> 155 G4DataVector* a=partialSumSigma[ii]; >> 156 if ( a ) delete a; >> 157 } >> 158 partialSumSigma.clear(); >> 159 } >> 160 if (numOfCouples>0) { >> 161 for (G4int i=0; i<numOfCouples; i++) { >> 162 G4double cute = DBL_MAX; >> 163 if(i < nc) cute = cuts[i]; >> 164 if(cute < cutFixed || ignoreCut) cute = cutFixed; >> 165 const G4MaterialCutsCouple* couple = >> 166 theCoupleTable->GetMaterialCutsCouple(i); >> 167 const G4Material* material = couple->GetMaterial(); >> 168 G4DataVector* dv = ComputePartialSumSigma(material,fixedEnergy,cute); >> 169 partialSumSigma.push_back(dv); >> 170 } >> 171 } 158 } 172 } >> 173 if(!samplingTablesAreFilled) MakeSamplingTables(); >> 174 if(pParticleChange) >> 175 fParticleChange = >> 176 reinterpret_cast<G4ParticleChangeForLoss*>(pParticleChange); >> 177 else >> 178 fParticleChange = new G4ParticleChangeForLoss(); 159 } 179 } 160 180 161 //....oooOO0OOooo........oooOO0OOooo........oo 181 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 162 182 163 G4double G4MuBremsstrahlungModel::ComputeDEDXP 183 G4double G4MuBremsstrahlungModel::ComputeDEDXPerVolume( 164 << 184 const G4Material* material, 165 185 const G4ParticleDefinition*, 166 186 G4double kineticEnergy, 167 187 G4double cutEnergy) 168 { 188 { 169 G4double dedx = 0.0; 189 G4double dedx = 0.0; 170 if (kineticEnergy <= lowestKinEnergy) { retu << 190 if (kineticEnergy <= lowestKinEnergy || ignoreCut) return dedx; 171 191 172 G4double cut = std::max(cutEnergy, minThresh << 192 G4double tmax = kineticEnergy; 173 cut = std::min(cut, kineticEnergy); << 193 G4double cut = min(cutEnergy,tmax); >> 194 if(cut < cutFixed) cut = cutFixed; 174 195 175 const G4ElementVector* theElementVector = ma 196 const G4ElementVector* theElementVector = material->GetElementVector(); 176 const G4double* theAtomicNumDensityVector = 197 const G4double* theAtomicNumDensityVector = 177 material->GetAtomicNumDensityVector(); << 198 material->GetAtomicNumDensityVector(); 178 199 179 // loop for elements in the material 200 // loop for elements in the material 180 for (size_t i=0; i<material->GetNumberOfElem << 201 for (size_t i=0; i<material->GetNumberOfElements(); i++) { 181 G4double loss = << 202 182 ComputMuBremLoss((*theElementVector)[i]- << 203 G4double Z = (*theElementVector)[i]->GetZ(); >> 204 G4double A = (*theElementVector)[i]->GetA()/(g/mole) ; >> 205 >> 206 G4double loss = ComputMuBremLoss(Z, A, kineticEnergy, cut); >> 207 183 dedx += loss*theAtomicNumDensityVector[i]; 208 dedx += loss*theAtomicNumDensityVector[i]; 184 } 209 } 185 // G4cout << "BR e= " << kineticEnergy << " << 210 if(dedx < 0.) dedx = 0.; 186 dedx = std::max(dedx, 0.); << 187 return dedx; 211 return dedx; 188 } 212 } 189 213 190 //....oooOO0OOooo........oooOO0OOooo........oo 214 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 191 215 192 G4double G4MuBremsstrahlungModel::ComputMuBrem << 216 G4double G4MuBremsstrahlungModel::ComputMuBremLoss(G4double Z, G4double A, 193 217 G4double tkin, G4double cut) 194 { 218 { 195 G4double totalEnergy = mass + tkin; 219 G4double totalEnergy = mass + tkin; 196 static const G4double ak1 = 0.05; << 220 G4double ak1 = 0.05; 197 static const G4int k2 = 5; << 221 G4int k2=5; >> 222 G4double xgi[]={0.03377,0.16940,0.38069,0.61931,0.83060,0.96623}; >> 223 G4double wgi[]={0.08566,0.18038,0.23396,0.23396,0.18038,0.08566}; 198 G4double loss = 0.; 224 G4double loss = 0.; 199 225 200 G4double vcut = cut/totalEnergy; 226 G4double vcut = cut/totalEnergy; 201 G4int kkk = (G4int)(vcut/ak1) + k2; << 227 G4double vmax = tkin/totalEnergy; 202 if (kkk > 8) { kkk = 8; } << 228 203 else if (kkk < 1) { kkk = 1; } << 229 G4double aaa = 0.; 204 G4double hhh = vcut/(G4double)(kkk); << 230 G4double bbb = vcut; 205 << 231 if(vcut>vmax) bbb=vmax ; 206 G4double aa = 0.; << 232 G4int kkk = (G4int)((bbb-aaa)/ak1)+k2 ; 207 for(G4int l=0; l<kkk; ++l) { << 233 G4double hhh=(bbb-aaa)/float(kkk) ; 208 for(G4int i=0; i<6; ++i) { << 234 >> 235 G4double aa = aaa; >> 236 for(G4int l=0; l<kkk; l++) >> 237 { >> 238 for(G4int i=0; i<6; i++) >> 239 { 209 G4double ep = (aa + xgi[i]*hhh)*totalEne 240 G4double ep = (aa + xgi[i]*hhh)*totalEnergy; 210 loss += ep*wgi[i]*ComputeDMicroscopicCro << 241 loss += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, A, ep); 211 } 242 } 212 aa += hhh; 243 aa += hhh; 213 } 244 } 214 245 215 loss *= hhh*totalEnergy; << 246 loss *=hhh*totalEnergy ; >> 247 216 return loss; 248 return loss; 217 } 249 } 218 250 219 //....oooOO0OOooo........oooOO0OOooo........oo 251 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 220 252 221 G4double G4MuBremsstrahlungModel::ComputeMicro 253 G4double G4MuBremsstrahlungModel::ComputeMicroscopicCrossSection( 222 G4d 254 G4double tkin, 223 G4d 255 G4double Z, >> 256 G4double A, 224 G4d 257 G4double cut) 225 { 258 { 226 G4double totalEnergy = tkin + mass; 259 G4double totalEnergy = tkin + mass; 227 static const G4double ak1 = 2.3; << 260 G4double ak1 = 2.3; 228 static const G4int k2 = 4; << 261 G4int k2 = 4; >> 262 G4double xgi[]={0.03377,0.16940,0.38069,0.61931,0.83060,0.96623}; >> 263 G4double wgi[]={0.08566,0.18038,0.23396,0.23396,0.18038,0.08566}; 229 G4double cross = 0.; 264 G4double cross = 0.; 230 265 231 if(cut >= tkin) return cross; 266 if(cut >= tkin) return cross; 232 267 233 G4double vcut = cut/totalEnergy; 268 G4double vcut = cut/totalEnergy; 234 G4double vmax = tkin/totalEnergy; 269 G4double vmax = tkin/totalEnergy; 235 270 236 G4double aaa = G4Log(vcut); << 271 G4double aaa = log(vcut); 237 G4double bbb = G4Log(vmax); << 272 G4double bbb = log(vmax); 238 G4int kkk = (G4int)((bbb-aaa)/ak1) + k2 ; << 273 G4int kkk = (G4int)((bbb-aaa)/ak1)+k2 ; 239 if(kkk > 8) { kkk = 8; } << 274 G4double hhh = (bbb-aaa)/float(kkk); 240 else if (kkk < 1) { kkk = 1; } << 275 241 G4double hhh = (bbb-aaa)/(G4double)(kkk); << 242 G4double aa = aaa; 276 G4double aa = aaa; 243 277 244 for(G4int l=0; l<kkk; ++l) { << 278 for(G4int l=0; l<kkk; l++) 245 for(G4int i=0; i<6; ++i) { << 279 { 246 G4double ep = G4Exp(aa + xgi[i]*hhh)*tot << 280 for(G4int i=0; i<6; i++) 247 cross += ep*wgi[i]*ComputeDMicroscopicCr << 281 { >> 282 G4double ep = exp(aa + xgi[i]*hhh)*totalEnergy; >> 283 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, A, ep); 248 } 284 } 249 aa += hhh; 285 aa += hhh; 250 } 286 } 251 287 252 cross *= hhh; << 288 cross *=hhh; 253 //G4cout << "BR e= " << tkin<< " cross= " < << 289 254 return cross; 290 return cross; 255 } 291 } 256 292 257 //....oooOO0OOooo........oooOO0OOooo........oo 293 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 258 294 259 G4double G4MuBremsstrahlungModel::ComputeDMicr 295 G4double G4MuBremsstrahlungModel::ComputeDMicroscopicCrossSection( 260 G4d 296 G4double tkin, 261 G4d 297 G4double Z, >> 298 G4double A, 262 G4d 299 G4double gammaEnergy) 263 // differential cross section 300 // differential cross section 264 { 301 { >> 302 static const G4double sqrte=sqrt(exp(1.)) ; >> 303 static const G4double bh=202.4,bh1=446.,btf=183.,btf1=1429. ; >> 304 static const G4double rmass=mass/electron_mass_c2 ; >> 305 static const G4double cc=classic_electr_radius/rmass ; >> 306 static const G4double coeff= 16.*fine_structure_const*cc*cc/3. ; >> 307 265 G4double dxsection = 0.; 308 G4double dxsection = 0.; 266 if(gammaEnergy > tkin) { return dxsection; } << 309 >> 310 if( gammaEnergy > tkin) return dxsection ; 267 311 268 G4double E = tkin + mass ; 312 G4double E = tkin + mass ; 269 G4double v = gammaEnergy/E ; 313 G4double v = gammaEnergy/E ; 270 G4double delta = 0.5*mass*mass*v/(E-gammaEne 314 G4double delta = 0.5*mass*mass*v/(E-gammaEnergy) ; 271 G4double rab0 = delta*sqrte ; << 315 G4double rab0=delta*sqrte ; >> 316 >> 317 G4double z13 = exp(-log(Z)/3.) ; >> 318 G4double dn = 1.54*exp(0.27*log(A)) ; >> 319 >> 320 G4double b,b1,dnstar ; 272 321 273 G4int iz = G4lrint(Z); << 322 if(Z<1.5) 274 if(iz < 1) { iz = 1; } << 323 { 275 else if(iz > 92) { iz = 92; } << 324 b=bh; 276 << 325 b1=bh1; 277 G4double z13 = 1.0/nist->GetZ13(iz); << 326 dnstar=dn ; 278 G4double dnstar = fDN[iz]; << 327 } 279 << 328 else 280 G4double b,b1; << 329 { 281 if(1 == iz) { << 330 b=btf; 282 b = bh; << 331 b1=btf1; 283 b1 = bh1; << 332 dnstar = exp((1.-1./Z)*log(dn)) ; 284 } else { << 285 b = btf; << 286 b1 = btf1; << 287 } 333 } 288 334 289 // nucleus contribution logarithm 335 // nucleus contribution logarithm 290 G4double rab1 = b*z13; << 336 G4double rab1=b*z13; 291 G4double fn = G4Log(rab1/(dnstar*(CLHEP::ele << 337 G4double fn=log(rab1/(dnstar*(electron_mass_c2+rab0*rab1))* 292 (mass + delta*(dnstar*sqrte-2.))); << 338 (mass+delta*(dnstar*sqrte-2.))) ; 293 fn = std::max(fn, 0.); << 339 if(fn <0.) fn = 0. ; 294 // electron contribution logarithm 340 // electron contribution logarithm 295 G4double epmax1 = E/(1.+0.5*mass*rmass/E); << 341 G4double epmax1=E/(1.+0.5*mass*rmass/E) ; 296 G4double fe = 0.; << 342 G4double fe=0.; 297 if(gammaEnergy < epmax1) { << 343 if(gammaEnergy<epmax1) 298 G4double rab2 = b1*z13*z13; << 344 { 299 fe = G4Log(rab2*mass/((1.+delta*rmass/(CLH << 345 G4double rab2=b1*z13*z13 ; 300 (CLHEP::electron_mass_c2+rab0*rab2))); << 346 fe=log(rab2*mass/((1.+delta*rmass/(electron_mass_c2*sqrte))* 301 fe = std::max(fe, 0.); << 347 (electron_mass_c2+rab0*rab2))) ; >> 348 if(fe<0.) fe=0. ; 302 } 349 } 303 350 304 dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn 351 dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn*Z + fe)/gammaEnergy; 305 dxsection = std::max(dxsection, 0.0); << 352 306 return dxsection; 353 return dxsection; 307 } 354 } 308 355 309 //....oooOO0OOooo........oooOO0OOooo........oo 356 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 310 357 311 G4double G4MuBremsstrahlungModel::ComputeCross 358 G4double G4MuBremsstrahlungModel::ComputeCrossSectionPerAtom( 312 con 359 const G4ParticleDefinition*, 313 360 G4double kineticEnergy, 314 << 361 G4double Z, G4double A, 315 362 G4double cutEnergy, 316 << 363 G4double) >> 364 { >> 365 G4double cut = min(cutEnergy, kineticEnergy); >> 366 if(cut < cutFixed || ignoreCut) cut = cutFixed; >> 367 G4double cross = >> 368 ComputeMicroscopicCrossSection (kineticEnergy, Z, A/(g/mole), cut); >> 369 return cross; >> 370 } >> 371 >> 372 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 373 >> 374 G4double G4MuBremsstrahlungModel::CrossSectionPerVolume( >> 375 const G4Material* material, >> 376 const G4ParticleDefinition*, >> 377 G4double kineticEnergy, >> 378 G4double cutEnergy, >> 379 G4double maxEnergy) 317 { 380 { 318 G4double cross = 0.0; 381 G4double cross = 0.0; 319 if (kineticEnergy <= lowestKinEnergy) return << 382 if (cutEnergy >= maxEnergy || kineticEnergy <= lowestKinEnergy) return cross; 320 G4double tmax = std::min(maxEnergy, kineticE << 383 321 G4double cut = std::min(cutEnergy, kineticE << 384 G4double tmax = min(maxEnergy, kineticEnergy); 322 if (cut < minThreshold) cut = minThreshold; << 385 G4double cut = min(cutEnergy, tmax); 323 if (cut >= tmax) return cross; << 386 if(cut < cutFixed || ignoreCut) cut = cutFixed; 324 << 387 325 cross = ComputeMicroscopicCrossSection (kine << 388 const G4ElementVector* theElementVector = material->GetElementVector(); 326 if(tmax < kineticEnergy) { << 389 const G4double* theAtomNumDensityVector = 327 cross -= ComputeMicroscopicCrossSection(ki << 390 material->GetAtomicNumDensityVector(); >> 391 >> 392 for (size_t i=0; i<material->GetNumberOfElements(); i++) { >> 393 >> 394 G4double Z = (*theElementVector)[i]->GetZ(); >> 395 G4double A = (*theElementVector)[i]->GetA()/(g/mole); >> 396 >> 397 G4double cr = ComputeMicroscopicCrossSection(kineticEnergy, Z, A, cut); >> 398 >> 399 if(tmax < kineticEnergy) { >> 400 cr -= ComputeMicroscopicCrossSection(kineticEnergy, Z, A, tmax); >> 401 } >> 402 cross += theAtomNumDensityVector[i] * cr; 328 } 403 } >> 404 329 return cross; 405 return cross; 330 } 406 } 331 407 332 //....oooOO0OOooo........oooOO0OOooo........oo 408 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 333 409 334 void G4MuBremsstrahlungModel::SampleSecondarie << 410 G4DataVector* G4MuBremsstrahlungModel::ComputePartialSumSigma( 335 std::vector<G4Dy << 411 const G4Material* material, 336 const G4Material << 412 G4double kineticEnergy, 337 const G4DynamicP << 413 G4double cut) 338 G4double minEner << 414 339 G4double maxEner << 415 // Build the table of cross section per element. The table is built for MATERIAL >> 416 // This table is used by DoIt to select randomly an element in the material. >> 417 { >> 418 G4int nElements = material->GetNumberOfElements(); >> 419 const G4ElementVector* theElementVector = material->GetElementVector(); >> 420 const G4double* theAtomNumDensityVector = >> 421 material->GetAtomicNumDensityVector(); >> 422 >> 423 G4DataVector* dv = new G4DataVector(); >> 424 >> 425 G4double cross = 0.0; >> 426 >> 427 for (G4int i=0; i<nElements; i++ ) { >> 428 >> 429 G4double Z = (*theElementVector)[i]->GetZ(); >> 430 G4double A = (*theElementVector)[i]->GetA()/(g/mole) ; >> 431 cross += theAtomNumDensityVector[i] >> 432 * ComputeMicroscopicCrossSection(kineticEnergy, Z, A, cut); >> 433 dv->push_back(cross); >> 434 } >> 435 return dv; >> 436 } >> 437 >> 438 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 439 >> 440 void G4MuBremsstrahlungModel::MakeSamplingTables() >> 441 { >> 442 >> 443 G4double AtomicNumber,AtomicWeight,KineticEnergy, >> 444 TotalEnergy,Maxep; >> 445 >> 446 for (G4int iz=0; iz<nzdat; iz++) >> 447 { >> 448 AtomicNumber = zdat[iz]; >> 449 AtomicWeight = adat[iz]*g/mole ; >> 450 >> 451 for (G4int it=0; it<ntdat; it++) >> 452 { >> 453 KineticEnergy = tdat[it]; >> 454 TotalEnergy = KineticEnergy + mass; >> 455 Maxep = KineticEnergy ; >> 456 >> 457 G4double CrossSection = 0.0 ; >> 458 >> 459 // calculate the differential cross section >> 460 // numerical integration in >> 461 // log ............... >> 462 G4double c = log(Maxep/cutFixed) ; >> 463 G4double ymin = -5. ; >> 464 G4double ymax = 0. ; >> 465 G4double dy = (ymax-ymin)/NBIN ; >> 466 >> 467 G4double y = ymin - 0.5*dy ; >> 468 G4double yy = ymin - dy ; >> 469 G4double x = exp(y); >> 470 G4double fac = exp(dy); >> 471 G4double dx = exp(yy)*(fac - 1.0); >> 472 >> 473 for (G4int i=0 ; i<NBIN; i++) >> 474 { >> 475 y += dy ; >> 476 x *= fac; >> 477 dx*= fac; >> 478 G4double ep = cutFixed*exp(c*x) ; >> 479 >> 480 CrossSection += ep*dx*ComputeDMicroscopicCrossSection( >> 481 KineticEnergy,AtomicNumber, >> 482 AtomicWeight,ep) ; >> 483 ya[i]=y ; >> 484 proba[iz][it][i] = CrossSection ; >> 485 >> 486 } >> 487 >> 488 proba[iz][it][NBIN] = CrossSection ; >> 489 ya[NBIN] = 0. ; // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! >> 490 >> 491 if(CrossSection > 0.) >> 492 { >> 493 for(G4int ib=0; ib<=NBIN; ib++) >> 494 { >> 495 proba[iz][it][ib] /= CrossSection ; >> 496 } >> 497 } >> 498 } >> 499 } >> 500 samplingTablesAreFilled = true; >> 501 } >> 502 >> 503 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 504 >> 505 void G4MuBremsstrahlungModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, >> 506 const G4MaterialCutsCouple* couple, >> 507 const G4DynamicParticle* dp, >> 508 G4double minEnergy, >> 509 G4double maxEnergy) 340 { 510 { 341 G4double kineticEnergy = dp->GetKineticEnerg 511 G4double kineticEnergy = dp->GetKineticEnergy(); 342 // check against insufficient energy 512 // check against insufficient energy 343 G4double tmax = std::min(kineticEnergy, maxE << 513 G4double tmax = min(kineticEnergy, maxEnergy); 344 G4double tmin = std::min(kineticEnergy, minE << 514 G4double tmin = min(kineticEnergy, minEnergy); 345 tmin = std::max(tmin, minThreshold); << 515 if(tmin < cutFixed || ignoreCut) tmin = cutFixed; 346 if(tmin >= tmax) return; 516 if(tmin >= tmax) return; 347 517 >> 518 // ===== the begining of a new code ====== 348 // ===== sampling of energy transfer ====== 519 // ===== sampling of energy transfer ====== 349 520 350 G4ParticleMomentum partDirection = dp->GetMo 521 G4ParticleMomentum partDirection = dp->GetMomentumDirection(); 351 522 352 // select randomly one element constituing t 523 // select randomly one element constituing the material 353 const G4Element* anElement = SelectRandomAto << 524 const G4Element* anElement = SelectRandomAtom(couple); 354 G4double Z = anElement->GetZ(); << 355 G4double func1 = tmin* << 356 ComputeDMicroscopicCrossSection(kineticEne << 357 525 358 G4double gEnergy; << 526 G4double totalEnergy = kineticEnergy + mass; 359 G4double func2; << 527 G4double totalMomentum = sqrt(kineticEnergy*(kineticEnergy + 2.0*mass)); >> 528 >> 529 G4double AtomicNumber = anElement->GetZ(); >> 530 G4double AtomicWeight = anElement->GetA()/(g/mole); 360 531 361 G4double xmin = G4Log(tmin/minThreshold); << 532 G4double func1 = tmin*ComputeDMicroscopicCrossSection( 362 G4double xmax = G4Log(tmax/tmin); << 533 kineticEnergy,AtomicNumber, >> 534 AtomicWeight,tmin); >> 535 >> 536 G4double lnepksi, epksi; >> 537 G4double func2; >> 538 G4double ksi2; 363 539 364 do { 540 do { 365 gEnergy = minThreshold*G4Exp(xmin + G4Unif << 541 lnepksi = log(tmin) + G4UniformRand()*log(kineticEnergy/tmin); 366 func2 = gEnergy*ComputeDMicroscopicCrossSe << 542 epksi = exp(lnepksi); 367 << 543 func2 = epksi*ComputeDMicroscopicCrossSection( 368 // Loop checking, 03-Aug-2015, Vladimir Iv << 544 kineticEnergy,AtomicNumber, 369 } while(func2 < func1*G4UniformRand()); << 545 AtomicWeight,epksi); >> 546 ksi2 = G4UniformRand(); >> 547 >> 548 } while(func2/func1 < ksi2); >> 549 >> 550 // ===== the end of a new code ===== 370 551 371 // angles of the emitted gamma using general << 372 G4ThreeVector gamDir = << 373 GetAngularDistribution()->SampleDirection( << 374 << 375 // create G4DynamicParticle object for the G 552 // create G4DynamicParticle object for the Gamma 376 G4DynamicParticle* gamma = new G4DynamicPart << 553 G4double gEnergy = epksi; 377 vdp->push_back(gamma); << 554 >> 555 // sample angle >> 556 G4double gam = totalEnergy/mass; >> 557 G4double rmax = gam*min(1.0, totalEnergy/gEnergy - 1.0); >> 558 rmax *= rmax; >> 559 G4double x = G4UniformRand()*rmax/(1.0 + rmax); >> 560 >> 561 G4double theta = sqrt(x/(1.0 - x))/gam; >> 562 G4double sint = sin(theta); >> 563 G4double phi = twopi * G4UniformRand() ; >> 564 G4double dirx = sint*cos(phi), diry = sint*sin(phi), dirz = cos(theta) ; >> 565 >> 566 G4ThreeVector gDirection(dirx, diry, dirz); >> 567 gDirection.rotateUz(partDirection); >> 568 >> 569 partDirection *= totalMomentum; >> 570 partDirection -= gEnergy*gDirection; >> 571 partDirection = partDirection.unit(); >> 572 >> 573 // primary change >> 574 kineticEnergy -= gEnergy; >> 575 fParticleChange->SetProposedKineticEnergy(kineticEnergy); >> 576 fParticleChange->SetProposedMomentumDirection(partDirection); >> 577 >> 578 // save secondary >> 579 G4DynamicParticle* aGamma = new G4DynamicParticle(theGamma,gDirection,gEnergy); >> 580 vdp->push_back(aGamma); >> 581 } >> 582 >> 583 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 584 >> 585 const G4Element* G4MuBremsstrahlungModel::SelectRandomAtom( >> 586 const G4MaterialCutsCouple* couple) const >> 587 { >> 588 // select randomly 1 element within the material >> 589 >> 590 const G4Material* material = couple->GetMaterial(); >> 591 G4int nElements = material->GetNumberOfElements(); >> 592 const G4ElementVector* theElementVector = material->GetElementVector(); >> 593 if(1 == nElements) return (*theElementVector)[0]; >> 594 else if(1 > nElements) return 0; 378 595 379 // compute post-interaction kinematics of pr << 596 G4DataVector* dv = partialSumSigma[couple->GetIndex()]; 380 // energy-momentum conservation << 597 G4double rval = G4UniformRand()*((*dv)[nElements-1]); 381 const G4double totMomentum = << 598 for (G4int i=0; i<nElements; i++) { 382 std::sqrt(kineticEnergy*(kineticEnergy + 2 << 599 if (rval <= (*dv)[i]) return (*theElementVector)[i]; 383 G4ThreeVector dir = << 384 (totMomentum*dp->GetMomentumDirection() - << 385 const G4double finalE = kineticEnergy - gEne << 386 << 387 // if secondary gamma energy is higher than << 388 // then stop tracking the primary particle a << 389 // instead of the primary one << 390 if (gEnergy > SecondaryThreshold()) { << 391 fParticleChange->ProposeTrackStatus(fStopA << 392 fParticleChange->SetProposedKineticEnergy( << 393 G4DynamicParticle* newdp = new G4DynamicPa << 394 vdp->push_back(newdp); << 395 } else { << 396 // continue tracking the primary e-/e+ oth << 397 fParticleChange->SetProposedMomentumDirect << 398 fParticleChange->SetProposedKineticEnergy( << 399 } 600 } >> 601 return (*theElementVector)[nElements-1]; 400 } 602 } 401 603 402 //....oooOO0OOooo........oooOO0OOooo........oo 604 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 403 605